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ABSTRACT

Large robotic manipulators are needed in such fields as nuclear maintenance,
field, undersea and medical applications to perform high accuracy tasks requiring the
manipulation of heavy payloads.  Achieving such high accuracy is difficult because of the
manipulator’s size and its need to exert substantial task forces.  Therefore, there is a need
for model-based error identification and compensation techniques.  While classical
calibration methods can achieve such compensation for some systems, they cannot
correct the errors in large systems with significant elastic deformations.  They do not
explicitly consider the effects of task forces and structural compliance.  To consider these
using "brute force" numerical computation methods is not feasible.  A method to identify
and compensate for system geometric and elastic distortion positioning errors is
introduced.  The method is applied to a high accuracy medical robot and a Schilling
hydraulic manipulator.

Further there is a fundamental problem that has often caused unexpected
degradation in classical geometric calibration.  That is in the calibration process some of
the generalized errors are redundant, namely the effects of these errors are not observable
in the manipulator output.  These redundant error parameters must be eliminated from the
error model prior to the identification process to perform calibration with improved
accuracy.  In this thesis, the analytical expressions and physical interpretation of the
redundant error parameters are presented for a generic serial link manipulator.

After choosing an appropriate identification model, it is still necessary to measure
the manipulator pose to perform calibration.  However, most manipulator calibration
techniques require expensive and/or complicated pose measuring devices, such as
theodolites.  A calibration method, called Single Endpoint Contact (SEC) calibration, is
investigated.  In SEC, the manipulator endpoint is constrained to a single contact point
while the robot executes self-motions.  This method is able to identify elastic structural
deformation errors, since arbitrary task forces can be applied to the SEC constraint.  It is
shown that from the easily measured joint angle readings, and an identification model,
the manipulator is calibrated.

Thesis Supervisor: Steven Dubowsky
Title: Professor of Mechanical Engineering
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Chapter

1
Introduction

1.1   Background and Literature Review

Large robotic manipulators are needed in field, service, manufacturing and

medical applications to perform high accuracy tasks.  Examples are manipulators that

perform decontamination tasks in nuclear sites, space manipulators such as the Special

Purpose Dexterous Manipulator (SPDM) and manipulators for medical treatment

(Vaillancourt et al. 1994; Flanz 1996; Hamel et al. 1997).  In these applications, a large

robotic system is often needed to have very fine precision while exerting substantial task

forces and torques.  Its accuracy specifications may be very small fractions of its

workspace.  Achieving such high accuracy is difficult because of the manipulator’s size

and its need to carry heavy payloads, as well as high joint friction.  Further, many tasks,

such as space applications, require systems to be lightweight, and thus structural

deformation errors can be large.

A number of approaches exist for improving fine motion manipulator

performance through friction compensation.  Some of these require modeling of the

difficult to characterize joint frictional behavior (Canudas de Wit et al. 1996; Popovic,
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Shimoga and Goldenberg, 1994).  Some require the use of specially designed

manipulators that contain complex internal joint-torque sensors (Pfeffer, Khatib and

Hake, 1989).  A simple, yet effective control method has been developed that is

modelless and does not require internal joint sensors (Morel and Dubowsky, 1996;

Iagnemma et al., 1997; Morel et al., 2000).  The method, called Base Sensor Control

(BSC), estimates manipulator joint torques from a self-contained external six-axis

force/torque sensor placed under the manipulator’s base.  The joint torque estimates

allow for accurate joint torque control that has been shown to greatly improve

repeatability of both hydraulic and electric manipulators, but not their absolute accuracy.

Here repeatability is defined as how well the system returns to its original configuration

after being moved to arbitrary configurations.

Even with fine repeatability, high absolute positioning accuracy is still difficult to

achieve with a large manipulator.  Two principal error sources create significant end-

effector errors.  The first is kinematic errors due to the non-ideal geometry of the links

and joints of manipulators, such as errors due to machining tolerances.  These errors are

often called geometric errors.

The second error source that can limit the absolute accuracy of a large

manipulator is the elastic errors due to the distortion of a manipulator’s mechanical

components under large task loads or even its own weight.

Task constraints often make it impossible to use direct end-point sensing in a

closed-loop control scheme to compensate for these errors.  Therefore, there is a need for

model-based error identification and compensation techniques, often called robot

calibration.  However, classical error compensation methods cannot correct the errors in
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large systems with significant elastic deformations, because they do not explicitly

consider the effects of task forces and structural compliance.  Methods have been

developed to deal with this problem (Drouet et al. 1998; Drouet 1999), however they

depend on analytical models of the manipulator structural properties that are not easy to

obtain.

Considerable research has been performed in classical robot calibration without

consideration of elastic deformations (Roth et al. 1986; Hollerbach 1988; Hollerbach et

al. 1996; Zhuang et al. 1996).  In these methods robot position accuracy is improved

using compensation methods that identify a functional relationship between the joint

transducer readings and the workspace position of the end-effector based on experimental

calibration measurements.  The process requires the identification of the manipulator

generalized errors from calibration measurements.  Generalized errors characterize the

relative position and orientation of frames defined at the manipulator links.  These errors

are found from measured data and used to predict, and compensate for, the end-point

errors as a function of configuration.  A major component of this process is the

development of manipulator error models, some of which consider the effects of

manipulator joint errors, while others focus on the effects of link dimensional errors

(Waldron et al. 1979; Wu 1984; Vaishnav et al. 1987; Mirman et al. 1993).  Error models

have been developed specifically for use in the calibration of manipulators (Broderick et

al. 1988; Zhuang et al. 1992).  Some researchers have studied methods to find the optimal

configurations during the calibration measurements to reduce the manipulator errors by

calibration (Borm et al. 1991; Zhuang et al. 1996).  Solution methods for the

identification of the manipulator’s unknown parameters have been studied for these
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model-based calibration processes (Dubowsky et al. 1975; Zhuang et al. 1993).  Most

calibration methods have been applied to industrial or laboratory robots, achieving good

accuracy when geometric errors are dominant and elastical errors can be neglected.

In the past, calibration methods have not explicitly compensated for elastic errors

due to the wrench at the end-effector.  Recently in our laboratory a method to address this

problem has been developed, however it requires explicit structural modeling of the

system (Drouet et al. 1998; Drouet 1999).  While conceptually very similar to the

classical geometric problem, the combined problem is far more complex.  Compensating

for geometric errors requires building a model that is a function of the n (usually 6) joint

variables.  To compensate for a general 6 variable end-point task wrench (three end-point

forces and three end-point moments) requires a model that is a function of both the joint

variables and the end-point wrench variables, or a function of at least 12 variables.  The

number of measurements required to characterize this 12 dimensional space is far larger

than required for the 6 dimensional space.  The time and cost of the physical calibration

measurements often dominates the calibration problem.  Simple calculations suggest that

a brute force identification would require several million calibration measurements.

In addition, when implementing the above methodologies, a fundamental problem

inherent in robot calibration is encountered that has not been addressed in previous

research.  That is, in the calibration process some of the generalized errors are redundant,

and thus the effects of these redundant errors are not observable in the manipulator

output.  These redundant error parameters must be eliminated from the error model prior

to the identification process to perform calibration with improved accuracy (Hollerbach

and Wampler 1996; Ikits and Hollerbach, 1997).
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A number of coordinate system representations have been considered to model

the manipulator errors.  The four-parameter representations (such as the Denavit-

Hartenberg representation) are attractive since they are the minimal parameter set

required to locate the reference frames of the joints (Roth, Mooring, Ravani 1987).  Such

representation reduces the number of error combinations to be found, however the

redundant parameters are not necessarily eliminated.  In addition, the Denavit-Hartenberg

(D.H.) error representation does not model some of the generalized errors in the presence

of parallel joints.  The entire calibration can be compromised if such errors are

significant.  Also, the D.H. representation is ill-conditioned when neighboring joint axes

are nearly parallel.  Incorporating Hayati’s proposed modification to the D.H.

parameterization (Hayati, 1983) eliminates the ill-conditioning problem, however it has a

singularity when axes are nearly perpendicular (Hollerbach, 1988).  Some authors have

proposed a five-parameter representation (Hsu, Everett, 1985), however this

parameterization has a sensitivity problem when neighboring coordinate origins are close

together (Ziegert, Datseris, 1988).

Many papers have abandoned the D.H. representation of the errors, treating the

general case of two coordinate systems related by six parameters.  The six-parameter

representation of the errors, called generalized error model, does not have the sensitivity

problems of the D.H. representation.  However, it has the disadvantage of increased

redundancy (Hollerbach, 1988).  Numerical methods have been proposed to eliminate

redundant errors (Schröer, 1983; Everett and Suryohadiprojo, 1988; Zhuang, Roth and

Hamano, 1992), however they must be formulated in a case-by-case basis (Hollerbach

and Wampler, 1996).  An analytical algorithm has been proposed to eliminate the
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redundant errors in the D.H. error representation (Khalil, Gautier and Enguehard, 1991),

however it cannot be applied to the generalized error formulation.

After choosing an appropriate identification model and eliminating the redundant

error parameters it is still necessary to measure the manipulator pose as a function of the

joint angles and task loads.  However, most manipulator calibration techniques require

expensive and/or complicated pose measuring devices, such as theodolites.  Obtaining

pose measurements is generally very costly and time consuming, and must be performed

regularly for very high precision systems (Everett and Lin, 1988).  Many pose

measurement devices have been proposed.  The theodolite triangulation method consists

of two or more theodolites aimed at a common target on the robot wrist (Johnson, 1980).

Vira and Lau used laser interferometers with steerable reflectors to measure position and

orientation of a target in space (Vira and Lau, 1986).  Telescoping ball bars have been

used to measure contouring accuracy along a circular contour (Lau et al., 1984).

Bennett and Hollerbach defined a general class of calibration methods, called

closed-loop calibration, in which constraints are imposed on the end-effector of the robot

(Bennett and Hollerbach, 1991).  In this method the easily-measured joint angles are

adequate to calibrate the manipulator, without requiring any external metrology system.

Past closed-loop methods have required the robot to move along an unsensed sliding joint

at the endpoint, or constraining the end-effector to lie on a set of planes (Scheffer, 1976;

Warnecke et al., 1980; Ikits and Hollerbach, 1997; Zhuang et al., 1999).
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1.2 Objectives of this Thesis and Summary of Results

The goal of this thesis is to develop methods to substantially improve the absolute

accuracy in strong powerful manipulators lacking good repeatability and having

significant geometric and elastic errors − in other words, a manipulator with real

characteristics.  In this work, a method that compensates for the position and orientation

errors caused by geometric and elastic errors in such large manipulators is presented.

The method, called Geometric and Elastic Error Compensation (GEC), explicitly

considers the task load dependency of the errors, modeling both deformation and more

classical geometric errors in a unified manner.  A set of experimentally measured

positions and orientations of the robot end-effector and measurements of the payload

wrench are used to calculate the robot generalized errors without using an explicit

manipulator elastic model (Meggiolaro, Mavroidis and Dubowsky, 1998).  Generalized

errors are those parameters that characterize the relative position and orientation of

frames defined at the manipulator links.  They are determined from measured data as a

function of the system configuration and the task wrench.  Knowing these generalized

errors, the manipulator end-effector errors are compensated at any configuration.  In the

GEC method each generalized error parameter can be represented as a function of only a

few of the system variables.  As a result, the number of measurements required to

characterize the system is dramatically smaller than might be expected (Meggiolaro,

Dubowsky and Mavroidis, 2000).  The GEC method is applied in concert with a

previously developed concept called Base Sensor Control (BSC), which ensures good

repeatability by compensating for joint friction.  The combined methods do not require

joint velocity or acceleration measurements, a model of the actuators or friction, or the
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knowledge of manipulator mass parameters or link stiffnesses, yet they are able to

improve substantially its absolute positioning accuracy (Meggiolaro, Jaffe and

Dubowsky, 1999).

As discussed before, to improve calibration accuracy, redundant error parameters

must be eliminated from the error model prior to the identification process.  In this thesis,

analytical expressions and physical interpretation of all redundant error parameters are

developed for any serial link manipulator.  These expressions allow for systematic

calibration with improved accuracy of any serial link manipulator (Meggiolaro and

Dubowsky, 2000).

After choosing an appropriate identification model and eliminating its redundant

error parameters, it is still necessary to measure the manipulator pose at different

configurations.  However, most manipulator calibration techniques require expensive

and/or complicated pose measuring devices, such as theodolites.  This thesis presents a

calibration method, called Single Endpoint Contact (SEC) calibration, where the

manipulator endpoint is constrained to a single contact point while the robot executes

self-motions.  From the easily-measured joint angle readings and an identification model,

the manipulator is calibrated (Meggiolaro, Scriffignano and Dubowsky, 2000).

1.3 Applications

Two real applications are studied in this thesis.  They are a patient positioning

system for radiation therapy and a maintenance task in the nuclear power industry.
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1.3.1 Patient Positioning System

The robotic Patient Positioning System (PPS) at the proton therapy research

facility constructed at the Massachusetts General Hospital (MGH), the Northeast Proton

Therapy Center (NPTC), is an example of a large medical manipulator (Flanz et al. 1995;

Flanz et al. 1996).  The PPS places a patient in a high energy proton beam delivered from

a proton nozzle carried by a rotating gantry structure (see Figure 1.1).  The PPS is a six

degree-of-freedom manipulator that covers a large workspace of more than 4m radius

while carrying patients weighing as much as 300 lbs (see Figure 1.2).  Patients are

immobilized on a “couch” attached to the PPS end-effector.  The PPS, combined with the

rotating gantry that carries the proton beam, enables the beam to enter the patient from

any direction, while avoiding the gantry structure.  Hence programmable flexibility

offered by robotic technology is needed.

Figure 1.1 - The PPS and the G

Rotating Gantry
PPS
Proton Beam
19

antry  [Ref. Flanz, 1996]
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Figure 1.2 - The Patient Positioning System  [Ref. Flanz, 
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The GEC calibration method was applied to the PPS with a force/torque sensor

built into the system to measure the wrench applied by the patient’s weight.  It was found

that using only 450 calibration measurements the end-point errors could be reduced to

well within the required specification.  In fact, experimental results show that the

maximum error is reduced by a factor of 18.

1.3.2 Nozzle Dam Placement

Another application of large robotic manipulators is in the nuclear power industry.

The dangerous task of steam generator maintenance is currently performed by workers,

who are referred to as “jumpers.”  Once a year, each nuclear reactor is shutdown for a

month to swap old fuel rods in the reactor core with new ones (Figure 1.3 shows a

graphical overview of the process for a Westinghouse type F steam generator).  At the

same time the fuel cells are replenished, the U-tubes in the steam generator must be

inspected for damage.  In order for workers to enter the steam generator, the water in the

reactor core must be prevented from entering the steam generator’s water chamber.  This

is achieved by covering the two large portals, one meter in diameter, that connect the hot

and cold pipes to the steam generator (Cho, 1997).  Each portal has a nozzle ring into

which a device referred to as a nozzle dam is inserted with a tolerance of approximately

1mm.  The nozzle dam is installed in two phases, the first of which is fitting the nozzle

dam side plate in the nozzle ring (Figure 1.4a), and then the nozzle dam center plate is

placed within the side plate (Figure 1.4b).  This provides the necessary seal to prevent

water leakage, thereby allowing workers to enter the steam generator and inspect the U-

tubes.
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Figure 1.3 - Nuclear Reactor  [Ref. Cho, 1997]

Side Plate

Center Plate

Nozzle Ring

Manipulator

(a)

Nozzle Dam
Center Plate

Nozzle Dam
Side Plate

(b)

Figure 1.4 - Simulated Robotic Nozzle Dam Task

Installing one nozzle dam requires hours of manual labor during which time the

workers are exposed to high doses of residual radiation.  Jumpers can only remain in the

steam generator chamber for three minutes before receiving their maximum acceptable
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yearly radiation dosage.  At this point, the worker leaves the chamber through the 0.8 m

diameter access portal and another worker enters to resume the task (Zezza, 1985).  The

manpower and time required to complete this task, as well as the health risks imposed on

the workers, make this task well suited to investigations in automating the process.

Recent attempts to place the nozzle dam with a manipulator have taken very long because

of the combination of poor teleoperator visibility and lack of manipulator accuracy.

Successful completion of the task with a manipulator would eliminate radiation exposure

as well as save money by reducing the time required to place the nozzle dam.  For each

hour that the reactor is off line, $40,000 in potential revenues is lost.  The key to

achieving this task is improving manipulator accuracy as well as the operator interface.

The typical repeatability of manipulators capable of handling the required load, such as

the Schilling Titan II manipulator, is in the range of 10 to 20 mm.  The absolute accuracy

can be several times these amounts.  The automation of this task would require absolute

accuracy of only a few millimeters.

Also, contact force information between the manipulator end-effector and the

environment is fundamental for teleoperated placement tasks with small tolerances.

However, a wrist force/torque sensor alone provides limited information to locate the

contact point.  In the case where there is only one contact point with the environment and

where the contact torque is zero, it is possible to calculate the contact information

required for control.  This can be obtained from wrist force/torque information combined

with knowledge of the geometry of the manipulator end-effector.  A method is developed

to estimate the contact forces between the manipulator end-effector and the environment
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from wrist sensor and task geometry, and graphically displays this contact force

information to a teleoperator (Meggiolaro, Jaffe, Iagnemma and Dubowsky, 1999).

In addition, a virtual viewing system based on 3-D kinematic models is developed

to perform the nozzle dam task.  The system contains 3-D kinematic models of the

manipulator and the workspace, reflecting the actual system configuration.  The interface

provides improved operator visibility by allowing virtual viewing of physically obscured

regions using virtual cameras.  The virtual cameras also allow for magnifying the mating

edges in order to aid in teleoperated insertion tasks.  The virtual viewing system is

combined with real-time contact force measurements to improve teleoperation.

Laboratory experiments show that successful nozzle dam placements could be performed

using the combined GEC/BSC techniques and the visualization system with a

conventional Schilling hydraulic manipulator.

1.4 Outline of this Thesis

This thesis is divided into seven chapters.  This chapter serves as an introduction

and overview of the work.  Chapter 2 reviews the Base Sensor Control method as applied

to the fine-motion positioning problem, and presents the generalized error formulation

applied to classical manipulator calibration.

Chapter 3 presents a general analytical method to eliminate the redundant error

parameters in robot calibration.  Simulation results are presented for a PUMA 560 and for

an Adept SCARA manipulator.
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Chapter 4 describes the GEC (Geometric and Elastic Error Compensation) theory

and shows experimental results for the calibration of the Patient Positioning System and

of a Schilling Titan II manipulator used in the nozzle dam placement task.

Chapter 5 investigates the SEC (Single Endpoint Contact) calibration method,

where the robot endpoint is constrained to a single contact point.  Optimization of the

SEC fixture location is discussed.  Simulations and experimental results are presented for

a Schilling Titan II manipulator.

Chapter 6 explores a method to obtain contact force information between the

manipulator end-effector and the environment.  This method is applied to a virtual

environment teleoperator interface developed for the nozzle dam placement task.  This

system is then integrated with control hardware to provide a comprehensive teleoperation

package.

Chapter 7 summarizes the conclusions regarding the integration of the above

methodologies.  Finally, suggestions for further work are presented.

The appendices to this thesis give detailed information on specific topics related

to the practical implementation of the work presented.  Appendix A provides the proof of

the linear combination expressions of the columns of the Identification Jacobian matrix.

These expressions are used to eliminate the redundant parameters from the error model in

robot calibration.  Appendix B provides a kinematic description of the Patient Positioning

System, including the associated error matrices.  Appendix C provides the error matrices

for the Schilling Titan II manipulator.
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Chapter

2
Analytical Background

2.1 Introduction

This chapter reviews the analytical background for Base Sensor Control and

classical calibration techniques.  Section 2.2 reviews the theoretical framework for the

BSC method, and discusses important simplifications that can be made for the fine-

motion case.  Section 2.3 presents the generalized error formulation applied to classical

robot calibration.

2.2 Base Sensor Control (BSC)

The following is a brief review of the basis for BSC (Base Sensor Control) based

on (Morel et al., 2000), where the complete development is presented.  A simplified

version of the algorithm sufficient and effective for fine-motion control is formulated in

(Iagnemma, 1997).

BSC has been developed to compensate for nonlinear joint characteristics in

robotic manipulators, such as high joint friction, to improve system repeatability.  BSC

estimates manipulator joint torques from a self-contained external six-axis force/torque
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sensor placed under the manipulator’s base.  The joint torque estimates allow for accurate

joint torque control that has been shown to greatly improve repeatability of both

hydraulic and electric manipulators.

As shown in Figure 2.1, the wrench, Wb, exerted by the manipulator on its base

sensor can be expressed as the sum of three components:

Wb = Wg + Wd + We (2.1)

where Wg is the component due to gravity, Wd is caused by manipulator motion, and We

is the wrench exerted by the payload or task on the end-effector.  Note that joint friction

does not appear in the measured base sensor wrench.  In the fine-motion case, it is

assumed that the gravity wrench is essentially constant, and this wrench can be

approximated by the initial value measured by the base sensor.  Hence, the complexity of

computing the gravitational wrench, such as identification of link weights and a static

manipulator model, is eliminated. Under this assumption, the Newton Euler equations of

the first i links are:
















−=−

−=

−=
−=

→−

→−+→

→→

→

n

i

1

dn1ne

di1i1ii

d1021

b10

WWW

WWW

WWW
WW

(2.2)

where  1iiW +→ is the wrench exerted by link i on link i+1, and 
idW  is the dynamic wrench

for link i.
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1gW

We

Wb = Wd + Wg + We

idW

1dW

1gW

Base Force/
Torque Sensor

Wrist Force/
Torque Sensor

Figure 2.1 - External and Dynamic Wrenches  [Ref. Morel et al., 1996]

For fine tasks it is assumed that the manipulator moves very slowly so that Wd

can be neglected.  Therefore, for slow, fine motions, only the measured wrench at the

base is used to estimate the torque in joint i+1.  The estimated torque in joint i+1 is

obtained by projecting the moment vector at the origin Oi of the ith reference frame along

the joint axis zi:

iOT
i1i z bW⋅−=+τ (2.3)

The value of τi+1 depends only on the robot's kinematic parameters, joint angles

and base sensor measurements.

With estimates of the joint torque, it is possible to perform high performance

torque control that can greatly reduce the effects of joint friction and nonlinearities.  This

results in greatly improved repeatability.  Figure 2.2 shows BSC schematically.
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Figure 2.2 - BSC Control Loop  [Ref. Morel et al., 1996]

However, the BSC method will not compensate for sources of random

repeatability errors, such as limited encoder resolution.  In addition, a manipulator with

good repeatability may not have fine absolute position accuracy.  After improving the

system repeatability using BSC, a model-based error correction method can be applied to

reduce the absolute accuracy errors.  The next section presents a classical formulation for

manipulator calibration.

2.3 Classical Manipulator Calibration

There are many possible sources of errors in a manipulator.  These errors are

referred to as "physical errors," to distinguish them from the generalized errors defined in

Chapter 1.  In most cases, while the actual physical errors are relatively small, their effect

at the end-effector is large.  The main sources of physical errors in a manipulator are:

• Mechanical system errors:  These errors result from machining and assembly

tolerances of the manipulator's mechanical components.
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• Deflections:  Elastic deformation of the manipulator's members under task loads and

gravity can result in large end-effector errors, especially in long reach manipulator

systems.

• Measurement and Control:  Measurement, actuator, and control errors that occur in

the control systems will create end-effector positioning errors.  The resolution of

encoders and stepper motors are examples of this type of error.

• Joint errors: These errors include bearing run-out in rotating joints, rail curvature in

linear joints, and backlash in manipulator joints and actuator transmissions.

Further, errors can be distinguished into “repeatable” and “random” errors

(Slocum, 1992).  Repeatable errors are those whose numerical value and sign are constant

for a given manipulator configuration and task load.  An example of a repeatable error is

an assembly error.  Random errors are errors whose numerical value or sign changes

unpredictably.  An example of a random error is the error that occurs due to backlash of

an actuator gear train.  Classical kinematic calibration and correction can only deal with

repeatable errors.  It will be shown experimentally in Chapter 4 that repeatable errors

dominate in the performance of the PPS and of the Schilling manipulator.

To describe the kinematics of a manipulator, Denavit-Hartenberg reference

frames are defined at the manipulator base, end-effector, and at each manipulator joint

(Craig, 1989).  The position and orientation of a reference frame Fi with respect to the

previous reference frame Fi-1 is defined with a 4x4 matrix Ai that has the general form:









=

10
ii

i

TR
A    (2.4)
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The Ri term is a 3x3 orientation matrix composed of the direction cosines of

frame Fi with respect to frame Fi-1, and Ti is a 3x1 vector of the coordinates of center Oi

of frame Fi in Fi-1, see Figure 2.3.  The elements of matrices Ai depend on the geometric

parameters of the manipulator and the manipulator joint variables q.

Frame Fi-1
real

Oi
real

Oi
ideal

iFrame F real

With errors

No errors
Frame F i

ideal
Ai Ei

Oi-1
real

Figure 2.3 - Frame Translation and Rotation Due to Errors for ith Link

Physical errors cause the geometric parameters of a manipulator to be different

from their ideal values.  As a result, the frames defined at the manipulator joints are

slightly displaced from their expected, ideal locations, creating significant end-effector

errors.  The position and orientation of a frame Fi
real with respect to its ideal location

Fi
ideal is represented by a 4x4 homogeneous matrix Ei, see Figure 2.3.  The translational

part of matrix Ei is composed of the 3 coordinates εx,i, εy,i and εz,i of point Oi
real in Fi

ideal

(along the X, Y and Z axes respectively, defined using the Denavit-Hartenberg

representation), see Figure 2.4.  The rotational part of matrix Ei is the result of the

product of three consecutive rotations εs,i, εr,i, εp,i around the Y, Z and X axes respectively

(also shown in Figure 2.4).  These are the Euler angles of Fi
real with respect to Fi

ideal.  The

subscripts s, r, and p represent spin (yaw), roll, and pitch, respectively.  The 6 parameters

εx,i, εy,i, εz,i, εs,i, εr,i and εp,i are called generalized error parameters, which can be a
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function of the system geometry and joint variables.  For an n degree of freedom

manipulator, there are 6(n+1) generalized errors which can be written in the form of a

6(n+1) x 1 vector ε = [εx,0,..., εx,i, εy,i, εz,i, εs,i, εr,i, εp,i,…, εp,n]T, with i ranging from 0 to n,

assuming that both the manipulator and the location of its base are being calibrated.  If

the manipulator is being calibrated with respect to its own base, then the error matrix E0

(which models the errors of the base location) is eliminated, reducing the number of

generalized errors to 6n.  The generalized errors that depend on the system geometry, the

system task loads and the system joint variables can be calculated from the physical

errors link by link.  Note that system weight effects can be included in the model as a

simple function of joint variables.

εεεεs,i

εεεεp,i

εεεεr,i
Xi

ideal

Yi
ideal

Zi
ideal

Xi
real

Yi
realZi

real

(ε(ε(ε(εx,i,ε,ε,ε,εy,i,ε,ε,ε,εz,i))))

Figure 2.4 - Translational and Rotational Generalized Errors for ith Link

With generalized errors the manipulator loop closure equation takes the form:

ALC(q,εεεε,s) = E0A1E1A2E2......AnEn          (2.5)

where ALC is a 4x4 homogeneous matrix of the form of Equation (2.4) that describes the

position and orientation of the end-effector frame with respect to the inertial reference

frame as a function of the configuration parameters q, the vector of the generalized errors
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εεεε, and the vector of the structural parameters s.  The translational components of the

matrix ALC and the three angles of its rotational components are the six coordinates of the

end-effector position and orientation vector Xreal.

The end-effector position and orientation error ∆∆∆∆X is defined as the 6x1 vector

that represents the difference between the real position and orientation of the end-effector

and the ideal one:

∆∆∆∆X = Xreal  − Xideal  (2.6)

where Xreal and Xideal are the 6x1 vectors composed of the three positions and three

orientations of the end-effector reference frame in the inertial reference system for the

real and ideal cases, respectively.

Since the generalized errors are small, ∆∆∆∆X can be calculated by the following

linear equation in εεεε:

∆∆∆∆X = Je εεεε (2.7)

where Je is the 6x6(n+1) Jacobian matrix of the end-effector error ∆∆∆∆X with respect to the

elements of the generalized error vector εεεε, also known as Identification Jacobian matrix

(Zhuang et al. 1999).  As with the generalized errors, Je depends on the system

configuration, geometry and task loads.

If the generalized errors, εεεε, can be found from calibration measurements, then the

correct end-effector position and orientation error can be calculated using Equation (2.7)

and be compensated.  Figure 2.5 shows schematically an error compensation algorithm

based on Equation (2.7).  The method to obtain εεεε from experimental measurements is

explained below.
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Figure 2.5 - Error Compensation Scheme

To calculate the generalized errors εεεε it is assumed that some components of vector

∆∆∆∆X can be measured at a finite number of different manipulator configurations.

However, since position coordinates are much easier to measure in practice than

orientations, in many cases only the three position coordinates of ∆∆∆∆X are measured.

Assuming that all 6 components of ∆∆∆∆X can be measured, for an n degree of

freedom manipulator, 6(n+1) generalized errors εεεε can be calculated by measuring ∆∆∆∆X at

m different configurations, defined as q1, q2,…, qm, then writing Equation (2.7) m times:
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∆

∆
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εεεε εεεε               (2.8)

where ∆∆∆∆Xt is the m x 1 vector formed by all measured vectors ∆∆∆∆X at m different

configurations and Jt is the 6m x 6(n+1) matrix formed by the m Identification Jacobian

matrices Je at m configurations, called here Total Identification Jacobian.  To reduce the

effects of measurement noise, the number of measurements m is, in general, much larger

than n.
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If the generalized errors εεεε are constant, then a unique least-squares estimate εεεε  can

be calculated by:

( ) 1
εεεε ∆∆∆∆= ⋅

−
J J J Xt

T
t t

T
t        (2.9)

However, if the Identification Jacobian matrix Je(qi) contains linearly dependent

columns, Equation (2.9) will produce estimates with poor accuracy due to poor matrix

conditioning (Hollerbach et al. 1996).  This occurs when there is redundancy in the error

model, in which case it is not possible to distinguish the error contributed by each

generalized error component.  Conventional calibration methods also cannot be

successfully applied when some of the generalized errors depend on the manipulator

configuration q or the end-effector wrench w, namely εεεε(q,w), such as when elastic

deflections that depend on the configuration and applied forces at the end-effector are

significant.  Chapters 3 and 4 present respectively methods for finding the generalized

errors (εεεε) for the case where there is a singular Identification Jacobian matrix and where

there are significant elastic deformations combined with conventional geometric errors.

2.4 Summary and Conclusions

This chapter presented the theoretical framework for the BSC method, and a

simplified form of the algorithm was formulated for the fine-motion case.  A generalized

error formulation was presented for classical manipulator calibration, which can be used

to identify the system geometric errors.  However, classical calibration methods do not

explicitly compensate for elastic errors due to the wrench at the end-effector.  In addition,

redundant error parameters must be eliminated from the error model prior to the

identification process to perform calibration with improved accuracy.  Chapters 3 and 4
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present an analytical method to eliminate the redundant parameters, and introduce a

calibration method that identifies both geometric and elastic deformation errors.
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Chapter

3
Elimination of Redundant Error Parameters

3.1 Introduction

This chapter presents a general analytical method to eliminate redundant error

parameters in robot calibration.  Section 3.2 presents analytical expressions and physical

interpretation of the linear combinations of generalized errors.  Section 3.3 contains

simulation results for a PUMA 560 and an Adept SCARA manipulator, showing the

number of identifiable error parameters in each case and comparing the analytical

formulation to ad-hoc methods.

3.2 Eliminating Redundant Errors

In robot calibration, redundant errors must be eliminated from the error model

prior to the identification process.  This is usually done in an ad-hoc or numerical manner

by reducing the columns of the Identification Jacobian matrix Je to a linearly independent

set (Hollerbach, 1988).  Here, an analytical method is presented to eliminate the

redundant parameters.  Section 3.2.1 presents the linear combinations of the columns of

the Identification Jacobian matrix and the method to eliminate the redundant errors to

obtain the non-singular Identification Jacobian matrix.  Section 3.2.2 discusses physical
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interpretations of the linear combinations.  Section 3.2.3 presents additional linear

combinations introduced when only the end-effector position is measured.  Section 3.2.4

shows the number of independent error parameters for a general serial link manipulator.

Section 3.2.5 extends the results obtained using the six-parameter representation to the

Denavit-Hartenberg error parameterization.  It also shows that the D.H. representation of

errors does not model some of the generalized errors in the presence of parallel joints,

which can adversely affect the identification process.

3.2.1  Linear Combinations of the Identification Jacobian matrix

In this section, the linear combinations of the columns of the Identification

Jacobian matrix Je are presented.  The six-parameter representation is used to define the

errors, and the linear combination coefficients are expressed through the robot’s D.H.

parameters.  Defining Jx,i, Jy,i, Jz,i, Js,i, Jr,i and Jp,i as the columns of Je associated with the

generalized error components εx,i, εy,i, εz,i, εs,i, εr,i and εp,i respectively (i between 0 and n),

Equation (2.7) can be rewritten as

∆∆∆∆X = [Jx,0,…,Jx,i, Jy,i, Jz,i, Js,i, Jr,i, Jp,i, …, Jp,n]⋅

[εx,0,…, εx,i, εy,i, εz,i, εs,i, εr,i, εp,i, …, εp,n]T       (3.1)

For each link i, between 1 and n, the following linear combinations are always valid (see

Appendix A for proof):

 i,zii,yi)1(i,z cossin JJJ α+α≡− (3.2)

  i,rii,sii,ziii,yii)1,(ir cossinsinacosa JJJJJ α+α+α−α≡− (3.3)
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where the manipulator parameters are defined using the D.H. representation: link lengths

ai, joint offsets di, joint angles θi, and skew angles αi.  If joint i is prismatic, then

additional combinations of the columns of Je are found:

 i,x)1(i,x JJ ≡−    (3.4)

 i,zii,yi)1(i,y sincos JJJ α−α≡− (3.5)

The linear combinations shown above are always present, independently of the

values of ai and αi, even for degenerate cases (such as ai=0).  As shown in Appendix A, if

the full pose of the end-effector (both position and orientation) is measured, then

Equations (3.2-3.5) are the only linear combinations for link i.

To obtain the non-singular Identification Jacobian matrix, called here Ge, columns

Jz,(i-1) and Jr,(i-1) must be eliminated from the matrix Je for all values of i between 1 and n.

If joint i is prismatic, then columns Jx,(i-1) and Jy,(i-1) must also be eliminated.  For an n

DOF manipulator with r rotary joints and p (p equal to n-r) prismatic joints, a total of

2r+4p columns are eliminated from the Identification Jacobian Je to form its submatrix

Ge.  This means that 2r+4p generalized errors cannot be obtained by measuring the end-

effector pose.

By definition, the dependent error parameters eliminated from εεεε do not affect the

end-effector error, resulting in the identity

∆∆∆∆X = Je ε ε ε ε ≡ Ge εεεε* (3.6)

Using the above identity and the linear combinations of the columns of Je from Equations

(3.2-3.5), it is possible to obtain all relationships between the generalized error set εεεε and
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its independent subset, εεεε* (see Appendix A).  If joint i is revolute (i between 1 and n),

then the generalized errors εz,(i-1) and εr,(i-1) are eliminated, and its values are incorporated

into the independent error parameters ε∗
y,i, ε∗

z,i, ε∗
s,i and ε∗

r,i :











αε+ε≡ε
αε+ε≡ε

α⋅ε−αε+ε≡ε
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−

−−

−−
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cos
sin

sinacos
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             (3.7)

If joint i is prismatic, then the translational errors εx,(i-1) and εy,(i-1) are eliminated,

and its values are incorporated into the independent error parameters ε∗
x,i, ε∗

y,i and ε∗
z,i.  In

this case, Equation (3.7) becomes:
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            (3.8)

If the vector εεεε* containing the independent errors is constant, then the matrix Ge

can be used to replace Je in Equation (2.7), and Equation (2.9) is applied to calculate the

estimate of the independent generalized errors εεεε*, completing the identification process.

However, if non-geometric factors are considered (e.g. link compliance, gear

eccentricity), then it is necessary to further model the parameters of εεεε* as a function of the

system configuration prior to the identification process.  This situation will be discussed

in Chapter 4.
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3.2.2  Physical Interpretation of the Linear Combinations

In this section the physical interpretation of Equations (3.2-3.5) is presented.

Each equation associates a generalized error from link i-1 with a combination of errors

from link i that result in end-effector errors of the same magnitude and direction.  Since it

is not possible to distinguish the amount of error contributed by each generalized error,

the errors associated with link i-1 are indistinguishable.

Equation (3.2) reflects the fact that the translational error along the Z-axis of

frame i-1 has the same effect as a combination of the translational errors along the Y and

Z axes of frame i (see Figure 3.1).  This relation is easily explained by the fact that the

skew angle αi between the axes of joints i-1 and i is constant.

ααααi εεεεz,iεεεεy,iεεεεz,(i-1)

Figure 3.1 - Linear Combination of Translational Generalized Errors

Equation (3.3) states that the rotational error along the Z-axis of frame i-1 has the

same effect as a combination of the rotational and translational errors along the Y and Z

axes of frame i.  For simplicity, a planar manipulator is used to explain this combination

(see Figure 3.2).  The top figure shows the end-effector translational and rotational errors

∆∆∆∆Xt and ∆∆∆∆Xr caused by the rotational generalized error εr,(i-1) of frame i-1.  The bottom

figure shows that the same end-effector errors can be reproduced by a specific

combination of the translational error εy,i and the rotational error εr,i of frame i.  To obtain
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the same end-effector errors in this case, it is required that εy,i = εr,(i-1) ⋅ ai and εr,i = εr,(i-1)

(see the relationship between εεεε* and εεεε in Appendix A).

εεεεr,(i-1)

εεεεr,i

εεεεy,i

∆∆∆∆Xr

∆∆∆∆Xr

∆∆∆∆Xt

∆∆∆∆Xt

Figure 3.2 - Error Combinations Resulting in Same End-Effector Errors

If joint i is prismatic, then Equations (3.4) and (3.5) are also valid.  These

combinations simply state that the effects of the generalized errors along the X and Y

axes of frame i-1 can always be reproduced by a combination of the three translational

generalized errors of frame i (see Figure 3.3).  This is always true for prismatic joints,

since such joints only move along the Z-axis of frame i-1 (using the D.H. frame

definition).

εεεεy,i

ααααi

εεεεz,iεεεεx,i

εεεεy,(i-1)εεεεx,(i-1)

Figure 3.3 - Linear Combinations of Generalized Errors in Prismatic Joints
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3.2.3 Partial Measurement of End-Effector Pose

The linear combinations of the columns of the Identification Jacobian matrix Je

shown in Equations (3.2-3.5) are obtained when both position and orientation of the end-

effector are considered.  In the case where only the end-effector position is measured, its

orientation can take any value, resulting in additional linear combinations.  In this case,

the three last columns of Je are zero vectors (see Appendix A):

Js,n ≡ Jr,n ≡ Jp,n ≡ 0 (3.9)

Equation (3.9) means, as expected, that the three rotational errors of the end-effector

frame εs,n, εr,n and εp,n do not influence the end-effector position (they only affect the

orientation, which is not being measured).  As a result, these generalized errors are not

obtainable.

If the last joint is prismatic, then no further linear combinations are found.

However, if the last joint is revolute and its link length an is zero, then three more linear

combinations are present (see Appendix A):

Js,(n-1) ≡ dn Jx,(n-1) (3.10)

Jp,(n-1) ≡ − dn Jy,(n-1) (3.11)

Jr,(n-1) ≡ 0 (3.12)

meaning that the effects of εs,(n-1) and εp,(n-1) cannot be distinguished from the ones caused

by εx,(n-1) and εy,(n-1), and also the generalized error εr,(n-1) is not obtainable.  If both link

length an and joint offset dn are zero, then the origin of frames n-1 and n coincide at the

end-effector position.  In this case, Equations (3.9-3.12) can be recursively applied to

frames n-1, n-2, and so on, as long as the origin of these frames all lie at the end-effector

position.  See Appendix A for more details.
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3.2.4  Number of Independent Generalized Errors

As a corollary of Equations (3.2-3.12), the number of independent generalized

errors for a generic serial link manipulator can be calculated.  Upper bounds of this

number have been presented in the literature (Roth, Mooring and Ravani, 1987; Zhuang,

Roth and Hamano, 1992), but not its exact value.  Table 3.1 shows the number of

generalized errors, the number of linear dependencies, and the number of independent

generalized errors for both robot calibration (without modeling its base frame errors) and

robot+base location calibration.

Table 3.1 – Number of Independent Generalized Errors

Robot+Base Calibration Robot Calibration
 # generalized errors 6(n+1) 6n
 # linear dependencies 2r + 4p + k 2r’ + 4p’ + k

  # independent errors 6(n+1) – (2r + 4p + k) 6n – (2r’ + 4p’ + k)

where

n :      # of joints in the manipulator

r ; r’ : # of revolute joints including/excluding joint 1

p ; p’: # of prismatic joints including/excluding joint 1


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3.2.5  Extension to Four-Parameter Error Representations

The six-parameter representation of the errors is used above to obtain all linear

combinations of the generalized errors.  If a four-parameter representation is chosen for

the identification process, the previous results can still be applied to eliminate the

redundant parameters, through an adaptation of Equations (3.2-3.5).  The extension of the

results to four-parameter error representations is easily accomplished because such

parameterizations are a subset of the generalized error representation.

The four Denavit-Hartenberg error parameters of link i are exactly the rotational

and translational errors along the Z-axis of frame i-1 and the X-axis of frame i of the six-

parameter representation.  Namely, the errors along the link lengths ai, skew angles αi,

joint offsets di, and joint angle offsets θi of link i are respectively mapped to the

generalized errors εx,i, εp,i, εz,(i-1), and εr,(i-1).  This implies that the translational and

rotational errors along the Y-axis of every frame, εy,i and εs,i, are not modeled when the

D.H. error representation is used.  If the manipulator does not have parallel joints then εy,i

and εs,i can be replaced by a combination of the errors along di and θi, see Equation (3.7).

However, if joints i-1 and i are parallel, then the rotation error εs,i cannot be obtained

from the D.H. representation.  In addition, if the link length ai is zero, then the translation

error εy,i is also non-obtainable.  This means that the entire calibration can be

compromised if the manipulator has significant errors in those directions.  Hayati’s

modification of the D.H. representation (Hayati, 1983) only partially solves this problem,

because it introduces an angular alignment parameter that models the Y-axis rotation

error εs,i, but not the translation error εy,i.
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Since the generalized errors εy,i and εs,i are not modeled when using the D.H. error

representation, the column vectors Jy,i and Js,i are not present in the Identification

Jacobian.  Thus, Equations (3.2-3.5) can only be applied to the D.H. representation if

both Jy,i and Js,i are not present in the linear combination.  This is never true for

Equations (3.3) and (3.5), but Equation (3.2) can be applied if sin(αi) is null, due to

parallel joints.  In this case, the following linear combinations of the D.H. error

parameters are valid:
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       (3.13)

Finally, if joint i is prismatic, then Equation (3.4) results in one additional linear

combination

1ii
*
i1)(i,xi,x

*
i,x δaδaδa −− +=⇒ε+ε=ε

(3.14)

As seen in Equations (3.13) and (3.14), even though the D.H. representation

results in fewer linear combinations, redundant parameters may still be present.

In summary, the D.H. error representation does not model some of the physical

errors if parallel joints are present and still presents linear combinations that need to be

eliminated.  Since the redundancy of the six-parameter error representation can be

eliminated with the method described in this chapter, the use of such parameterization in

robot calibration is recommended.
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3.3 Simulation Results

Simulations were performed on a PUMA 560 and an Adept SCARA manipulator.

The six-parameter error representation was used and its redundant parameters were

eliminated using Equations (3.2-3.5).  Simulated measurements were obtained and the

introduced error parameters were identified using Equation (2.9).

For the calibration of a PUMA 560 robot and its base by measuring the end-

effector position only, 27 error parameters were identified.  This result is in agreement

with (Ikits and Hollerbach, 1997) and also with Table 3.1 (using n=6, r=6, p=0 and k=3).

For an Adept SCARA robot, 20 error parameters were identified by measuring

both end-effector position and orientation, which agrees with Table 3.1 (using n=4, r=3,

p=1 and k=0).  Although the D.H. error representation also models 20 parameters in this

case, only 15 of these parameters are independent and identifiable.  The error parameters

εs,1, εs,2, εs,3, εy,4 and εs,4 cannot be identified using the D.H. error representation due to

parallel joints in the system.  Even if Hayati's modification (Hayati, 1983) is introduced,

the translation error εy,4 still remains unmodeled, showing that only the six-parameter

representation can identify all 20 parameters in this case.

3.4 Summary and Conclusions

This chapter presented a general analytical method to eliminate the redundant

error parameters in robot calibration.  These errors, often non-intuitive, must be

eliminated from the error model prior to the identification process, otherwise the

robustness of the calibration can be compromised (Hollerbach, 1988).  The analytical

expressions and physical interpretation of the linear combinations present in the
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generalized error parameterization were developed.  The non-redundant form of the

Identification Jacobian matrix was obtained using these expressions, allowing for the

systematic calibration with improved accuracy of any serial link manipulator.
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Chapter

4
Geometric and Elastic Error Compensation (GEC)

4.1 Introduction

This chapter describes the GEC (Geometric and Elastic Error Compensation)

method theory and experimental studies.  Section 4.2 presents the theoretical framework

for the GEC method.  Section 4.3 contains experimental results for the Patient

Positioning System.  Section 4.4 presents the application of GEC to the nozzle dam

placement task and shows experimental results for a Schilling Titan II manipulator.

4.2 GEC Theory

In the GEC method (Geometric and Elastic Error Compensation), elastic

deformation and classical geometric errors are considered in a unified manner.  The

method can identify and compensate for both types of error, without an explicit elastic

model of the system.  Two steps are necessary to successfully apply the GEC method.  In

the first step, presented in Chapter 3, the redundant error parameters must be eliminated

from the identification model (as with any calibration method).  In the second step, the
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error model must be extended to consider the task loading wrench and configuration

dependency of the errors.  In this case, the independent generalized errors ε* are modeled

as a function of the manipulator configuration q and the end-effector wrench w, or

ε*(q,w).  To predict the endpoint position of the manipulator for a given configuration

and task wrench, it is necessary to calculate the generalized errors from a set of offline

measurements.  The complexity of these calculations can be substantially reduced if the

generalized errors are parameterized using polynomial functions.  The ith element of

vector ε* is approximated by a polynomial series expansion of the form:
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n
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2
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1
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mi,ji,j
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i ⋅⋅⋅⋅≡⋅=ε ∑

=
wqwq  (4.1)

where ni is the number of terms used in each expansion, ci,j are the constant polynomial

coefficients, wmj is an element of the task wrench w, and q1, q2, ..., qn are the manipulator

joint parameters.  It has been found that good accuracy can be obtained using only a few

terms ni in the above expansion (Meggiolaro et al. 1998).  If elastic deflections of link i

are considered, then the generalized errors created by these deflections would depend on

the task wrench applied at the ith link.  For a serial manipulator, this deflection is due to

the wrench at the end-effector and to the configuration of the links after the ith.  Hence,

the wrench applied at the ith link depends only on the joint parameters qi+1,...,qn.  Thus,

the number of terms in the products of Equation (4.1) is substantially reduced.  Each

generalized error parameter is then represented as a function of only a few of the system

variables, greatly reducing the number of measurements required to characterize the

system using the GEC method.  Note that the effects of manipulator deformation due to

its own weight are already included in the terms that are solely a function of q.
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The coefficients ci,j are grouped into one vector c, becoming the unknowns of the

problem.  The total number of unknown coefficients, called nc, is the sum of the number

of terms used in Equation (4.1) to approximate each generalized error, i.e. nc = Σni.  The

nc functions fi,j(q,w) are then incorporated into the non-singular Identification Jacobian

matrix Ge by substituting Equation (4.1) into (3.6).  Equation (3.6) becomes:

   ∆∆∆∆X = Ge(q) ⋅ εεεε*(q,w) ≡ He(q,w) ⋅ c (4.2)

where He is the (6 x nc) Jacobian matrix of the end-effector error ∆∆∆∆X with respect to the

polynomial coefficients ci,j.  The matrix He, called here Extended Identification Jacobian

matrix, can be obtained from Equations (4.1) and (4.2):

He(q,w) ≡ [G1⋅f1,1, … ,G1⋅f1,n1, … , Gi⋅fi,1, Gi⋅fi,2, … , Gi⋅fi,ni, …]    (4.3)

where Gi is the column of matrix Ge associated to the generalized error component ε∗
i.

An estimate of the coefficient vector c is then calculated by replacing Je with the

matrix He in Equation (2.8) and applying Equation (2.9), completing the identification

process.  Once the polynomial coefficients, c, are identified, the end-effector position and

orientation error ∆∆∆∆X can be calculated and compensated using Equation (4.2).  The

method of identifying the generalized errors as a function of the manipulator

configuration and the end-effector wrench is summarized in Figure 4.1.
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Figure 4.1 - Flow-chart of the Method to Identify Generalized Errors

4.3 Application to the Patient Positioning System

The PPS is a six degree of freedom robot manipulator (see Figure 1.2) built by

General Atomics (Flanz et al. 1996).  The first three joints are prismatic, with maximum

travel of 225cm, 56cm and 147cm for the lateral (X), vertical (Y) and longitudinal (Z)

axes, respectively.  The last three joints are revolute joints.  The first joint rotates parallel

to the vertical (Y) axis and can rotate ±90°.  The last two joints are used for small

corrections around an axis of rotation parallel to the Z (roll) and X (pitch) axes, and have

a maximum rotation angle of ±3°.  The manipulator "end-effector" is a couch which

supports the patient in a supine position, accommodating patients up to 188 cm in height

and 300 lbs in weight in normal operation.

The intersection point of the proton beam with the gantry axis of rotation is called

the system isocenter.  The couch treatment volume is defined by a treatment area on the

couch of 50cm x 50cm  and a height of 40cm (see Figure 1.2).  This area covers all
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possible locations of treatment points (i.e. tumor locations in a patient).  The objective is

for the PPS to make any point in this volume be coincident with the isocenter at any

orientation.

The joint parameters of the PPS are the displacements d1, d2, d3 of the three

prismatic joints and the rotations θ, α, β of the three rotational joints, see Figure 4.2.  A 6

axis force/torque sensor is placed between the couch and the last joint.  By measuring the

forces and moment at this point, it is possible to calculate the patient weight and the

coordinates of the patient center of gravity.  The system motions are very slow and

smooth due to safety requirements.  Hence, the system is quasi-static, and its dynamics

do not influence the system accuracy and are neglected.

Figure 4.2 - Joint Parameter Definition for the PPS  [Ref. Flanz, 1996]

The accuracy of the PPS was measured using a Leica 3D Laser Tracking System

(see Figure 4.3).  These measurements were to evaluate the PPS repeatability, the
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nonlinearity of its weight dependent deflections, the inherent uncompensated PPS

accuracy, and the method developed above.

Figure 4.3 - Leica 3D Laser Tracking System

Three targets were placed on the couch at the positions P1, P2 and P3, shown in

Figure 4.4.  The targets are located about 10 mm above the couch.  The position accuracy

of the measurements is approximately 0.04 mm.
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Figure 4.4 - Close-up View of the PPS Couch

A reference frame FT is fixed to the couch (see Figure 4.4).  The intersection point

of the plane (P1 P2 P3) with the Y axis of the fixed reference frame is called OT.  A fixed

reference frame, Fo, is used to express the coordinates of all points.  When the PPS is at
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its home configuration (all joint variables set equal to zero) the reference frames FT and

Fo are coincident.  The location of a tumor on a patient, defined as the Nominal

Treatment Point (NTP), is specified in the frame coordinate FT.  For the results presented

below, the NTP coordinates in FT are taken as (0, 90, -840) mm.

For more than 700 different configurations of the PPS and different weights the

location of points P1, P2 and P3 in frame Fo were measured and the NTP coordinates in

frame Fo calculated.  From the ideal system kinematic model, the ideal coordinates of the

NTP were calculated and subtracted from the experimentally measured values to yield the

vector ∆∆∆∆X(q,w).  450 measurements were used to evaluate the basic uncompensated

accuracy of the PPS and the accuracy of the compensation method described above.  Two

different payload configurations were used: one with no payload and another with a 154

lbs weight at the center of the treatment area.  The PPS configurations used were grouped

into two sets:

Set a) Treatment Volume.  The 8 vertices of the treatment volume (see Figure 1.2) are

reached with the NTP with angle θ taking values from -90° to 90° with a step of

30°, for a total of 112 configurations.

Set b) Independent Motion of Each Axis.  Each axis is moved independently while all

other axes are held at the home (zero) values.  The step of motion for d1 is 50 mm,

for d2 20 mm, for d3 25mm and for θ 5°, resulting in 338 configurations.

The PPS uncompensated accuracy combining the two sets is shown in Figures

4.5(a-b).  The data points represent the positioning errors of NTP.  In spite of the high

quality of the PPS physical system, its uncompensated accuracy is on the order of 10mm.

This is approximately 20 times higher than the specification of ±0.50mm.
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Part of the uncompensated error is the repeatability errors.  This error is due to the

random system errors, and it cannot be compensated by a model based technique.  They

represent the accuracy limit of any error compensation algorithm and it also shows how

well an error compensation technique performs.  Here the system repeatability is based

on how well the system would return the NTP to certain arbitrary configurations.  A total

of 270 measurements were taken with zero payload weight.  Figure 4.6 shows the

distributions of the repeatability errors for each axis.  The repeatability error can be seen

to be less than 0.15mm (3σ).  Thus this system is a good candidate for model based error

correction methods, since the repeatability errors are relatively small compared to the

±0.50mm accuracy requirement.

Figure 4.6 - Repeatability Distribution
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In implementing the computation method a general nonlinear function of the

wrench w can be used.  To help establish this function, the behavior of the PPS

positioning errors for different payload weights was examined with measurements made

at the home (zero) configuration.  The weights ranged from 0 to 300 lbs in steps of

approximately 25 lbs.  The positioning errors of the PPS are nearly linear with the

payload weight, and the least-square error is less than 0.1mm for the linear fit.  Hence the

generalized errors were taken as linear functions of the system wrench in Equation (4.1).

The redundant error parameters are eliminated from the error model using

Equations (3.2-3.5).  The generalized errors are then calculated with Equation (2.9) using

the configurations of set (b) (independent motion of its axes) and half of the treatment

volume data (set a).  For a Pentium PC 300MHz, the computing time was less than one

minute.  Figures 4.7-4.9 show the measured and the GEC predicted errors at the NTP

when each axis is moved independently.  The PPS is then commanded to move to

compensated points for the remaining configurations of set (a).  The residual positioning

errors of the PPS after compensation are shown in Figures 4.5(a-b).  The residual errors

are enclosed in a sphere of 0.38 mm radius which is smaller than the sphere of 0.5 mm

radius that represents the accuracy specification.  The required number of data points for

this calculation was less than 400.  The error distribution along each axis is shown in

Figure 4.10.  Hence the compensation method used in this paper enables the system to

meet its specification and is now a key element in MGH's operational software.
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Figure 4.7 - Measured and GEC Predicted Errors along the X Axis at NTP
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Figure 4.10 - Statistics of the Compensated PPS Errors at NTP

4.4 Application to the Nozzle Dam Task

In this section, the GEC method is applied together with Base Sensor Control (see

Section 2.2).  The combined GEC/BSC method is experimentally evaluated for the nozzle

dam application.  In this application, unlike the PPS, the system repeatability is poor due

to joint friction.  The BSC method improves the repeatability as required by GEC.  The

nozzle dam insertion task requires the use of a strong manipulator to transport the heavy

nozzle dam payload within the harsh radioactive environment of the steam generator.

The manipulator chosen for this system is a Schilling Titan II, a six DOF hydraulic robot
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widely used for remote manipulation in hostile environments such as deep-ocean, toxic-

chemical, high-voltage, and radioactive environments (see Figure 4.11).  The Schilling is

well-suited for these tasks because of its large workspace (a 194 cm maximum reach) and

its high load bearing capacity in excess of 100 kg at full extension (Tomcat Manipulator

System Technical Manual, 1991).

Figure 4.11 - Schilling Titan II Manipulator

Like many strong, powerful manipulators, the Schilling does not inherently have

fine repeatability due to high friction in its joints.  However, the nozzle dam task requires

extremely accurate positioning for fine motions.  Also, absolute accuracy is sacrificed as

a result of the poor repeatability and significant geometric errors.  Its absolute position

accuracy is approximately 40 mm (RMS), many times the nozzle dam specification.
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The objective of the experiment is to see if the combined GEC/BSC method

outlined in Figure 4.12 can be applied to the experimental system to improve its

repeatability and its absolute accuracy, while minimizing the implementation cost to keep

the solution practical for the nuclear industry.  For this experimental system, the

achievable repeatability is limited by the particular control electronics used.  The joint

resolver signals, standard on the Schilling, are converted to quadrature encoder

waveforms using a special purpose Delta Tau Data/PMAC controller design.  The joint

angle resolution of this configuration is limited to  ±0.087 degree, which leads to as much

as ±5 mm errors in the end-effector positioning.
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Figure 4.13 shows the experimental test-bed constructed for this study.  A six-axis

Advanced Mechanical Technology, Inc. (AMTI) force/torque sensor is mounted under

the manipulator base to provide wrench measurements for the BSC algorithm.  A 15 kg

replica of the nozzle dam center-plate was built along with an adjustable plate receptacle

that permits the clearances to be varied from interference to several cm.  An algorithm to

successfully place the rectangular center plate within the receptacle would be easily

extendable to perform the other high precision tasks necessary to complete the entire

nozzle dam installation, either through teleoperation or as an autonomous subtask.
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A pair of Pentax optical theodolites was used to accurately measure the 3D

position of the end-effector to generate the correction matrix, evaluate weight dependent

deflections, and verify the algorithm performance.  The resolution of the theodolites was

30 arc seconds, leading to measurement errors of 0.29 mm.

A fixed reference frame, F0, is used to express the coordinates of all points.  The

origin of this reference lies at the intersection of the top of the base sensor and the joint 1

axis.  Its z-axis is vertical and its x-axis is defined by a specific horizontal reference

direction.

A PC-based graphical user interface provides the operator with workspace

visualization as well as manipulator control functionality.  The sampling rate was ten

milliseconds, which was sufficiently fast for the experiments.

In this work, 400 measurements were used to evaluate the basic accuracy of the

Schilling.  Different payloads were used, with weights up to 45 kg.  Most of the

measurements focused on two specific payloads: one with no weight and another with an

18 kg weight (the replica nozzle dam plate).

End-effector measurements of the manipulator under PI control determined the

baseline uncompensated system repeatability and accuracy.  The relative positioning root

mean square error was used as a measure of the system repeatability.  The 12-bit

discretization of the Schilling's resolver signal leads to random errors up to 5.0 mm,

imposing a lower limit of 2.0 mm (RMS) on the system repeatability.  This repeatability

value sets the accuracy limit of any error compensation algorithm.

The results show that the BSC algorithm was able to reduce the repeatability

errors by a factor of 4.73 over PI control.  Data was taken by moving the manipulator an
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arbitrary distance from the test point and then commanding it back to its original position.

Figure 4.14 shows the distributions of the repeatability error with and without BSC.  The

maximum errors without BSC were 21.0 mm, and the repeatability was 14.3 mm (RMS).

BSC reduced the maximum errors to 5.5 mm with a repeatability of only 2.7 mm (RMS).

Figure 4.14 - Repeatability with and without BSC

Although the BSC algorithm greatly reduced repeatability errors to about 2.7mm

(RMS), a 35 mm (RMS) error remained in absolute accuracy.  Thus, a model-based error

correction method can be applied to reduce the accuracy errors.

In order to implement GEC, the geometric and elastic deformation correction

matrix was calculated using approximately 350 measurements of the end-effector in

different configurations and with different payloads.  The remaining points were used to

verify the efficiency of the GEC method.

From the ideal system kinematic model, the ideal coordinates of the end-effector

were calculated and subtracted from the experimentally measured values to yield the
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vector ∆∆∆∆X(q,w) in Equation (2.7).  By treating generalized errors as constant in their

respective frames, the system absolute accuracy was improved to 13.4 mm (RMS).  Since

the GEC method allows for the use of polynomials to describe each generalized error,

second order polynomials achieved an absolute accuracy of 7.3 mm (RMS), an additional

100% improvement.

Figure 4.15 shows the convergence of original positioning errors as large as 55.1

mm (34.3 mm RMS) to corrected errors of less than 10.7 mm (7.3 mm RMS) with

respect to the base frame F0.  This demonstrates an overall factor of nearly 4.7

improvement in absolute accuracy by using the GEC algorithm.

Figure 4.1
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An experiment was conducted to demonstrate the application of the joint GEC

and BSC algorithm.  The Schilling was commanded to a series of 11 points in the same

plane under pure BSC control and then with the addition of two forms of the GEC

method.  The uncorrected data showed absolute accuracy errors of 29.5 mm (RMS),

which are of the same order as the 34.3 mm (RMS) error found from the theodolite

measurements.  The implementation of GEC with constant generalized errors in their

frames resulted in errors being reduced to 11.4 mm (RMS).  By expanding the GEC

algorithm to include second order polynomials, absolute positioning errors were reduced

even further to a RMS value of 8.2 mm.  With this improvement in performance, it

should make feasible such tasks as the nozzle dam insertion.

4.5 Summary and Conclusions

In this chapter, a method was presented to compensate for the positioning end-

effector errors of large manipulators with significant task loads.  Both geometric and

elastic errors are considered without requiring any explicit elastic model of the system.

The method has been applied experimentally to a high-accuracy large medical

manipulator (PPS) and to a Schilling Titan II manipulator.  The results showed that the

basic accuracy of these manipulators exceeded their specifications, but after applying the

method to compensate for end-effector errors the accuracy specifications are met.  The

method is now a key element of the PPS software used to treat cancer patients (Flanz,

1996).
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Chapter

5
Single Endpoint Contact Calibration (SEC)

5.1 Introduction

This chapter investigates the SEC (Single Endpoint Contact) calibration method,

where the robot endpoint is constrained to a single contact point.  Section 5.2 presents the

theoretical background for the SEC method.  Section 5.3 contains simulations and

experimental results for SEC applied to a Schilling Titan II manipulator.

5.2 SEC Theory

In Single Endpoint Contact calibration, instead of moving the end-effector to

different positions to obtain the calibration measurements, the endpoint position is kept

fixed with changes only in its orientation.  Using an end-effector fixture equivalent to a

ball joint, the robot executes self-motions to move to different configurations.  At each

configuration, manipulator joint sensors provide data that is used in an SEC identification

algorithm to estimate the robot’s parameters.  A least squares optimization procedure is

used to improve the calibration accuracy.
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The advantage of this method is that it does not require measurements of the robot

position using external sensors, requiring only an inexpensive and compact device such

as a ball joint.  Only one endpoint location needs to be known, along with the joint angle

measurements.  The kinematic loop closure equations are then used to calibrate the

manipulator.  In order to calibrate the system, the closed chain must have some mobility.

So, a spatial manipulator must have 4 DOF's or more to be calibrated using this method.

For planar manipulators, the point contact condition provides 2 constraints, so a planar

manipulator with as few as 3 DOF's may be calibrated using SEC.

In addition to geometric errors, this calibration method is able to identify elastic

structural deformation errors due to task loads and gravity, since arbitrary forces can be

applied to the SEC fixture.  In this case, a wrist force/torque sensor is added to the

manipulator to measure the endpoint wrenches.

Also, to use the method for applications without significant task loads, it is

necessary to minimize the forces between the manipulator and the calibration point

fixture.  Large forces could result in significant elastic deformations on the SEC fixture

and the manipulator, compromising the identification accuracy.  Section 5.2.2 shows how

to keep endpoint forces small while moving a manipulator under endpoint constraint.

The calibration method is applied experimentally to a 6 DOF hydraulic

manipulator.  The error parameters of the robot are identified and used to predict, and

compensate for, the endpoint errors as a function of configuration.  Results presented

here show that the location selected for endpoint contact significantly affects SEC

calibration performance.  A technique to find the optimal calibration point is presented in

Section 5.2.3 with simulation results.  The experimental results show that the method is
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able to effectively and significantly improve the manipulator’s accuracy without

requiring special and expensive metrology equipment.

5.2.1  Analytical Development

Consider a manipulator gripping an end-effector fixture at a constant location

(x0,y0,z0), and define qreal as the measured vector of joint variables.  The end-effector

error is the difference between the actual position of the end-effector, at the SEC fixture,

and the ideal position calculated from the kinematic equations applied to the measured

qreal.  This ideal position is the end-effector position that an ideal manipulator would

achieve if it was moved to the measured joint readings of the actual robot.  As both ideal

and real manipulator positions are evaluated at the same configuration qreal, the resulting

end-effector error ∆∆∆∆X is only due to the generalized errors.  From Equations (2.6) and

(2.7), the end-effector position error ∆∆∆∆X is

∆∆∆∆X = Xreal(qreal)−Xideal(qreal) = [x0,y0,z0]
T
−Xideal = Je(qreal) ε  ε  ε  ε                  (5.1)

Here the three end-effector reference frame orientations are eliminated from the

error model, as they are not measured.  The three position components of the end-effector

reference frame in the inertial reference system are represented by the 3x1 endpoint

vectors Xreal and Xideal.

Since both Je and Xideal can be calculated at each point using the measured joint

positions and ideal direct kinematics, the only remaining unknown in Equation (5.1) is

the generalized error vector εεεε.
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∆∆∆∆X Xreal(x0,y0,z0)

Xideal

Figure 5.1 - Real and Ideal Positions of a Manipulator End-Effector

As the robot executes self-motions to different configurations, the real robot

parameters can be estimated from the readings of the internal position sensors and from

the identification model.  A least squares optimization procedure, shown in Equation

(2.9), is then used to improve the calibration accuracy.

As in every calibration method not having a priori knowledge of the task

constraint dimensions, the scale of the mechanism must be set, i.e., one link length or

other length parameter has to be measured by independent means (Bennett and

Hollerbach, 1991).  In the SEC method, if any of the coordinates x0, y0 or z0 of the end-

effector fixture is known, then this scaling requirement is already satisfied.  However, if

none of these coordinates is known, then one length parameter needs to be independently

measured.  Note that it is not necessary to know a priori the location of the end-effector

fixture, since its location can be introduced as an unknown.  In this case, Equation (5.1) is

rewritten as:
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where the unknown vector εεεε∗∗∗∗ contains both generalized errors and the coordinates of the

end-effector fixture.

In addition to geometric errors, this calibration method is able to identify elastic

structural deformation errors, since arbitrary forces can be applied to the SEC fixture (see

Figure 5.2).  In this case, an extended error model must be used to identify the elastic

errors as a function of the payload wrench at the end-effector, as discussed in Chapter 4.

Defining F as the desired force applied to the end-effector and J as the robot Jacobian,

then the vector ττττ of applied joint torques/forces to the manipulator is

ττττ = JT (-F)            (5.3)
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ττττ2
ττττ3
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Figure 5.2 - Calibration of Elastic Errors due to an Arbitrary Force
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5.2.2  Control

To use the SEC method, the manipulator must be controlled to move the joint

variables while keeping the end-effector still (see Figure 5.3).  To accomplish this

without causing large and unknown forces on the end-effector that would deform the

SEC fixture or the manipulator, a projection approach is adopted (Oriolo, 1994).  In the

method the control input is a projected error proportional feedback of the form:

u = (I – J# ·J) · [K·(qr – q)]           (5.4)

where J is the robot Jacobian, J# is the Jacobian pseudoinverse, K is a positive definite

matrix, and qr is the desired manipulator configuration.  The matrix (I – J# ·J) is the

orthogonal projection operator in the Jacobian null space, which guarantees that joint

velocities do not result in any end-effector velocity.  Note that the above control scheme

is equivalent to using the classical Projected Gradient method to solve redundancy

(Oriolo, 1994).  It has been shown that the reference configuration qr is globally stable

for this control scheme.  Thus, this control approach is used to steer the manipulator into

different configurations during the offline calibration measurements.

Start

Goal

Start

Goal

Figure 5.3 - Stabilization of the Arm Self-Motions
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5.2.3 Optimization of the Fixture Location

In this section a technique to find the optimal location of the calibration fixture is

presented.  The optimization method has been developed by Guglielmo Scriffignano, a

visiting scholar from Politecnico di Milano, Italy.

In SEC calibration, the location of the endpoint fixture can significantly affect the

calibration performance.  Ideally, generalized errors are constant in their frames, and

errors identified at an arbitrary configuration can be used to compensate for errors at any

other configuration.  In this case, the endpoint fixture location used during SEC does not

influence the calibration accuracy, since any configuration would lead to the same

constant generalized errors.  However, generalized errors are in general functions of

configuration, especially in systems with significant elastic deformation.  Therefore,

interpolating functions must be chosen to model each generalized error, and its

coefficients must be identified (see Chapter 4).

Furthermore, depending on the chosen set of measurement points, the error

compensation process involves interpolation or extrapolation of the generalized error

functions.  As a general mathematical result, interpolation accuracy can be improved to

the limit of the measurement noise by performing enough measurements in the desired

range.  However, extrapolation accuracy depends on how well the chosen set of functions

model the actual system.  So, poorly chosen functions may give a reasonable precision in

the interpolation range, but poor precision in configurations outside the measured range.

As a result, the choice of the measurement ranges at each joint is critical to the calibration

accuracy.  The optimization method presented here calculates a fixture location used by

the SEC method that maximizes the measurement ranges of each joint.
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In the SEC calibration, the measurement ranges of each joint are uniquely defined

by the location of the calibration point.  For a general manipulator, it is necessary to use

numerical methods to find the measurement ranges.  If the manipulator inverse kinematic

equations can be written, then it is possible to find analytical solutions for the joint

ranges.  For an ideal 3R planar manipulator, with full-range of all 3 joints and no

interference between links, an analytical solution of the measurement ranges for each

calibration point P has been found, as given below.

Defining li as the length of link i and P = [r cos ϕ, r sin ϕ] as the calibration point,

the joint angles qi must satisfy:
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The measurement range of a joint j can then be written as:
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For a generic 3R manipulator, it is also necessary to consider the intersection

between the ideal solution from Equation (5.8) and the mechanical limits of each joint.

Once the measurement ranges of each joint are calculated and the errors identified

using SEC, the calibration can be evaluated by defining a performance index.  This index

is based on the observation that measurement interpolation results in better accuracy than
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extrapolation.  First consider the Interpolated Compensation Region (ICR), defined as the

workspace region where the compensation algorithm does not require extrapolation of the

error functions.  It represents the region of the workspace that the manipulator can reach

by independently sweeping its joints through their interpolated ranges.  Conversely, the

Extrapolated Compensation Region (ECR) is the workspace region where any of the

generalized error functions needs to be extrapolated, resulting in reduced accuracy.

In order to obtain an ideal location of the calibration point, a performance index

for the SEC method needs to be defined and optimized.  The volume of the ICR is an

example of such index.  By maximizing this volume - therefore minimizing the volume

of the ECR - the overall accuracy of the compensation algorithm is increased.  However,

every region of the workspace is given the same importance, even those that are not

useful for the task to be performed after calibration.  To choose the fixture location that

offers the best accuracy in specific workspace regions, a more general index is defined,

called the Weighted Volume of the ICR (WV):

∫∫∫ ⋅α=
ICR

dV)z,y,x(WV           (5.10)

where α(x,y,z)∈[0,1] is a weight function defined over the entire workspace, representing

the importance of each point (x,y,z) to the chosen task.  Note that if α(x,y,z)=1 in the

entire workspace, then the WV becomes the geometric volume of the ICR.  The choice of

the best fixture location for the SEC method is obtained by maximizing the function WV.

5.3 Results

Simulations of the SEC calibration and the optimization of the fixture location

were performed for two 3R planar manipulators and a 6-DOF manipulator.  Experiments
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were then performed on a Schilling Titan II manipulator to show the effectiveness of the

SEC calibration.

5.3.1  Simulation Results

Two different 3R planar manipulators were considered, with link lengths (1, 1, 1)

and (5, 4, 3).  In both cases an optimal location of the SEC fixture was found using

Equations (5.5-5.10).  In this simulation the manipulators do not have joint limits, and the

weights α(x,y,z) of the Weighted Volume in Equation (5.10) are equal to 1.0, i.e., every

region of the workspace is considered equally important.  For the (1, 1, 1) manipulator,

the SEC fixture location that maximizes the volume of the interpolated region is at a

distance from the robot base equal to 1.0 (see Figure 5.4).  By using this fixture location,

it is possible to move the manipulator in the full-range of its 3 joints, and the errors along

the entire workspace can be compensated without extrapolation.

Figure 5.4 - ICR Volume as a Function of the Fixture Location
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For the (5, 4, 3) planar manipulator, the optimal solution of the fixture location is

at a distance from the robot base equal to 6.0 (see Figure 5.5).  In this case, however, the

ICR is not coincident with the whole workspace.  The maximum volume (or area, since it

is a planar manipulator) of the ICR is 341.6, while the workspace surface is π⋅122 =

452.4.  So, for even the best choice of the calibration point, 25% of the calibrated

workspace relies on extrapolation to compensate for the measured errors.  Figure 5.6

shows some of the 3R manipulator configurations corresponding to a fixture location at

P(x,y)=(6,0).  The Interpolated and Extrapolated Compensation Regions obtained after

the calibration process at two different fixture locations are shown in Figures 5.7 and 5.8.

Note that the ICR obtained from calibration at the optimal fixture location P=(6,0),

shown in Figure 5.7, is much larger than the one obtained using P=(10,0).  Thus, from the

numerical simulations it is found that SEC calibration using a fixture location at P=(6,0)

results in better accuracy than at P=(10,0).

Figure 5.5 - ICR Volume as a Function of SEC Fixture Location
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Figure 5.6 - Measurement Configurations for an SEC Fixture at (6,0)

3R Planar Robot - Links (5,4,3)
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Figure 5.7 - Extrapolated and Interpolated Regions for an SEC Fixture at (6,0)
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3R Planar Robot - Links (5,4,3)

P(10,0)

Figure 5.8 - Extrapolated and Interpolated Regions for an SEC Fixture at (10,0)

A simulation of the SEC method was applied to a 3R planar manipulator with link

lengths (1m, 1m, 1m).  The simulation introduced generalized errors that are functions of

configuration, reflecting the effects of elastic deformations.  To investigate the effects of

interpolation and extrapolation on the measured errors, the chosen identification

functions were different from the introduced error functions.

Two different fixture locations are used in the calibration, at distances 1.0m (the

optimal location in this case) and 2.5m from the manipulator base.  The manipulator is

moved to 300 measurement configurations, sweeping the joint ranges allowed by each

fixture location.  An RMS uncorrected error of 8.0mm and a measurement noise of

0.1mm were introduced to both simulations.  After the identification process, the end-
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effector was released and the compensated manipulator was moved to several

configurations in the workspace.  The residual error after compensation was then

evaluated at each configuration, and its RMS value was calculated.

For the calibration fixture at 1.0m, the full range of the three joints was achieved,

and the RMS residual error was 0.16mm.  When the fixture location was changed to 2.5m

from the robot base, the RMS residual error was 0.49mm, approximately 3 times higher.

This poorer accuracy is mainly due to the measurement range of joint 1 being restricted

to the interval [-49o, 49o].  Thus, all configurations outside this range are compensated

using extrapolation.  Unless the chosen interpolation functions perfectly model the

generalized errors, the SEC fixture location plays a critical role in the calibration

accuracy.

Figure 5.9 shows the RMS residual error for the (1m, 1m, 1m) planar manipulator

as a function of the number of measurement points, for a calibration fixture at 1.0 m, and

different RMS measurement noise levels.  Note that calibration cannot be made infinitely

accurate as the number of measurement points is increased, and a lower bound exists on

the calibration error that is dictated by robot repeatability and calibration measurement

error (Roth et al., 1987).  This is captured by the graph in Figure 5.9, showing residual

errors tending to the introduced noise levels as the number of points is increased.
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Figure 5.9 - RMS Residual Error as a Function of the Number of Measurements

Simulations were also performed for a Schilling Titan II manipulator, a 6-DOF

hydraulic robot.  The SEC performance was analyzed for two different calibration device

lengths: 10 and 50 in (254 and 1270mm).  These lengths are the distance between the

device gripper, attached to the robot end-effector, and the center of rotation of the

spherical joint.  The device length plays an important role on the achievable measurement

ranges, since it modifies the kinematic equations of the manipulator.

Due to the rotational symmetry of the system around joint 1, the optimal location

of the calibration device is on the vertical plane defined by the middle of the mechanical

limits of joint 1.  The optimal location for the 254mm device is calculated at P(x, z) =

(550mm, 1800mm), respectively the horizontal and vertical distances from the
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manipulator base along the defined vertical plane.  The volume of the ICR in this case is

8.33m3.  A second maxima for the ICR volume is 6.66m3, obtained for a device location

at P(x, z) = (550mm, -200mm) from the manipulator base.  For the 1270mm device, the

optimized location is at P(x, z) = (1600mm, 1750mm), resulting in an ICR volume of

17.8m3.  Note that this volume is twice the ICR volume obtained from the 254mm device,

i.e., the 1270mm fixture results in a better calibration accuracy in this case.

5.3.2  Experimental Results

Figure 5.10 shows the laboratory system used to experimentally evaluate the SEC

calibration method.  The manipulator is a Schilling Titan II, a six DOF hydraulic robot

capable of handling payloads in excess of 100 kg.  A handle on the SEC fixture provides

a repeatable grip for the manipulator.

Figure 5.10 - Experimental Sy
Manipulator
SEC Fixture
86

stem
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Three different SEC fixtures were evaluated.  The first fixture consisted of a

single sphere attached to the manipulator end-effector, which seated in a triangular

arrangement of three spheres fixed to the platform, see Figure 5.11.  All  spheres have the

same diameter.  SEC measurements are performed while the four spheres are in mutual

single-point contact.  Although simple, this fixture design has a disadvantage: the

manipulator must be stopped at each measurement point to guarantee contact among the

four balls, significantly increasing calibration time.

Figure 5.11 - SEC Fixture U
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stopping the manipulator.  However, the 3 additional joints introduce new error

parameters in the loop closure equations, degrading calibration accuracy.

Figure 5.12 - SEC Fixture Usi
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Figure 5.13 - SEC Fixture Using a Sphe
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Although the Base Sensor Control algorithm greatly reduces the repeatability

errors, there are still 35 mm (RMS) errors in absolute accuracy (see Section 4.4).  Since

the system repeatability is relatively small with respect to the absolute errors, a model-

based error compensation method can be applied to reduce the accuracy errors, such as

the SEC calibration method using the GEC extended error model.

In order to implement SEC, the polynomial generalized error functions defined in

Equation (4.1) were interpolated using approximately 800 measurements of the robot

configuration.  These measurements were performed for an SEC device with length

155mm located at P(x, z) = (1440mm, 265mm) from the manipulator base.  Note that the

end-effector fixture location was obtained by the SEC calibration, since it was not known

a priori.  After the identification process, the compensated manipulator was moved to

200 different configurations to verify the efficiency of the SEC method.

Figures 5.14(a-b) show the convergence of original positioning errors as large as

98.5mm (34.3mm RMS) to corrected absolute errors of less than 15mm (5.7mm RMS)

with respect to the base frame.  This demonstrates an overall factor of nearly 6

improvement in absolute accuracy by using the SEC calibration algorithm.  This

improvement in performance shows that such calibration method is able to effectively

identify and correct for the errors in the system.
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Figure 5.14(a) - Measured and Residual 
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Figure 5.14(b) - Measured and Residual 
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manipulator.  Results show that the SEC calibration method is able to effectively identify

and correct for errors in the system.
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Chapter

6
Force-Updated Virtual Viewing System

6.1 Introduction

This chapter presents a method to obtain contact force information between the

manipulator end-effector and the environment.  This method combines wrist force/torque

sensor information with knowledge of the end-effector geometry to estimate contact

location.  These estimates are combined with a custom teleoperator software package

developed for the nozzle dam placement task.  Section 6.2 presents the theoretical

framework for contact force estimation.  Section 6.3 introduces a virtual environment

teleoperator software package.  Section 6.4 presents experiments with a Schilling

hydraulic manipulator, showing that successful nozzle dam placements can be performed

using the visualization system with contact force estimation.

6.2 Contact Force Estimation

Contact force information between the manipulator end-effector and the

environment is fundamental for placement tasks with small tolerances (Bicchi, 1993).

Even with the key enabling technologies presented in the previous chapters, the nozzle
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dam task may still be impossible to complete due to misalignments.  Some geometric

uncertainty still exists between the modeled and real environments making teleoperation

difficult to perform.  Several sources of geometric uncertainty contribute to this.  First,

the manipulator position relative to the nozzle ring may not be known to high tolerance.

Second, placement of the manipulator in the workspace may require mounting it on a

gantry system which is often subject to deformations, thereby inducing errors in the

absolute position control of the robot (Kuklinski, 1993).  Finally, the coupling between

the manipulator gripper and the nozzle dam may not be repeatable to within the

acceptable insertion errors.

To overcome this, alternate methods must be explored to provide additional

information.  The method explored in this section uses contact forces measured by a wrist

force/torque sensor to aid in the insertion task.  The contact forces between the center

plate and its receptacle are estimated from wrist sensor information and displayed

graphically to the teleoperator.

However, a wrist force/torque sensor provides limited information, namely 3

force and 3 torque components, while each contact point is associated with 9 unknowns:

the coordinates of the contact point location and the contact wrench components.  In the

case where there is only one contact point with the environment and where the contact

torque is zero, it is possible to calculate the contact information required for control.  This

can be obtained from wrist force-torque sensor information combined with geometrical

knowledge of the mating parts.
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Figure 6.1 shows a plate attached to the end-effector of a manipulator.  The force

exerted by the environment on the plate, Fc, and the contact location with respect to the

wrist force/torque sensor, rc, can be calculated from:

sc FF =     (6.1)

s
s

s

ss

ss
c F

F
M

MF
MF

r  α+
×
×

=     (6.2)

where Fs and Ms are respectively the forces and moments measured from the wrist

sensor, and α is an arbitrary constant.  Note that Equation (6.1) has an infinite number of

solutions, since two equal forces along the same line of action result in the same wrist

sensor reading (see Figure 6.1).

Figure 6.1 - Contact Force and Wrist Force/Torque Sensor Readings

To obtain a unique solution to Equation (6.1), the plate geometry must be

considered.  Defining ΓΓΓΓ as a vector function representing the plate surface in the wrist
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sensor coordinates, then α is determined by calculating the intersection between the line

of action of the contact force and the plate surface ΓΓΓΓ,

s

s

ss

ss
s F

M
MF
MFF

×
×−≡α ΓΓΓΓ (6.3)

Due to the nature of contact forces, which are directed toward the interior of the

plate, the calculated values of rc must also satisfy

0)( ≤⋅ cc Frn (6.4)

where n(rc) is the normal vector to the plate surface at the point rc.

If ΓΓΓΓ represents a convex surface, then the solution to Equations (6.3) and (6.4) is

either unique or non-existent.  Otherwise, multiple solutions exist for certain

configurations.  For the particular case shown in Figure 6.1, ΓΓΓΓ is not convex, but it can be

represented by a set of simple equations of the planes of the plate.  Frequently, as in the

case of the nozzle dam insertion plate, a single solution for the contact point can be

determined by considering the contact friction as well as the geometry of the mating

parts.

Based on Equations (6.3) and (6.4) and models of the plate and receptacle, a force

vector and contact point is calculated from the measured wrist wrench and displayed to

the teleoperator.
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6.3 Virtual Environment Teleoperator Software

Even with contact force information, the nozzle dam placement task is still very

difficult to perform due to restricted teleoperator visibility and tight geometric tolerances

between the nozzle dam and its receptacle.

The most common solution is to position a camera in the workspace, thereby

providing the teleoperator with a real-time video feed showing the current state of the

manipulator and the task.  Yet, this allows very limited visualization of the workspace.

The large nozzle dam in the confined environment is likely to obscure necessary mating

features.  Adding more cameras can improve operator visibility, but an increased number

of cameras makes it harder for the teleoperator to process the expanding amount of visual

data.

A more versatile teleoperation solution is a virtual, 3D representation of the

environment.  This could dramatically improve visual capabilities with arbitrary camera

angles, unlimited panning and zooming, as well as the ability to make objects transparent

that obscure crucial visual features.  For this purpose, a custom teleoperator software

package has been developed.  The system contains 3-D kinematic models of the

manipulator and the workspace, reflecting the actual system configuration based on the

joint resolvers.  The interface provides improved operator visibility by allowing virtual

viewing of the workspace using arbitrarily positioned "virtual cameras" (Cho, 1998).  The

virtual cameras also allow for unrestricted panning and magnification of mating edges or

other crucial features to aid in teleoperated insertion.  Virtual objects can also be made

transparent revealing otherwise physically obscured regions.  The virtual cameras also

allow for magnifying the mating edges in order to aid in teleoperated insertion.  A
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Cartesian end-point controller is embedded in the software to provide full teleoperation

functionality.  Figure 6.2 shows the manipulator and experimental testbed for both real

and simulated systems.

Figure 6.2 - Real (a) and Simulated (b) Experimental System

The ideal operator environment is an integration of visualization software with a

control system.  Once the visualization package was ported to the control PC, the virtual

environment could be linked to the actual experimental system. The interface was

achieved in two stages.

First, optical theodolites were used to measure the experimental system’s position

in 3D space with respect to the base of the Schilling manipulator.  The optical theodolites

had a measurement accuracy of 0.3mm, putting the alignment of the virtual and real

environments within the limits of the mating tolerances.  Therefore, successful

positioning of the virtual nozzle dam within the virtual nozzle ring could correspond to

successful insertion in the real system.
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The second stage allows active control of the Schilling from the teleoperator

package.  The forward and inverse kinematic relations in the visualization software were

used to implement Cartesian end-point control of the robot (Asada and Slotine, 1986).

Based on a desired end-effector position, the desired joint angles are calculated based on

a higher level trajectory planner.  The desired joint angles are compared to the current

joint positions read from the resolvers.  The control loop was embedded in an Interrupt

Service Routine (ISR) triggered by an interrupt signal originating from a timer card.  This

guaranteed a consistent sample of 10 ms.

Once the control shell was in place, the control algorithm could be expanded as

needed.  The tight tolerances of the task require the teleoperator to command fine

position adjustments, therefore BSC was implemented to improve the manipulator

repeatability through accurate joint torque control using the base force/torque sensor (see

Section 2.2).  To improve the correlation of the commanded Cartesian position of the

Schilling and the actual position of the Schilling end-effector, GEC (Geometric and

Elastic Error Compensation) was included to improve the absolute accuracy, using offline

measurements provided by the SEC (Single Endpoint Contact) method (see Chapters 4

and 5).  Figure 6.3 summarizes how a force-updated operator interface is combined with

the high accuracy GEC/BSC position controller using SEC measurements to perform the

nozzle dam placement task.
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Figure 6.3 - Base Sensor Control and Contact Force Estimation Scheme

6.4 Experimental Verification

Representative nozzle dam placements were conducted to demonstrate the

effectiveness of the force-updated virtual viewing system with contact estimation.

Figure 6.4 shows a sequence of screenshots from the teleoperator display during a

typical placement.  Each figure shows the center plate contacting the mating receptacle as

well as visual feedback of the estimated contact force.  The contact vector identifies

misalignments in the insertion process, providing the necessary information to command

small corrective motions.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4 – Typical Placement Steps Using Contact Force Visualization

Figure 6.4a suggests translational motions are necessary to align the plate.  The

next four screenshots shown in Figure 6.4 indicate rotational alignment errors.  Finally,

the contact force in Figure 6.4f suggests that successful placement was achieved.

The experimental insertions show that the force-updated virtual viewing system

outlined in Figure 6.3 allows a conventional hydraulic manipulator to successfully

perform the nozzle dam placement task.  This approach is made practical by the means of

BSC and GEC control using SEC offline measurements.
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6.5 Summary and Conclusions

In this chapter, a robotic visualization system for successfully placing a nuclear

power plant steam generator nozzle dam is presented.  A teleoperator software package

has been developed containing 3-D kinematic models of a Schilling Titan II hydraulic

manipulator and the workspace.  Contact force information between the center plate and

its receptacle is obtained from wrist sensor wrench measurements and geometric models

of the mating geometries.  The contact force vector is displayed to the teleoperator and

allows for real-time recognition of misalignments in the insertion process.  This aids in

successfully achieving insertion using a position control algorithm.  Experiments

demonstrated that the nozzle dam placement task can be successfully performed by

combining a high repeatability position controller, such as BSC and GEC, and a force-

updated operator interface.
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Chapter

7
Conclusions and Suggestions for Future Work

7.1 Contributions of This Work

This thesis described methodologies to substantially improve the absolute

accuracy in strong powerful manipulators lacking good repeatability and having

significant geometric and elastic errors.

A general analytical method to eliminate the redundant error parameters in robot

calibration was presented.  These errors, often non-intuitive, must be eliminated from the

error model prior to the identification process, since otherwise the robustness of the

calibration can be compromised.  The analytical expressions and physical interpretation

of the linear combinations present in the generalized error parameterization were

developed.  The non-redundant form of the Identification Jacobian matrix was obtained

using these expressions, allowing for the systematic calibration of any serial link

manipulator with improved accuracy.

A method to compensate the positioning end-effector errors of large manipulators

with significant task loads was presented.  Both geometric and elastic errors were

considered without requiring any explicit elastic model of the system.  The method has

been applied experimentally to a high-accuracy large medical manipulator (PPS) and to a
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Schilling Titan II manipulator.  The results showed that the basic accuracy of these

manipulators exceeded their specifications, but after applying the method to compensate

for end-effector errors the accuracy specifications are met.  The method is now a key

element of the PPS software used to treat cancer patients at the Massachusetts General

Hospital (Flanz, 1996).

A calibration method that does not require endpoint measurements or precision

points has been investigated.  The method constrained the robot end-effector to a fixture

equivalent to a spherical joint.  The required fixture had the advantage of being

inexpensive and compact when compared to pose measuring devices required by other

calibration techniques.  By forming the manipulator into a mobile closed kinematic chain,

the kinematic loop closure equations were adequate to calibrate the manipulator from

joint readings alone.  A performance index was introduced to calculate the optimal

location of the calibration device.  The method was evaluated experimentally on a

Schilling Titan II manipulator.  The results showed that the calibration method was able

to effectively identify and correct for the errors in the system.

Finally, a robotic visualization system for successfully placing a nuclear power

plant steam generator nozzle dam was presented.  A teleoperator software package has

been developed containing 3-D kinematic models of a Schilling Titan II hydraulic

manipulator and the workspace.  Contact force information between the center plate and

its receptacle was obtained from wrist sensor wrench measurements and geometric

models of the mating geometries.  The contact force vector was displayed to the

teleoperator and allowed for real-time recognition of misalignments in the insertion

process.  This aided in successfully achieving insertion using a position control



References 106

algorithm.  An experimental system was developed that employed a Schilling hydraulic

manipulator, mechanical fixturing that embodied the crucial task criteria of the nozzle

dam placement.  Experiments demonstrated that the nozzle dam placement task could be

achieved by combining a high repeatability position controller, such as BSC and GEC,

and a force-updated operator interface.

7.2 Suggestions for Further Work

This thesis has shown that fine absolute positioning accuracy could be achieved in

large powerful manipulators lacking good repeatability and having significant geometric

and elastic errors.  Although substantial work has been completed in this area, some

improvements can be achieved in the presented methodologies.

In this work, a general analytical method to eliminate the redundant error

parameters in robot calibration was presented.  The analytical expressions presented here

were only valid for serial link manipulators.  Methods to eliminate redundant errors in

parallel manipulators have yet to be developed.

In the GEC (Geometric and Elastic Error Compensation) method, generalized

errors are represented by polynomial series expansions.  The minimum order of each of

the polynomials to achieve a desired absolute accuracy depends on the manipulator being

calibrated.  For instance, third order polynomials are in general sufficient to model elastic

deflections, but higher order polynomials are required to identify rail curvatures in linear

joints.  An optimization method to calculate the minimum order of the generalized error

polynomials could be developed, resulting in a reduced number of required measurement

points for a given absolute accuracy.
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Appendix A 

Linear Dependency Calculations

This appendix contains proof of the linear combination expressions of the

columns of the Identification Jacobian matrix Je.  These combinations are obtained from

the symbolic form of Je, expressed through the manipulator's Denavit-Hartenberg

parameters.  It is shown that the general expressions can be broken down into

combinations of the columns associated with each pair of consecutive links.  This allows

for great simplification of the proof.

Define the position and orientation of a reference frame Fi with respect to the

previous reference frame Fi-1 as a 4x4 matrix Ai using the D.H. parameters (see Figure

2.3):
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When the generalized errors defined in Section 2.3 are considered in the model,

the manipulator loop closure equation takes the form:

      ALC = E0 A1 E1 A2 E2 ......An En       (A.2)
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where ALC is a 4x4 homogeneous matrix that describes the position and orientation of the

end-effector frame Fn with respect to the inertial reference frame F0, and after a first order

approximation the error matrix Ei has the form:
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(A.3)

The Identification Jacobian matrix Je is determined by taking the derivative of the

loop closure matrix ALC with respect to each generalized error εj,i, resulting in 4x4

sensitivity matrices Lj,i

( )
0

EAEAEAE
L

=ε∂ε
∂

≡
i,j

nnii110
i,j

 

 (A.4)

Clearly, the linear combinations of the columns Jj,i of the Identification Jacobian

matrix (defined in Section 3.2) are the same as the ones of the Lj,i matrices.  Since Ei is

the only matrix that depends on the generalized error εj,i then Lj,i can be simplified to

i,j

i
i1ii,jn1ii,j2i1i,j
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≡⋅⋅= −+−
EAAMAAMAAL

(A.5)

Applying the same result for joint i-1,

i
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1i1),(ijn1i1),(ij2i11),(ij
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Since both products A1…………Ai-2  and Ai+1…………An do not depend on the coordinates of

frames i-1 and i, Equations (A.5) and (A.6) show that the linear combinations of the Lj,i

matrices are also the same as the ones of the Mj,i matrices.  Hence, it is not necessary to

develop the lengthy Equations (A.4-A.6), since the desired linear combinations can be



Appendix A: Linear Dependency Calculations 120

obtained from the much simpler Mj,i matrices.  In addition, all linear combination

expressions can then be broken down into expressions involving the generalized errors of

each consecutive link pair, since the considered system is a serial link manipulator.

Consider the following general expression for the linear combinations associated

with two consecutive links, represented by the unknown coefficients c1,…, c12:

c1 Jx,(i-1) + c2 Jy,(i-1) + c3 Jz,(i-1) + c4 Js,(i-1) + c5 Jr,(i-1) + c6 Jp,(i-1)  ≡

c7 Jx,i     + c8 Jy,i     + c9 Jz,i     + c10 Js,i,  + c11 Jr,i    + c12 Jp,i       (A.7)

To determine the unknown coefficients, the column vectors Jj,i can be replaced by

the matrices Mj,i in the above expression, since it was shown that both Jj,i and Mj,i have

the same linear combinations.  The Mj,i matrices are obtained by substituting Equations

(A.1) and (A.3) into Equations (A.5) and (A.6).  Equation (A.7) then results in
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where
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Solving Equation (A.8) results in
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Then, substituting Equation (A.10) in (A.8) results in Equations (3.2) and (3.3).  If

joint i is revolute, then c1 = c2 = c7 = 0, and no other combinations are present.  However,

if joint i is prismatic, then Equation (A.10) results in Equations (3.4) and (3.5).

In the particular case where only the end-effector position is measured, only the

last equation in (A.8) must hold, resulting in







α⋅⋅+−α=
α⋅⋅++α=

===

nn52n39

nn52n38

7641

sin)ac(ccoscc
cos)ac(csincc

cccc

 (A.11)

Substituting Equation (A.11) in (A.7) results in
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Equation (A.12) must hold for all values of c3, c5, c10, c11, c12, resulting in

Equation (3.9).

If joint n is prismatic, then c4 and c6 are always zero (even if an≡0) and no other

combinations are present.  However, if joint n is revolute and the link length an is zero,
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then c4 and c6 are different than zero, and two other linear combinations are present,

namely
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Equations (3.3) and (3.9) also imply that Jr,(n-1) ≡ 0 for this case.  If the joint offset

dn is also zero, then reference frames n and n-1 have common origins at the manipulator

end-effector, and Equations (3.3) and (3.10-3.12) imply that

Js,(n-1) ≡ Jr,(n-1) ≡ Jp,(n-1) ≡ 0 (A.14)

Equations (3.9-3.12) are then recursively applied for link n-1.

Once the linear combinations of the columns of the Jacobian matrix Je are

calculated, the independent generalized error set is obtained.  From Equation (3.2),

*
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showing that the generalized error εz,(i-1) can be incorporated into εy,i and εz,i if joint i is

revolute, resulting in the combined generalized errors ε*
y,i and ε*

z,i.  Using Equations

(3.2) and (3.3) and the approach described above, the combined generalized errors are

obtained:
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which holds for both revolute and prismatic joints.
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If joint i is prismatic, then Equations (3.4) and (3.5) are combined with Equation

(A.16), resulting in
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In the particular case where the end-effector orientation is not considered,

Equation (3.9) implies that the generalized errors εs,n, εr,n and εp,n do not affect the end-

effector measurements.  Furthermore, if the last joint is revolute and an≡0 then Equation

(A.13) results in the combined generalized errors
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and also implies that εr,(n-1) does not influence the end-effector position.
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Appendix B 

Patient Positioning System Kinematic Description

This appendix contains the PPS direct kinematic equations, as well as the

Identification Jacobian matrices for the generalized error formulation.

Consider the D.H. parameters q1, q2, q3, q4, q5 and q6 of the PPS, defined in Figure

B.1.  The parameters xi, yi and zi are constant offsets in the X, Y and Z directions of the

D.H. frame i.

Figure B.1 - Parameter Definitions for the PPS  [Ref. Flanz, 1996]

y2+q2

q1

z3+q3

q4

q5

q6

y3+y4+y5+y6

z5

XX

Z

Y



Appendix B: Patient Positioning System Kinematic Description 125

  The end-effector position with respect to the fixed coordinate system defined in

Figure B.1 is:

x =  q1 − y5 cos(q4) sin(q5) + z5 sin(q4) − z5 cos(q4) sin(q5) sin(q6)    

− z5 sin(q4) cos(q6) + y6 sin(q4) sin(q6) − y6 cos(q4) sin(q5) cos(q6)       (B.1)

y =  q2 + y2 +y3 + y4 + y5 cos(q5) + z5 cos(q5) sin(q6) + y6 cos(q5) cos(q6)      (B.2)

z =  z2  + z3 + q3 + y5 sin(q4) sin(q5) + z5 cos(q4) + z5 sin(q4) sin(q5) sin(q6)

− z5 cos(q4) cos(q6) + y6 cos(q4) sin(q6) + y6 sin(q4) sin(q5) cos(q6)    (B.3)

The Identification Jacobian Matrix of the PPS is

Je = [Jx,1,…,Jx,i, Jy,i, Jz,i, Js,i, Jr,i, Jp,i, …, Jp,6] (B.4)

where

Jx,1 = [1, 0, 0, 0, 0, 0]T

Jy,1 = [0, 1, 0, 0, 0, 0]T

Jz,1 = [0, 0, 1, 0, 0, 0]T

Js,1 = [0, − z3 − q3 − z2  − cos(q4) ⋅ z5 +sin(q4) ⋅ x4 − sin(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 − sin(q4)

⋅ sin(q5) ⋅ sin(q6) ⋅ z5 − cos(q4) ⋅ sin(q6) ⋅ y6 + cos(q4) ⋅ cos(q6) ⋅ z5 − sin(q4) ⋅ cos(q5)

⋅ x4 − sin(q4) ⋅ sin(q5) ⋅ y5, cos(q5) ⋅ y5 − sin(q5) ⋅ x4 +cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5) ⋅

sin(q6) ⋅ z5 +y4 +y3 +y2  ⋅ cos(q5) ⋅ y5 − sin(q5) ⋅ x4 +cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5) ⋅

sin(q6) ⋅ z5 +y4 +y3 +y2 +q2 , 1, 0, 0]T

Jr,1 = [z3 +q3 +z2 + cos(q4) ⋅ z5 − sin(q4) ⋅ x4 +sin(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 +sin(q4) ⋅

sin(q5) ⋅ sin(q6) ⋅ z5 + cos(q4) ⋅ sin(q6) ⋅ y6 − cos(q4) ⋅ cos(q6) ⋅ z5 +sin(q4) ⋅ cos(q5) ⋅

x4 + sin(q4) ⋅ sin(q5) ⋅ y5, 0, − sin(q4) ⋅ z5 +cos(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 +cos(q4) ⋅

sin(q5) ⋅ sin(q6) ⋅ z5 − sin(q4) ⋅ sin(q6) ⋅ y6 +sin(q4) ⋅ cos(q6) ⋅ z5 +cos(q4) ⋅ cos(q5) ⋅

x4 +cos(q4) ⋅ sin(q5) ⋅ y5 − cos(q4) ⋅ x4, 0, 1, 0]T
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Jp,1 = [− y4 − y3 − y2  − q2 + sin(q5) ⋅ x4 − cos(q5) ⋅ y5 −  cos(q5) ⋅ cos(q6) ⋅ y6 − cos(q5) ⋅

sin(q6) ⋅ z5, − cos(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ z5 − sin(q4) ⋅ cos(q6) ⋅ z5 − cos(q4) ⋅ cos(q5)

⋅ x4 − cos(q4) ⋅ sin(q5) ⋅ y5 −  cos(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 +sin(q4) ⋅ sin(q6) ⋅ y6

+sin(q4) ⋅ z5 + cos(q4) ⋅ x4, 0, 0, 0, 1]T

Jx,2 = [1, 0, 0, 0, 0, 0]T

Jy,2 = [0, 1, 0, 0, 0, 0]T

Jz,2 = [0, 0, 1, 0, 0, 0]T

Js,2 = [0, − sin(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 − sin(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ z5 − cos(q4) ⋅ sin(q6) ⋅

y6 +cos(q4) ⋅ cos(q6) ⋅ z5 − sin(q4) ⋅ cos(q5) ⋅ x4 − sin(q4) ⋅ sin(q5) ⋅ y5 − z3 − q3

− cos(q4) ⋅ z5 +sin(q4) ⋅ x4, cos(q5) ⋅ y5 −  sin(q5) ⋅ x4 +cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5)

⋅ sin(q6) ⋅ z5 +y3 +y4, 1, 0, 0]T

Jr,2 = [ sin(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ z5 +cos(q4) ⋅ sin(q6) ⋅ y6 − cos(q4) ⋅ cos(q6) ⋅ z5 +sin(q4) ⋅

cos(q5) ⋅ x4 +sin(q4) ⋅ sin(q5) ⋅ y5 +z3 +q3 +cos(q4) ⋅ z5 − sin(q4) ⋅ x4 +sin(q4) ⋅

sin(q5) ⋅ cos(q6) ⋅ y6, 0,  − sin(q4) ⋅ z5 +cos(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 +cos(q4) ⋅

sin(q5) ⋅ sin(q6) ⋅ z5 − sin(q4) ⋅ sin(q6) ⋅ y6 +sin(q4) ⋅ cos(q6) ⋅ z5 +cos(q4) ⋅ cos(q5) ⋅

x4 +cos(q4) ⋅ sin(q5) ⋅ y5 − cos(q4) ⋅ x4, 0, 1, 0]T

Jp,2 = [− cos(q5) ⋅ cos(q6) ⋅ y6 − cos(q5) ⋅ sin(q6) ⋅ z5 − y4 − y3+sin(q5) ⋅ x4 − cos(q5) ⋅ y5,

− cos(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ z5 −  sin(q4) ⋅ cos(q6) ⋅ z5 − cos(q4) ⋅ cos(q5) ⋅ x4

− cos(q4) ⋅ sin(q5) ⋅ y5 − cos(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 +sin(q4) ⋅ sin(q6) ⋅ y6 +sin(q4)

⋅ z5 +cos(q4) ⋅ x4, 0, 0, 0, 1]T

Jx,3 = [1, 0, 0, 0, 0, 0]T

Jy,3 = [0, 1, 0, 0, 0, 0]T
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Jz,3 = [0, 0, 1, 0, 0, 0]T

Js,3 = [0, − sin(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 − sin(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ z5 −  cos(q4) ⋅ sin(q6) ⋅

y6 +cos(q4) ⋅ cos(q6) ⋅ z5 − sin(q4) ⋅ cos(q5) ⋅ x4 − sin(q4) ⋅ sin(q5) ⋅ y5 +sin(q4) ⋅ x4

− cos(q4) ⋅ z5, cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5) ⋅ sin(q6) ⋅ z5 − sin(q5) ⋅ x4 +cos(q5) ⋅ y5

+y4, 1, 0, 0]T

Jr,3 = [sin(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 +sin(q4) ⋅ sin(q5) ⋅ sin(q6)⋅ z5 + cos(q4) ⋅ sin(q6) ⋅ y6

− cos(q4) ⋅ cos(q6) ⋅ z5 +sin(q4) ⋅ cos(q5) ⋅ x4 +sin(q4) ⋅ sin(q5) ⋅ y5 +cos(q4) ⋅ z5

− sin(q4) ⋅ x4, 0, − sin(q4) ⋅ z5 +cos(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 + cos(q4) ⋅ sin(q5) ⋅

sin(q6) ⋅ z5 − sin(q4) ⋅ sin(q6) ⋅ y6 +sin(q4) ⋅ cos(q6) ⋅ z5 +cos(q4) ⋅ cos(q5) ⋅ x4

+cos(q4) ⋅ sin(q5) ⋅ y5 − cos(q4) ⋅ x4, 0, 1, 0]T

Jp,3 = [− cos(q5) ⋅ cos(q6) ⋅ y6 − cos(q5) ⋅ sin(q6) ⋅ z3 − y4 +sin(q5) ⋅ x4 − cos(q5) ⋅ y5,

− cos(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ z5 − sin(q4) ⋅ cos(q6) ⋅ z5 −  cos(q4) ⋅ cos(q5) ⋅ x4

− cos(q4) ⋅ sin(q5) ⋅ y5 − cos(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ y6 +sin(q4) ⋅ sin(q6) ⋅ y6 +sin(q4)

⋅z5 +cos(q4) ⋅ x4, 0, 0, 0, 1]T

Jx,4 = [cos(q4), 0, − sin(q4), 0, 0, 0]T

Jy,4 = [0, 1, 0, 0, 0, 0]T

Jz,4 = [sin(q4), 0, cos(q4), 0, 0, 0]T

Js,4 = [sin(q4) ⋅ (cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5) ⋅ sin(q6) ⋅ z5 −  sin(q5) ⋅ x4 +cos(q5) ⋅ y5),

− sin(q6) ⋅ y6 +cos(q6) ⋅ z5 − z5, cos(q4) ⋅ (cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5) ⋅ sin(q6) ⋅ z5

− sin(q5) ⋅ x4 +cos(q5) ⋅ y5), cos(q4), 0, − sin(q4)]T

Jr,4 = [sin(q4) ⋅ sin(q5) ⋅ y5 +sin(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ z5 +sin(q4) ⋅ cos(q5) ⋅ x4 +sin(q4) ⋅

sin(q5) ⋅ cos(q6) ⋅ y6 +cos(q4) ⋅ z5 +cos(q4) ⋅ sin(q6) ⋅ y6 −  cos(q4) ⋅ cos(q6) ⋅ z5
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− cos(q4) ⋅ (cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5) ⋅ sin(q6) ⋅ z5 − sin(q5) ⋅ cos(q6) ⋅ z5, 0,

sin(q4) ⋅ cos(q6) ⋅ z5 −  sin(q4) ⋅ sin(q6) ⋅ y6 − sin(q4) ⋅ z5 +cos(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅

y6 +cos(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ z5 +cos(q4) ⋅ cos(q5) ⋅ x4 +cos(q4) ⋅ sin(q5) ⋅ y5, 0, 1,

0]T

Jp,4 = [− cos(q4) ⋅ (cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5) ⋅ sin(q6) ⋅ z5 − sin(q5) ⋅ x4 + cos(q5) ⋅ y5),

− sin(q5) ⋅ cos(q6) ⋅ y6 − sin(q5) ⋅ sin(q6) ⋅ z5 − cos(q5) ⋅ x4 − sin(q5) ⋅ y5, sin(q4) ⋅

(cos(q5) ⋅ cos(q6) ⋅ y6 +cos(q5) ⋅ sin(q6) ⋅ z5 − sin(q5) ⋅ x4 +cos(q5) ⋅ y5), sin(q4), 0,

cos(q4)]T

Jx,5 = [cos(q4) ⋅ cos(q5), sin(q5),  − sin(q4) ⋅ cos(q5), 0, 0, 0]T

Jy,5 = [− cos(q4) ⋅ sin(q5), cos(q5), sin(q4) ⋅ sin(q5), 0, 0, 0]T

Jz,5 = [sin(q4), 0, cos(q4), 0, 0, 0]T

Js,5 = [sin(q4) ⋅ cos(q6) ⋅ y6 +sin(q4) ⋅ sin(q6) ⋅ z5 +cos(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ y6 − cos(q4) ⋅

sin(q5) ⋅ cos(q6) ⋅ z5, cos(q5) ⋅ ( − sin(q6) ⋅ y6 + cos(q6) ⋅ z5), cos(q4) ⋅ cos(q6) ⋅ y6 +

cos(q4) ⋅ sin(q6) ⋅ z5 − sin(q4) ⋅ sin(q5) ⋅ sin(q6) ⋅ y6 + sin(q4) ⋅ sin(q5) ⋅ cos(q6) ⋅ z5,

cos(q4) ⋅ cos(q5), sin(q5), − sin(q4) ⋅ cos(q5)]T

Jr,5 = [− cos(q4) ⋅ cos(q5) ⋅ ( − sin(q6) ⋅ y6 +cos(q6) ⋅ z5), − sin(q5) ⋅ ( − sin(q6) ⋅ y6 + cos(q6)

⋅ z5), sin(q4) ⋅ cos(q5) ⋅ ( − sin(q6) ⋅ y6 + cos(q6) ⋅ z5), − cos(q4) ⋅ sin(q5), cos(q5),

sin(q4) ⋅ sin(q5)]T

Jp,5 = [− cos(q4) ⋅ cos(q5) ⋅ (cos(q6) ⋅ y6 +sin(q6) ⋅ z5), − sin(q5) ⋅ (cos(q6) ⋅ y6 +sin(q6) ⋅ z5),

sin(q4) ⋅ cos(q5) ⋅ (cos(q6) ⋅ y6 +sin(q6) ⋅ z5), sin(q4), 0, cos(q4)]T

Jx,6 = [cos(q4) ⋅ cos(q5), sin(q5), − sin(q4) ⋅ cos(q5), 0, 0, 0]T
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Jy,6 = [− cos(q4) ⋅ sin(q5) ⋅ cos(q6) + sin(q4) ⋅ sin(q6), cos(q5) ⋅ cos(q6), sin(q4) ⋅ sin(q5) ⋅

cos(q6) +cos(q4) ⋅ sin(q6), 0, 0, 0]T

Jz,6 = [cos(q4) ⋅ sin(q5) ⋅ sin(q6) + sin(q4) ⋅ cos(q6), − cos(q5) ⋅ sin(q6), − sin(q4) ⋅ sin(q5) ⋅

sin(q6) + cos(q4) ⋅ cos(q6), 0, 0, 0]T

Js,6 = [0, 0, 0, cos(q4) ⋅ cos(q5), sin(q5), − sin(q4) ⋅ cos(q5)]T

Jr,6 = [0, 0, 0, − cos(q4) ⋅ sin(q5) ⋅ cos(q6) + sin(q4) ⋅ sin(q6), cos(q5) ⋅ cos(q6), sin(q4) ⋅

sin(q5) ⋅ cos(q6) +cos(q4) ⋅ sin(q6)]T

Jp,6 = [cos(q4) ⋅ sin(q5) ⋅ sin(q6) + sin(q4) ⋅ cos(q6), − cos(q5) ⋅ sin(q6), − sin(q4) ⋅ sin(q5) ⋅

sin(q6) +cos(q4) ⋅ cos(q6)]T
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Appendix C 

Schilling Titan II Kinematic Description

This appendix contains the Schilling Titan II direct and inverse kinematic

equations, as well as the Identification Jacobian matrices for the generalized error

formulation.

Consider the D.H. parameters defined in Figure C.1.  The end-effector position

with respect to the base sensor coordinates is:

x =  [a1+a2 cosθ2+a3 cos(θ2+θ3)+(a4 +a5 cosθ5) cos(θ2+θ3+θ4)]cosθ1 − a5 sinθ5 sinθ1   (C.1)

y =  [a1+a2 cosθ2+a3 cos(θ2+θ3)+(a4 +a5 cosθ5) cos(θ2+θ3+θ4)]sinθ1 + a5 sinθ5 cosθ1   (C.2)

z =  [d1+a2 sinθ2+a3 sin(θ2+θ3)+(a4 +a5 cosθ5) sin(θ2+θ3+θ4)]    (C.3)

Figure C.1 - Side view of the Schilling Titan II (Ref. Schilling Development, 1991)
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Figure C.2 - Top View showing the Base Force/Torque Sensor Frame

There are two solutions for the Schilling inverse kinematics given a desired end-

effector position [px py pz]T (with respect to the base sensor coordinates) and a pair of

perpendicular unit vectors [bx by bz]T and [nx ny nz]T representing the directions of joint

six Z and X axes respectively (see Figure C.2).  These solutions refer to the case where

θ3>0 and θ3<0, denominated respectively as lower and upper arm configurations.

Defining the auxiliary variables:

( )w b b sin bx y z= + +cosθ θ1 1

2
2    (C.4)
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then the joint angle solutions are:
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The Identification Jacobian Matrix of the Schilling is

Je = [Jx,0,…,Jx,i, Jy,i, Jz,i, Js,i, Jr,i, Jp,i, …, Jp,6] (C.13)

where

Jx,0 = [1, 0, 0]T

Jy,0 = [0, 1, 0]T

Jz,0 = [0, 0, 1]T

Js,0 = [cosθ5⋅d6⋅cosθ4⋅sinθ2⋅cosθ3 + cosθ5⋅d6⋅cosθ4⋅cosθ2⋅sinθ3 − cosθ5⋅d6⋅sinθ4⋅sinθ2⋅sinθ3

+ cosθ5⋅d6⋅sinθ4⋅cosθ2⋅cosθ3 + a5⋅cosθ5⋅cosθ4⋅sinθ2⋅cosθ3 +

a5⋅cosθ5⋅cosθ4⋅cosθ2⋅sinθ3 − a5⋅cosθ5⋅sinθ4⋅sinθ2⋅sinθ3 + a5⋅cosθ5⋅sinθ4⋅cosθ2⋅cosθ3

+ a4⋅cosθ4⋅sinθ2⋅cosθ3 + a4⋅cosθ4⋅cosθ2⋅sinθ3 − a4⋅sinθ4⋅sinθ2⋅sinθ3 +

a4⋅sinθ4⋅cosθ2⋅cosθ3 + sinθ2⋅a3⋅cosθ3 + cosθ2⋅a3⋅sinθ3 + a2⋅sinθ2 + d1, 0,

− (d6⋅cosθ5⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 − d6⋅cosθ5⋅cosθ4⋅cosθ1⋅sinθ2⋅sinθ3 −

d6⋅cosθ5⋅sinθ4⋅cosθ1⋅cosθ2⋅sinθ3 − d6⋅cosθ5⋅sinθ4⋅cosθ1⋅sinθ2⋅cosθ3 + d6⋅sinθ1⋅sinθ5

+ a5⋅cosθ5⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 − a5⋅cosθ5⋅cosθ4⋅cosθ1⋅sinθ2⋅sinθ3 −

a5⋅cosθ5⋅sinθ4⋅cosθ1⋅cosθ2⋅sinθ3 − a5⋅cosθ5⋅sinθ4⋅cosθ1⋅sinθ2⋅cosθ3 + sinθ1⋅a5⋅sinθ5

+ a4⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 − a4⋅cosθ4⋅cosθ1⋅sinθ2⋅sinθ3 −
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a4⋅sinθ4⋅cosθ1⋅cosθ2⋅sinθ3 − a4⋅sinθ4⋅cosθ1⋅sinθ2⋅cosθ3 + cosθ1⋅cosθ2⋅a3⋅cosθ3 −

cosθ1⋅sinθ2⋅a3⋅sinθ3 + cosθ1⋅a2⋅cosθ2 + a1⋅cosθ1)]T

Jr,0 = [− (d6⋅cosθ5⋅cosθ4⋅sinθ1⋅cosθ2⋅cosθ3 − d6⋅cosθ5⋅cosθ4⋅sinθ1⋅sinθ2⋅sinθ3 −

d6⋅cosθ5⋅sinθ4⋅sinθ1⋅cosθ2⋅sinθ3 − d6⋅cosθ5⋅sinθ4⋅sinθ1⋅sinθ2⋅cosθ3 − d6⋅cosθ1⋅sinθ5

+ a5⋅cosθ5⋅cosθ4⋅sinθ1⋅cosθ2⋅cosθ3 − a5⋅cosθ5⋅cosθ4⋅sinθ1⋅sinθ2⋅sinθ3 −

a5⋅cosθ5⋅sinθ4⋅sinθ1⋅cosθ2⋅sinθ3 − a5⋅cosθ5⋅sinθ4⋅sinθ1⋅sinθ2⋅cosθ3 − cosθ1⋅a5⋅sinθ5 +

a4⋅cosθ4⋅sinθ1⋅cosθ2⋅cosθ3 − a4⋅cosθ4⋅sinθ1⋅sinθ2⋅sinθ3 − a4⋅sinθ4⋅sinθ1⋅cosθ2⋅sinθ3 −

a4⋅sinθ4⋅sinθ1⋅sinθ2⋅cosθ3 + sinθ1⋅cosθ2⋅a3⋅cosθ3 − sinθ1⋅sinθ2⋅a3⋅sinθ3 +

sinθ1⋅a2⋅cosθ2 + a1⋅sinθ1), d6⋅cosθ5⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 −

d6⋅cosθ5⋅cosθ4⋅cosθ1⋅sinθ2⋅sinθ3 − d6⋅cosθ5⋅sinθ4⋅cosθ1⋅cosθ2⋅sinθ3 −

d6⋅cosθ5⋅sinθ4⋅cosθ1⋅sinθ2⋅cosθ3 + d6⋅sinθ1⋅sinθ5 + a5⋅cosθ5⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3

− a5⋅cosθ5⋅cosθ4⋅cosθ1⋅sinθ2⋅sinθ3 − a5⋅cosθ5⋅sinθ4⋅cosθ1⋅cosθ2⋅sinθ3 −

a5⋅cosθ5⋅sinθ4⋅cosθ1⋅sinθ2⋅cosθ3 + sinθ1⋅a5⋅sinθ5 + a4⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 −

a4⋅cosθ4⋅cosθ1⋅sinθ2⋅sinθ3 − a4⋅sinθ4⋅cosθ1⋅cosθ2⋅sinθ3 − a4⋅sinθ4⋅cosθ1⋅sinθ2⋅cosθ3

+ cosθ1⋅cosθ2⋅a3⋅cosθ3 − cosθ1⋅sinθ2⋅a3⋅sinθ3 + cosθ1⋅a2⋅cosθ2 + a1⋅cosθ1, 0]T

Jp,0 = [0, − (cosθ5⋅d6⋅cosθ4⋅sinθ2⋅cosθ3 + cosθ5⋅d6⋅cosθ4⋅cosθ2⋅sinθ3 −

cosθ5⋅d6⋅sinθ4⋅sinθ2⋅sinθ3 + cosθ5⋅d6⋅sinθ4⋅cosθ2⋅cosθ3 + a5⋅cosθ5⋅cosθ4⋅sinθ2⋅cosθ3

+ a5⋅cosθ5⋅cosθ4⋅cosθ2⋅sinθ3 − a5⋅cosθ5⋅sinθ4⋅sinθ2⋅sinθ3 +

a5⋅cosθ5⋅sinθ4⋅cosθ2⋅cosθ3 + a4⋅cosθ4⋅sinθ2⋅cosθ3 + a4⋅cosθ4⋅cosθ2⋅sinθ3 −

a4⋅sinθ4⋅sinθ2⋅sinθ3 + a4⋅sinθ4⋅cosθ2⋅cosθ3 + sinθ2⋅a3⋅cosθ3 + cosθ2⋅a3⋅sinθ3 +

a2⋅sinθ2 + d1), d6⋅cosθ5⋅cosθ4⋅sinθ1⋅cosθ2⋅cosθ3 − d6⋅cosθ5⋅cosθ4⋅sinθ1⋅sinθ2⋅sinθ3 −

d6⋅cosθ5⋅sinθ4⋅sinθ1⋅cosθ2⋅sinθ3 − d6⋅cosθ5⋅sinθ4⋅sinθ1⋅sinθ2⋅cosθ3 − d6⋅cosθ1⋅sinθ5
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+ a5⋅cosθ5⋅cosθ4⋅sinθ1⋅cosθ2⋅cosθ3 − a5⋅cosθ5⋅cosθ4⋅sinθ1⋅sinθ2⋅sinθ3 −

a5⋅cosθ5⋅sinθ4⋅sinθ1⋅cosθ2⋅sinθ3 − a5⋅cosθ5⋅sinθ4⋅sinθ1⋅sinθ2⋅cosθ3 − cosθ1⋅a5⋅sinθ5 +

a4⋅cosθ4⋅sinθ1⋅cosθ2⋅cosθ3 − a4⋅cosθ4⋅sinθ1⋅sinθ2⋅sinθ3 − a4⋅sinθ4⋅sinθ1⋅cosθ2⋅sinθ3 −

a4⋅sinθ4⋅sinθ1⋅sinθ2⋅cosθ3 + sinθ1⋅cosθ2⋅a3⋅cosθ3 − sinθ1⋅sinθ2⋅a3⋅sinθ3 +

sinθ1⋅a2⋅cosθ2 + a1⋅sinθ1]T

Jx,1 = [cosθ1, sinθ1, 0]T

Jy,1 = [0, 0, 1]T

Jz,1 = [sinθ1, − cosθ1, 0]T

Js,1 = [(((((d6 + a5)⋅cosθ5 + a4)⋅cosθ4 + a3)⋅sinθ3 + ((d6 + a5)⋅cosθ5 + a4)⋅cosθ3⋅sinθ4)⋅sinθ2

+ ((d6 + a5)⋅cosθ5 + a4)⋅cosθ2⋅sinθ4⋅sinθ3 + (((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 −

a3)⋅cosθ3 − a2)⋅cosθ2)⋅sinθ1 + (d6 + a5)⋅cosθ1⋅sinθ5, (d6 + a5)⋅sinθ5⋅sinθ1 + (((( − a5 −

d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅cosθ1⋅sinθ3 + (( − a5 − d6)⋅cosθ5 −

a4)⋅cosθ3⋅cosθ1⋅sinθ4)⋅sinθ2 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ2⋅cosθ1⋅sinθ4⋅sinθ3 +

((((d6 + a5)⋅cosθ5 + a4)⋅cosθ4 + a3)⋅cosθ3 + a2)⋅cosθ2⋅cosθ1, 0]T

Jr,1 = [(((d6 + a5)⋅cosθ5 + a4)⋅cosθ1⋅sinθ4⋅sinθ3 + (((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 −

a3)⋅cosθ3 − a2)⋅cosθ1)⋅sinθ2 + ((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅cosθ2⋅cosθ1⋅sinθ3

+ (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅cosθ2⋅cosθ1⋅sinθ4, ((((d6 + a5)⋅cosθ5 +

a4)⋅sinθ4⋅sinθ3 + ((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅cosθ3 − a2)⋅sinθ2 + ((( − a5 −

d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅cosθ2⋅sinθ3 + (( − a5 − d6)⋅cosθ5 −

a4)⋅cosθ3⋅cosθ2⋅sinθ4)⋅sinθ1, (((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅sinθ3 + (( − a5 −

d6)⋅cosθ5 − a4)⋅cosθ3⋅sinθ4)⋅sinθ2 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ2⋅sinθ4⋅sinθ3 +

((((d6 + a5)⋅cosθ5 + a4)⋅cosθ4 + a3)⋅cosθ3 + a2)⋅cosθ2]T
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Jp,1 = [(((( − a5 − d6)⋅cosθ5 − a4)⋅sinθ4⋅sinθ3 + (((d6 + a5)⋅cosθ5 + a4)⋅cosθ4 + a3)⋅cosθ3 +

a2)⋅sinθ2 + (((d6 + a5)⋅cosθ5 + a4)⋅cosθ4 + a3)⋅cosθ2⋅sinθ3 + ((d6 + a5)⋅cosθ5 +

a4)⋅cosθ3⋅cosθ2⋅sinθ4)⋅sinθ1, (((d6 + a5)⋅cosθ5 + a4)⋅cosθ1⋅sinθ4⋅sinθ3 + (((( − a5 −

d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅cosθ3 − a2)⋅cosθ1)⋅sinθ2 + ((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4

− a3)⋅cosθ2⋅cosθ1⋅sinθ3 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅cosθ2⋅cosθ1⋅sinθ4, ( − a5 −

d6)⋅sinθ5]T

Jx,2 = [cosθ1⋅cosθ2, sinθ1⋅cosθ2, sinθ2]T

Jy,2 =  [− cosθ1⋅sinθ2, − sinθ1⋅sinθ2, cosθ2]T

Jz,2 = [sinθ1, − cosθ1, 0]T

Js,2 = [(((d6 + a5)⋅cosθ5 + a4)⋅sinθ4⋅sinθ3 + ((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 −

a3)⋅cosθ3)⋅sinθ1 + (d6 + a5)⋅cosθ2⋅cosθ1⋅sinθ5, (d6 + a5)⋅cosθ2⋅sinθ5⋅sinθ1 + (( − a5 −

d6)⋅cosθ5 − a4)⋅cosθ1⋅sinθ4⋅sinθ3 + (((d6 + a5)⋅cosθ5 + a4)⋅cosθ4 + a3)⋅cosθ3⋅cosθ1,

(d6 + a5)⋅sinθ5⋅sinθ2]T

Jr,2 = [(((d6 + a5)⋅cosθ5 + a4)⋅cosθ1⋅sinθ4⋅sinθ3 + ((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 −

a3)⋅cosθ3⋅cosθ1)⋅sinθ2 + ((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅cosθ2⋅cosθ1⋅sinθ3 + ((

− a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅cosθ2⋅cosθ1⋅sinθ4, ((((d6 + a5)⋅cosθ5 + a4)⋅sinθ4⋅sinθ3 +

((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅cosθ3)⋅sinθ2 + ((( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4 −

a3)⋅cosθ2⋅sinθ3 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅cosθ2⋅sinθ4)⋅sinθ1, (((( − a5 −

d6)⋅cosθ5 − a4)⋅cosθ4 − a3)⋅sinθ3 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅sinθ4)⋅sinθ2 + (( −

a5 − d6)⋅cosθ5 − a4)⋅cosθ2⋅sinθ4⋅sinθ3 + (((d6 + a5)⋅cosθ5 + a4)⋅cosθ4 +

a3)⋅cosθ3⋅cosθ2]T
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Jp,2 = [((((d6 + a5)⋅cosθ5 + a4)⋅cosθ4 + a3)⋅sinθ3 + ((d6 + a5)⋅cosθ5 + a4)⋅cosθ3⋅sinθ4)⋅sinθ1

+ (d6 + a5)⋅cosθ1⋅sinθ5⋅sinθ2, (d6 + a5)⋅sinθ5⋅sinθ2⋅sinθ1 + ((( − a5 − d6)⋅cosθ5 −

a4)⋅cosθ4 − a3)⋅cosθ1⋅sinθ3 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅cosθ1⋅sinθ4, ( − a5 −

d6)⋅cosθ2⋅sinθ5]T

Jx,3 =  [− cosθ1⋅sinθ2⋅sinθ3 + cosθ1⋅cosθ2⋅cosθ3, ( − sinθ2⋅sinθ3 + cosθ2⋅cosθ3)⋅sinθ1,

sinθ2⋅cosθ3 + cosθ2⋅sinθ3]T

Jy,3 =  [− cosθ1⋅sinθ2⋅cosθ3 − cosθ1⋅cosθ2⋅sinθ3, ( − sinθ2⋅cosθ3 − cosθ2⋅sinθ3)⋅sinθ1,

− sinθ2⋅sinθ3 + cosθ2⋅cosθ3]T

Jz,3 = [sinθ1, − cosθ1, 0]T

Js,3 = [(( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4⋅sinθ1 + ( − a5 − d6)⋅cosθ1⋅sinθ5⋅sinθ3⋅sinθ2 + (d6 +

a5)⋅cosθ3⋅cosθ2⋅cosθ1⋅sinθ5, (( − a5 − d6)⋅sinθ5⋅sinθ3⋅sinθ2 + (d6 +

a5)⋅cosθ3⋅cosθ2⋅sinθ5)⋅sinθ1 + ((d6 + a5)⋅cosθ5 + a4)⋅cosθ4⋅cosθ1, (d6 +

a5)⋅cosθ3⋅sinθ5⋅sinθ2 + (d6 + a5)⋅cosθ2⋅sinθ5⋅sinθ3]T

Jr,3 = [(((d6 + a5)⋅cosθ5 + a4)⋅cosθ1⋅sinθ4⋅sinθ3 + (( − a5 − d6)⋅cosθ5 −

a4)⋅cosθ4⋅cosθ3⋅cosθ1)⋅sinθ2 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4⋅cosθ2⋅cosθ1⋅sinθ3 + ((

− a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅cosθ2⋅cosθ1⋅sinθ4, ((((d6 + a5)⋅cosθ5 + a4)⋅sinθ4⋅sinθ3 +

(( − a5 − d6)⋅cosθ5 − a4)⋅cosθ4⋅cosθ3)⋅sinθ2 + (( − a5 − d6)⋅cosθ5 −

a4)⋅cosθ4⋅cosθ2⋅sinθ3 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅cosθ2⋅sinθ4)⋅sinθ1, ((( − a5 −

d6)⋅cosθ5 − a4)⋅cosθ4⋅sinθ3 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ3⋅sinθ4)⋅sinθ2 + (( − a5 −

d6)⋅cosθ5 − a4)⋅cosθ2⋅sinθ4⋅sinθ3 + ((d6 + a5)⋅cosθ5 + a4)⋅cosθ4⋅cosθ3⋅cosθ2]T

Jp,3 = [((d6 + a5)⋅cosθ5 + a4)⋅sinθ4⋅sinθ1 + (d6 + a5)⋅cosθ3⋅cosθ1⋅sinθ5⋅sinθ2 + (d6 +

a5)⋅cosθ2⋅cosθ1⋅sinθ5⋅sinθ3, ((d6 + a5)⋅cosθ3⋅sinθ5⋅sinθ2 + (d6 +
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a5)⋅cosθ2⋅sinθ5⋅sinθ3)⋅sinθ1 + (( − a5 − d6)⋅cosθ5 − a4)⋅cosθ1⋅sinθ4, (d6 +

a5)⋅sinθ5⋅sinθ3⋅sinθ2 + ( − a5 − d6)⋅cosθ3⋅cosθ2⋅sinθ5]T

Jx,4 = [( − cosθ1⋅sinθ3⋅cosθ4 − cosθ1⋅cosθ3⋅sinθ4)⋅sinθ2 + cosθ1⋅cosθ2⋅cosθ3⋅cosθ4 −

cosθ1⋅cosθ2⋅sinθ3⋅sinθ4, (( − cosθ3⋅sinθ4 − sinθ3⋅cosθ4)⋅sinθ2 − cosθ2⋅sinθ3⋅sinθ4 +

cosθ2⋅cosθ3⋅cosθ4)⋅sinθ1, (cosθ4⋅cosθ3 − sinθ4⋅sinθ3)⋅sinθ2 + cosθ4⋅cosθ2⋅sinθ3 +

sinθ4⋅cosθ2⋅cosθ3]T

Jy,4 = [sinθ1, − cosθ1, 0]T

Jz,4 = [( − cosθ1⋅sinθ3⋅sinθ4 + cosθ1⋅cosθ3⋅cosθ4)⋅sinθ2 + cosθ1⋅cosθ2⋅cosθ3⋅sinθ4 +

cosθ1⋅cosθ2⋅sinθ3⋅cosθ4, ((cosθ4⋅cosθ3 − sinθ4⋅sinθ3)⋅sinθ2 + cosθ4⋅cosθ2⋅sinθ3 +

sinθ4⋅cosθ2⋅cosθ3)⋅sinθ1, (cosθ3⋅sinθ4 + sinθ3⋅cosθ4)⋅sinθ2 − cosθ2⋅cosθ3⋅cosθ4 +

cosθ2⋅sinθ3⋅sinθ4]T

Js,4 = [((d6 + a5)⋅cosθ5⋅cosθ1⋅sinθ4⋅sinθ3 + ( − a5 − d6)⋅cosθ5⋅cosθ4⋅cosθ3⋅cosθ1)⋅sinθ2 + ( −

a5 − d6)⋅cosθ5⋅cosθ4⋅cosθ2⋅cosθ1⋅sinθ3 + ( − a5 − d6)⋅cosθ5⋅cosθ3⋅cosθ2⋅cosθ1⋅sinθ4,

(((d6 + a5)⋅cosθ5⋅sinθ4⋅sinθ3 + ( − a5 − d6)⋅cosθ5⋅cosθ4⋅cosθ3)⋅sinθ2 + ( − a5 −

d6)⋅cosθ5⋅cosθ4⋅cosθ2⋅sinθ3 + ( − a5 − d6)⋅cosθ5⋅cosθ3⋅cosθ2⋅sinθ4)⋅sinθ1, (( − a5 −

d6)⋅cosθ5⋅cosθ4⋅sinθ3 + ( − a5 − d6)⋅cosθ5⋅cosθ3⋅sinθ4)⋅sinθ2 + ( − a5 −

d6)⋅cosθ5⋅cosθ2⋅sinθ4⋅sinθ3 + (d6 + a5)⋅cosθ5⋅cosθ4⋅cosθ3⋅cosθ2]T

Jr,4 = [(d6 + a5)⋅cosθ5⋅sinθ1 + ((d6 + a5)⋅cosθ4⋅cosθ1⋅sinθ5⋅sinθ3 + (d6 +

a5)⋅cosθ3⋅cosθ1⋅sinθ5⋅sinθ4)⋅sinθ2 + (d6 + a5)⋅cosθ2⋅cosθ1⋅sinθ5⋅sinθ4⋅sinθ3 + ( − a5 −

d6)⋅cosθ4⋅cosθ3⋅cosθ2⋅cosθ1⋅sinθ5, (((d6 + a5)⋅cosθ4⋅sinθ5⋅sinθ3 + (d6 +

a5)⋅cosθ3⋅sinθ5⋅sinθ4)⋅sinθ2 + (d6 + a5)⋅cosθ2⋅sinθ5⋅sinθ4⋅sinθ3 + ( − a5 −

d6)⋅cosθ4⋅cosθ3⋅cosθ2⋅sinθ5)⋅sinθ1 + ( − a5 − d6)⋅cosθ5⋅cosθ1, ((d6 +
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a5)⋅sinθ5⋅sinθ4⋅sinθ3 + ( − a5 − d6)⋅cosθ4⋅cosθ3⋅sinθ5)⋅sinθ2 + ( − a5 −

d6)⋅cosθ4⋅cosθ2⋅sinθ5⋅sinθ3 + ( − a5 − d6)⋅cosθ3⋅cosθ2⋅sinθ5⋅sinθ4]T

Jp,4 = [(( − a5 − d6)⋅cosθ1⋅sinθ5⋅sinθ4⋅sinθ3 + (d6 + a5)⋅cosθ4⋅cosθ3⋅cosθ1⋅sinθ5)⋅sinθ2 + (d6

+ a5)⋅cosθ4⋅cosθ2⋅cosθ1⋅sinθ5⋅sinθ3 + (d6 + a5)⋅cosθ3⋅cosθ2⋅cosθ1⋅sinθ5⋅sinθ4, ((( − a5

− d6)⋅sinθ5⋅sinθ4⋅sinθ3 + (d6 + a5)⋅cosθ4⋅cosθ3⋅sinθ5)⋅sinθ2 + (d6 +

a5)⋅cosθ4⋅cosθ2⋅sinθ5⋅sinθ3 + (d6 + a5)⋅cosθ3⋅cosθ2⋅sinθ5⋅sinθ4)⋅sinθ1, ((d6 +

a5)⋅cosθ4⋅sinθ5⋅sinθ3 + (d6 + a5)⋅cosθ3⋅sinθ5⋅sinθ4)⋅sinθ2 + (d6 +

a5)⋅cosθ2⋅sinθ5⋅sinθ4⋅sinθ3 + ( − a5 − d6)⋅cosθ4⋅cosθ3⋅cosθ2⋅sinθ5]T

Jx,5 = [sinθ1⋅cosθ5 + (cosθ1⋅cosθ3⋅sinθ4⋅sinθ5 + cosθ1⋅sinθ3⋅cosθ4⋅sinθ5)⋅sinθ2 −

cosθ1⋅cosθ2⋅cosθ3⋅cosθ4⋅sinθ5 + cosθ1⋅cosθ2⋅sinθ3⋅sinθ4⋅sinθ5, ((cosθ3⋅sinθ4⋅sinθ5 +

sinθ3⋅cosθ4⋅sinθ5)⋅sinθ2 + cosθ2⋅sinθ3⋅sinθ4⋅sinθ5 − cosθ2⋅cosθ3⋅cosθ4⋅sinθ5)⋅sinθ1 −

cosθ1⋅cosθ5, (sinθ3⋅sinθ4⋅sinθ5 − cosθ3⋅cosθ4⋅sinθ5)⋅sinθ2 − cosθ2⋅cosθ3⋅sinθ4⋅sinθ5

− cosθ2⋅sinθ3⋅cosθ4⋅sinθ5]T

Jy,5 = [( − cosθ1⋅sinθ3⋅sinθ4 + cosθ1⋅cosθ3⋅cosθ4)⋅sinθ2 + cosθ1⋅cosθ2⋅cosθ3⋅sinθ4 +

cosθ1⋅cosθ2⋅sinθ3⋅cosθ4, ((cosθ4⋅cosθ3 − sinθ4⋅sinθ3)⋅sinθ2 + cosθ4⋅cosθ2⋅sinθ3 +

sinθ4⋅cosθ2⋅cosθ3)⋅sinθ1, (cosθ3⋅sinθ4 + sinθ3⋅cosθ4)⋅sinθ2 − cosθ2⋅cosθ3⋅cosθ4 +

cosθ2⋅sinθ3⋅sinθ4]T

Jz,5 = [sinθ1⋅sinθ5 + ( − cosθ1⋅sinθ3⋅cosθ4⋅cosθ5 − cosθ1⋅cosθ3⋅sinθ4⋅cosθ5)⋅sinθ2 +

cosθ5⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 − cosθ5⋅sinθ4⋅cosθ1⋅cosθ2⋅sinθ3, (( −

cosθ5⋅cosθ4⋅sinθ3 − cosθ5⋅sinθ4⋅cosθ3)⋅sinθ2 − cosθ5⋅sinθ4⋅cosθ2⋅sinθ3 +

cosθ5⋅cosθ4⋅cosθ2⋅cosθ3)⋅sinθ1 − cosθ1⋅sinθ5, ( − sinθ3⋅sinθ4⋅cosθ5 +

cosθ3⋅cosθ4⋅cosθ5)⋅sinθ2 + cosθ2⋅cosθ3⋅sinθ4⋅cosθ5 + cosθ2⋅sinθ3⋅cosθ4⋅cosθ5]T
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Js,5 = [sinθ1⋅cosθ5⋅d6 + (cosθ1⋅sinθ3⋅cosθ4⋅sinθ5⋅d6 + cosθ1⋅cosθ3⋅sinθ4⋅sinθ5⋅d6)⋅sinθ2 −

cosθ1⋅cosθ2⋅cosθ3⋅cosθ4⋅sinθ5⋅d6 + cosθ1⋅cosθ2⋅sinθ3⋅sinθ4⋅sinθ5⋅d6,

((cosθ3⋅sinθ4⋅sinθ5⋅d6 + sinθ3⋅cosθ4⋅sinθ5⋅d6)⋅sinθ2 − cosθ2⋅cosθ3⋅cosθ4⋅sinθ5⋅d6 +

cosθ2⋅sinθ3⋅sinθ4⋅sinθ5⋅d6)⋅sinθ1 − cosθ1⋅cosθ5⋅d6, (sinθ3⋅sinθ4⋅sinθ5⋅d6 −

cosθ3⋅cosθ4⋅sinθ5⋅d6)⋅sinθ2 − cosθ2⋅cosθ3⋅sinθ4⋅sinθ5⋅d6 −

cosθ2⋅sinθ3⋅cosθ4⋅sinθ5⋅d6]T

Jr,5 = [0, 0, 0]T

Jp,5 = [(cosθ1⋅sinθ3⋅sinθ4⋅d6 − cosθ1⋅cosθ3⋅cosθ4⋅d6)⋅sinθ2 − cosθ1⋅cosθ2⋅cosθ3⋅sinθ4⋅d6 −

cosθ1⋅cosθ2⋅sinθ3⋅cosθ4⋅d6, (( − cosθ3⋅cosθ4⋅d6 + sinθ3⋅sinθ4⋅d6)⋅sinθ2 −

cosθ2⋅sinθ3⋅cosθ4⋅d6 − cosθ2⋅cosθ3⋅sinθ4⋅d6)⋅sinθ1, ( − sinθ3⋅cosθ4⋅d6 −

cosθ3⋅sinθ4⋅d6)⋅sinθ2 + cosθ2⋅cosθ3⋅cosθ4⋅d6 − cosθ2⋅sinθ3⋅sinθ4⋅d6]T

Jx,6 = [cosθ6⋅sinθ1⋅cosθ5 + ((cosθ1⋅cosθ6⋅sinθ5⋅cosθ4 − cosθ1⋅sinθ6⋅sinθ4)⋅sinθ3 +

cosθ1⋅cosθ3⋅cosθ4⋅sinθ6 + cosθ1⋅cosθ3⋅sinθ4⋅sinθ5⋅cosθ6)⋅sinθ2 +

(cosθ6⋅sinθ5⋅sinθ4⋅cosθ1⋅cosθ2 + sinθ6⋅cosθ4⋅cosθ1⋅cosθ2)⋅sinθ3 −

cosθ6⋅sinθ5⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 + sinθ6⋅sinθ4⋅cosθ1⋅cosθ2⋅cosθ3,

(((cosθ6⋅sinθ5⋅cosθ4 − sinθ6⋅sinθ4)⋅sinθ3 + cosθ6⋅sinθ5⋅sinθ4⋅cosθ3 +

sinθ6⋅cosθ4⋅cosθ3)⋅sinθ2 + (cosθ6⋅sinθ5⋅sinθ4⋅cosθ2 + sinθ6⋅cosθ4⋅cosθ2)⋅sinθ3 −

cosθ6⋅sinθ5⋅cosθ4⋅cosθ2⋅cosθ3 + sinθ6⋅sinθ4⋅cosθ2⋅cosθ3)⋅sinθ1 − cosθ6⋅cosθ1⋅cosθ5,

((sinθ4⋅sinθ5⋅cosθ6 + cosθ4⋅sinθ6)⋅sinθ3 − sinθ5⋅cosθ6⋅cosθ4⋅cosθ3 +

sinθ6⋅sinθ4⋅cosθ3)⋅sinθ2 + ( − sinθ5⋅cosθ6⋅cosθ4⋅cosθ2 + sinθ6⋅sinθ4⋅cosθ2)⋅sinθ3 −

sinθ5⋅cosθ6⋅sinθ4⋅cosθ2⋅cosθ3 − sinθ6⋅cosθ4⋅cosθ2⋅cosθ3]T
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Jy,6 =  [− sinθ6⋅sinθ1⋅cosθ5 + (( − cosθ1⋅sinθ5⋅sinθ6⋅cosθ4 − cosθ1⋅sinθ4⋅cosθ6)⋅sinθ3 +

cosθ1⋅cosθ3⋅cosθ4⋅cosθ6 − cosθ1⋅cosθ3⋅sinθ4⋅sinθ5⋅sinθ6)⋅sinθ2 + ( −

sinθ6⋅sinθ5⋅sinθ4⋅cosθ1⋅cosθ2 + cosθ6⋅cosθ4⋅cosθ1⋅cosθ2)⋅sinθ3 +

sinθ6⋅sinθ5⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 + cosθ6⋅sinθ4⋅cosθ1⋅cosθ2⋅cosθ3, ((( −

sinθ5⋅sinθ6⋅cosθ4 − sinθ4⋅cosθ6)⋅sinθ3 − sinθ6⋅sinθ5⋅sinθ4⋅cosθ3 +

cosθ6⋅cosθ4⋅cosθ3)⋅sinθ2 + ( − sinθ6⋅sinθ5⋅sinθ4⋅cosθ2 + cosθ6⋅cosθ4⋅cosθ2)⋅sinθ3 +

cosθ6⋅sinθ4⋅cosθ2⋅cosθ3 + sinθ6⋅sinθ5⋅cosθ4⋅cosθ2⋅cosθ3)⋅sinθ1 + sinθ6⋅cosθ1⋅cosθ5,

(( − sinθ4⋅sinθ5⋅sinθ6 + cosθ4⋅cosθ6)⋅sinθ3 + sinθ5⋅sinθ6⋅cosθ4⋅cosθ3 +

cosθ6⋅sinθ4⋅cosθ3)⋅sinθ2 + (sinθ5⋅sinθ6⋅cosθ4⋅cosθ2 + cosθ6⋅sinθ4⋅cosθ2)⋅sinθ3 +

sinθ5⋅sinθ6⋅sinθ4⋅cosθ2⋅cosθ3 − cosθ6⋅cosθ4⋅cosθ2⋅cosθ3]T

Jz,6 = [sinθ1⋅sinθ5 + ( − cosθ1⋅sinθ3⋅cosθ4⋅cosθ5 − cosθ1⋅cosθ3⋅sinθ4⋅cosθ5)⋅sinθ2 +

cosθ5⋅cosθ4⋅cosθ1⋅cosθ2⋅cosθ3 − cosθ5⋅sinθ4⋅cosθ1⋅cosθ2⋅sinθ3, (( −

cosθ5⋅cosθ4⋅sinθ3 − cosθ5⋅sinθ4⋅cosθ3)⋅sinθ2 − cosθ5⋅sinθ4⋅cosθ2⋅sinθ3 +

cosθ5⋅cosθ4⋅cosθ2⋅cosθ3)⋅sinθ1 − cosθ1⋅sinθ5, ( − sinθ3⋅sinθ4⋅cosθ5 +

cosθ3⋅cosθ4⋅cosθ5)⋅sinθ2 + cosθ2⋅cosθ3⋅sinθ4⋅cosθ5 + cosθ2⋅sinθ3⋅cosθ4⋅cosθ5]T

Js,6 = [0, 0, 0]T

Jr,6 = [0, 0, 0]T

Jp,6 = [0, 0, 0]T
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