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Abstract. [n this work a formulation for the analysis of shaft-rotor-bearing type rotating
systems is extended to accommodute the effects of hydrodynamics bearings in its dynamic
response. These effects, which are associated 1o the nonlinear Jorce on the shaft at the
bearing, are dependent of the transverse displacements and rotations, transverse linear and
angular velocities and the shaft angular velocity. The structure behavior is modeled by
employing the finite element method, The shaft is represented by the two node Timoshenko
model for beams, with four degrees-of-freedom per node and Hermite interpolation functions
{0 represent the displacement fields along the beam axis. Rotors are modeled by using
concentrated tnertia elements associagred 1o the degrees-of-freedom of one nodal point of the
model. To represent the hydrodynamic bearings the equation af Reynolds was used under
the simplified Ocvirk conditions for short bearings, providing a closed form solution for the
oil film pressure distribution. This pressure distribution allows Jor the calculation of
stiffness and damping matrices associated to the shaft degrees-of-freedom at the bearing
nodal point.  In the numerical analysis considering the time integration of the system
differential equation, a step-b y-siep procedure was employed with the Newmark fechnigue in
its unconditionally form. Due to the nonlinearities assaciated with the hydrodynamic
bearing, the solution of the sysiem of equations is obtained using a modified Newton-
Raphson procedure at each time for solution convergence. In the evaluation of the proposed
computational system, comparison with solutions ohtained Srom analytical/numerical results
available in the literature are used. Also. a numeric representation of tilting-pad bearings
is presented using the theory for plain journal hearing, under the same simplified condirions.
In this case an evaluation of the numerical procedure is given by comparing calculated
solutions with experimental results obtained from the analysis results of a hydrogeneration
plant provided by CEPEL-Brazilian Research Center for Eletrotrobras, In both plain and
tilting-pad journal bearing numerical procedures, the idealized Jeffeorr rotor is employed as
a case study for different operating conditions. As a result, it is shown that the solutions
associated to the main oil whirl and oil whip effecis and the afterwards dvnamic stabilization
are represented by the proposed numerical procedures emploved



1. INTRODUCTION

The general area of rotordynamics has, at least historically, been the amalgam of
knowledge from two very active rescarch areas in Mechanical Engineering: structurc
dynamics and journal bearing oil film dynamics. [t provides the [rame work theory and
simulation tools to represent the mechanical behaviour of rotatory systems, which are the
main responsible machinery for transforming fluid potential energy (chemical, gravitational,
etc) into rotatory kinetic energy, and vice versa. Hydrogenerators are good examples of these
complex systems. They comprise, basically, four main components: the impeller, the shaft,

the bearings and the seals. Mass umbalances as well as gravity must be also considered!-3.

In the design process of hydrogenerators, reguirements for mechanical performance and
dynamic stahility are, in general, conflictory. If, for its best performance, the largest as
possible fluid flow passing the machine is a desirable operating condition, this may turn the
machine, limited in size and weight, into an unstable system. Thus, in a hydrogenerator
project, the following objectives may be perceived?:

e avoid to vperate at critical speeds, if possible. Vibration mode exitations may causc

the system to fail by ressonance,

e minimize the dynamic response at ressonance, in case of critical speeds being crossed
during operation. This requires the analyst to have a good knowledge of the rotor
dynamic behaviour,

e minimize random vibration loadings at the machine operating speeds. Undesirable
oscilatory responses are avoided, by reducing external excitations;

e avoid dynamic unstabilities. Certain operation conditions may cause the system selt-
excited vibration motions, at amplitudes larger than it was primarily designed for;

e avoid torsional vibrations at ressonance. Flexural vibrations combined to the system
response on the torsional modes at ressonance may be amplified to levels dangerous
to the structure inlegrity.

In most of the operating field conditions, access to experimen{al results are useful to
system design but, in general, difficult to obtain or, in some cases, not cost effective. Also,
because the system dynamic response is not known in its design phase, suitable positions for
the experimental pick up puints are, generally, difficult to define. Figure 1 presents an
assemblage part representation for a typical hydrogencrator and its third mode (amplified)
response at 12.9 hz, with shaft angular velocity at 100 rpm. To evaluate the dynamics of
such hydrogenerators, under the above operating conditions, a robust numerical procedure is
required and the finite element method provides the adequate numerical tools. It has been
extensively used in the literature to model the dynamic behaviour of nonlinear - geometric or
material - structures?=3 and, from the physics involved, rotaling systems are adequately
represented by beams and concentrated/distributed masses to represent shaft and rotors,
respectively. However, modeling of the bearing influence on the structure dynamics
requires some special considerations. Hy simply using decoupled spring constants its
influence has been analytically evaluated in the literature®-7. Rao® extended these studies to
evaluate their effects in the Jeffcott rotor at its critical speed by including the coupling terms
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Figure 1 - Rotating System Components and Typical Mode Response

associated to hydrodynamic bearings. His study was further extended to consider damping
effects in the bearing model”. It shows how damping can be a very important effect in the
response of a rotating system subjected to unbalance forces, at its critical speed.

Due to these properties modern hydrogenerators employ low stiflness - such the oil film
type - journal bearings. In these systems the largest amount of energy dissipation vccurs at
the bearings, which are the supporting devices mainly responsible for the supression of
dynamic ressonance and for the reduction of sincronous response (0 umbalancing.
Nonsimmetry and small coupling terms in the stiffness equivalent matrix are very important
characteristics, to the system stability.!-3

In the present investigation, the finite element idealization is used as basic numerical
procedure. The approach is similar in many respects to the formulations presented by

Nicholas!?, except that a more general methodology is obtained in the representation of
bearing support forces. The paper deals with the formulation of a simple but eftective
procedure for the dynamic response of rotating systems. The formulation procedures predict
the significant phenomena occurning in rotordynamic systems including ressonance, o1l whirl
and oil whip effects, and the aflerwards dynamic stabilization. Stiffness and damping
matrices associated to the shafll motion in the bearing oil filin are obtained in closed form,
for each angular position of the shaft, by ensuring its dynamic equilibrium conditions. In
this paper single-span/multi-rotor systems with perfectly aligned bearings are considered.
However, the full potential of the procedure lies in the analysis of multi-span/multi-rotor
systems with or without misligned bearings!!, because it is cost effective and indeed allows
an accurate nonlinear dynamic analysis. This nonlinear effect, proper to multi-span systems,
is ought to be included in a subsequent extension of the present work.

In the next section the important concepts used in the finite element representation of
rotating systems are presented. Stiffness and damping matrices derivations associated to
hydrodynamic bearings are presented in section 3. In this section plain and tilting pad type



bearings are both considered. The formulation has been implemented in the computer, and in
section 4 some analysis results are presented to demonstrate the validity of the proposed
numerical procedures.

2. SHAFT AND ROTOR FE MODELS

The analysis of a general assemblape of finite elements consists, in essence, of the
formulations of the equilibrium equations of each individual element and the subsequent
application of general procedures that are independent of the type of element considered.
Hence, in the [ollowing discussion we will focus on the derivations of typical elements for
the representation of the shaft, rotor and bearings in rotating machinery.,

The Shaft Model. Considering the shaft structural behavior we adopt the Timoshenko
beam element model formulation. It consists of a two-node element with the assumption
that plane sections originally normal to the beam neutral axis remain plane, but because of
shear deformations it does not remain perpendicular to the neutral axis. The approach
requires, lo represent the element kinematics, four degrees-of-freedom per node - two
transverse v and w displacements and two in-plane rotations 4, and /% . Thus, for a shaft of

length L laying in the z-direction axis and subjected to the angular velocity ¢, the element
total potential is given by

L ' L
m = (EI/2) J'[(ri'if*‘.fﬁz}’) + (46, /&) 1dz + {kﬁmz}j[rauéz + B0+ (Awid- 5,) ) dz - "
fi <]

P I [FAL + ABYz + (FI2) [[(& 1) + (Awid))dz

where the first two integrals are, respectively, bending and shearing strain energies and the
last two integrals represent the potential of the gyroscope moment- due to angular velocity
combinations-and the potential of an axial load F, respectively. The upper dot (*) on the
variable implies differenciation with respect to time. In eq. (1) E, p and G are,
respectively, the material Young’s madulus, mass density and shear modulus, while A, I and
I, are the cross-section geometric parameters: area, transverse moment of inertia and polar
moment of inertia, respectively,

In order o include the shaft dynamic behaviour in the formulation, also its kinectic
energy must be considered. Thus, we have

Ve = (pIDLJAGH + Wiz + [IB + Az + [1,4dz) )
a ¢ a *

where the first two terms are the kinetic energies due to transverse displﬁcemems and
rotations of the beam cross-section, and the remaining is due to the shaft spin. Under the
small displacement condition the third integral in equation (1) may be reduced to the form



(p1,) |44, p.dz. (3)

Also, it is worthed to notice that the strain energy term in eg. (1) associated to the axial load
F is an important term when vertical rotor assemblages are considered with axial bearings in
its lower position. This axial strain energy is thus significative, compared to bending and
shearing straining energies, for the case in which the total turbine weight added to the water
flow pressure is about twenty times the rotor own weight!? |

In the above equations all the element state variables are represented along the shaft axis,
only. In this case, Hermitian cubic polinomial are employed as interpolation functions in the
z-direction. As an example, the transverse v - displacement representation results in

v(z) = [1-3(z/1)* + 2(z/ L)’ v, + [3(z/L)’ —2(z/L)’'v, (4)

with v,and v, being the element nodal point displacements. This numerical representation
is then extended to all state variables which combined to egs. (1), (2) and (3) results, after
integration, in the element stiffness, damping and consistent mass matrices, all obtained in
closed form!2.

The Rotor Model As a machinery component to store kinetic (rotating) energy, which
is obtained from the combination of three angular motions: spin, precession and nutation, the
analyst is required to distinguish, in the finite element model representation of a rotor, the
use of the consistent or the lumped mass representation. In general, consistent mass models
are required in “long rotors” representation larger than one-tenth of the shaft’s length. In
this case the rotor may be modeled as a beam element and eqs. (1) to (3) apply. In the second
representation, proper to “short rotors” the lumped mass model is employed, associated to
the degrees-of-freedom at a single node of the shaft representation. In this case the kinetic
energy to be added to the finite element representation at node N, is given by

Vo= (M /2) (v + wi)+ (L /2 G% +82) + Uee /2) (8 + 28,8 By)  (9)

where My, I, and I, are, respectively, the rotor total mass, the rotor mass moment of
inertia with respect to x-axis and the rotor mass moment of inertia with respect to z-axis.

In both formulations the equivalent damping matrix obtained from the potential due
angular velocity combination - the gyroscope moment -, in eq. (3), results in an anti-
symmetric matrix. This implies the dynamic syslems to possess 2n natural frequencies, for

each shaft angular velocity @. These frequencies are upper and lower bounds of n natural

frequencies obtained from a stand shaft (¢ = 0) and they correspond to fast and slow
procession solutions.



3. HYDRODYNAMIC BEARINGS

Hydrodynamic bearings such as journal bearings are used to support rotors. Because it
allows for the dissipation of kinetic energy in the shaft, it also provides rotor damping to
either assist in stabilizing an otherwise unstable rotor or to improve synchronous responsc
characteristics. Although simpler to be manufactured as compared to others, plain journal
bearings are subject to dynamic unstabilities due to self-exercited precessions. Tilting pad
journals, on the other hand, provide a substantial reduction in this unpleasant rotor response
because the cross-coupling terms in the equivalent bearing-stiffness matrix is substantially
reduced. In this section derivations for the equivalent stiffness and damping matrices
associated to these two types of hydrodynamic bearing are presented.

Plain Bearings. Hydrodynamic bearing reaction forces acting on rotating shafts result
from the pressure developed by the rclative motion of, assumed parallel, surfaces retaining a
thin oil film. Considering the Reynolds equations, in convective coordinates, representing an
incompressible Newtonian fluid under laminar flow conditions, with no body forces present
but constant viscosity, the pressure field p(#,2) in the bearing resulls from!
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Figure 2 - Plain Bearing Physical and Geometric Parameters

where @ is the rotor angular velocity, £ =c/C_ is the rotor normalized excentricity, C, is
the radial clearance, h(é,t) =H(8, 1)/C is IhE instant normalized clearance along Ihe
bearing circunference and R is the shaft radius. Closed form solutions for eq. (6) can be

obtained for two simplified conditions only!3; long and short bearings. In the former the
resulting pressure gradiente in the axial z-direction is much smaller than the pressure gradient
in the circunferential @-direction. This condition results the second term on the left hand



side of eq. (6) negligible, compared to the others. It will not be considered here, since
hydrogenerators employ, in general, hydrodynamic bearings with aspect ratio (£/R) less
than 0.5!. Under short bearing conditions, on the other hand, the pressure gradient in the
circunferential direction is negligible and the Reynolds equation results in,

C]i(hﬁﬂ 1,2 Fh  oh ,
oz W TG H G (7)
with the pressure [eld solution
p(6,2) = GBuw/4) (£/C;) [(x-29)sind - (y +2x)cos 8] (42" = 1)/ 1’ (8)
defined from the non-dimensional parameters
L. XY oz @Xtdt . FYIdt (9)
c, " YT 0 TTT YT Tge, 0 YT Tac,

Negative values for p(#,z) indicates the occurrence of cavitation in the oil film, and the
pressure distribution is thus assumed null at & -7 < 0 < &, with

- [}r } ;£ + {}II I} - -
—_ t —_— - — S - —
@ = 1g x - 2y) 5 sign x-29) 5 sign(y + 2%) , (10)

which 13 known as (Giimbel condition tor n-bearings.
From the pressure distribution in the oil tilm, reaction forces at the bearings are obtained

-

by integrating p(&,z), in eq. (8), over the shaft wet area 0.5 < z < 0.5 and
a <8 <g+a,ldls
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Stiffness and damping matrices coefficients are obtained from the derivatives of these
force components with respect x.y, X.¥. Thus,
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Furthermore, the following set of derivative definitions, with respecl o x,v, X, and ¥,
are also needed in the calculations shown in eq. (14): '
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From egs. (13) to (18) the obtained stiffness and damping matrix coefficients depends on
the bearing dimensions, the oil viscosity, the rotor angular velocity and the posttion and the
precession velocity of the shaft with respect to the bearing case. These coefficients are
plotted in Fig. 3, for null precession velocities, and compared to Childs! with respect to the
excentricity parameter €. The obtained model results presented in this work are more general
because the shaft precession velocities are not neglected in the calculations and the x-y
positions considered correspond (o a general rotor configuration. From the plots,
significative differences in some coefficients are noticed for ¢ >0.7. However, typical
hydrogenerator rotors carry excentricity less than 0.3 and, in this range, good agreement is
obtained in all result comparisons. The non-symmetry characteristic of the stiffness matrix is
also shown in the results as well as that it increases for increasing bearing excentricity. On
the other hand the damping matrix presents symmetry with strong coupling coefficients.

filting-Pad Bearings. The tilting-pad bearing design eliminates bearing-stability
difficulties by eliminating the stiffness cross-coupling terms in the bearing representation.
Considering the lower pads of tilting-pad bearing shown in Fig. 4, these pads are pivoted by
an axial pin, which does not support moment:; hence, the force reaction on the pads must
pass through the pivot point, and a vertical load applied to the journal must be, for
equilibrium, the sum of the reaction forces in both pins. The important physical point is that
reaction [orces are developed without sideward displacements of the loaded journal; ie. a
vertical load yields only a vertical displacements and the cross-coupling term in the
equivalent stifflness matrix is then eliminated. Tilting-pad bearings have been used in
hydrogenerator assemblies with 3,4, 5,6, 12 and up to 18 pads.

Considering (x,y) coordinates of the rotor center, with respect to the bearing center, the
oil film thickness, for a @, angular position of the pin, may be obtained, see Fig. 5 as

h(f,p) = C, - Xcosf - Ysin 8 - wyxi, + Y2 sin(@ - ) (19)
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Figure 4 - Tilting-Pad Bearing Components
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Figure 5 - Bearing Pad Relative Position Coordinates

Pressure distribution in each pad (segment) may bc then obtained from the Reynolds
equation - as Ocvirk conditions apply! - resulting in

p(8,2) = QGuw/4)(£/C )" [(a-2b)sind -(b+2a)cosd] (422 =1)/h*  (20)

1 7
where, a=x- wY,/C, ,b=y + wX,/C, and the notation (*)= — > applies.
@

As in eq. (20), force components are evalualed for § < @ < @,, resulting in

E F . v.l, - ul 51
F | v.l, - ul, D)

R
where, k = umw 4Cf , and
2 cos’ i/ 2smé cosd 2 5in’d o
L= | ~—db, L= ™ de, 13=j'-h,—d9 (22)

Closed forms for the integral terms in eq. (20) are obtained through auxiliary algebraic
transformations, which result in the following!2

12
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In the evaluation of the angular position y, for each bearing pad, the moment
equilibrium condition due to oil film pressure is imposed. The resulling equation is
numerically integrated in the time domain as described in Cardinali!3.

Following the procedures described for plain journal bearings, stiffness and damping
matrix coefficients are then obtained from derivations of force components in eq. (19) with
respect to X,y - coordinate components and %, ¥ - velocity components. Thus,
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are evaluated for each segment and the resulting stiffness and damping matrices arc obtained
by adding up contributions of all bearing pads. As in previous derivations the integration
domain is restrited to the pad region under positive values only of the pressure distribution,
described in eq. (20). Also, in the time integration considered, the inertia moments
associated to the angular motion of the pad is assumed negligible compared to all other
forces considered in the equilibrium of the bearing pad.

4. ANALYSIS RESULTS

Ihe foregoing formulalion has been implemented and in this section the analysis
responses  predicted using finite element procedures arc compared to available
numerical/experimental resulls. In all analysis the equilibrium equations are numerically
mtegrated in the time domain using the Newmark procedures, in its unconditionally stable
form (o= 0,25, y= 0,5). As presented, the formulation does not employ numerical
integration schemes in space domain.

Analysis of a Rutor Assemblage with Plain Hydrodynamic Bearing. Figure 6 shows a
vertical flexible rolor supporting a disk on its lower end while a motor is attached to the
upper end. This assemblage was numerically evaluated by Lima'® and the finite element
model employed within this study are shown in Fig. 6. The obtained numerical solutions for
the orbit patterns described by the shaft, at the bearing pusition - node 4 - are shown in Fig 7
[ortwo rotor speeds: 30rd/s and 100rd/s. Because (he hydrodynamic bearings are
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Figure 6 - Vertical Rotor Assemblage and The Finite Element Model Tlsed



Amplitude ¥ (*1E-T m) UNICANMP Node 4 w=30reds

Jo-07 | T i
i !
st e,
2007 | 2 4 N
#*
I ..-'"r - - "=
1e-07 1 o ~
. !
T
D 8 .
-1e-07 a
-28-07 | s AN e r"’
S e r:,l,._-r"‘
a7 L 1 L 1 [ 1 | = —
| E'u'?‘.E‘E"Q?"I B-07 19 1007 Eﬂ"ﬂ? 7 -ﬂ_ﬁ.. ._l-i!_.._. "-i ......... [-.l-. e .jq h”_.li
x*|m] Amplitude X (*1E-7 m)
Ampliude ¥ "1E-4 m]  UNICAMP NA 4 w=100m/s
FE— ey
AR o SO
i “ -:.‘ -.-' .---.‘.,.-- L -H"\-\. A '\-H:-\'.-' i
L N |
.FI"II .-'.- . LY K ‘I'- ':F I
1 Illi:!;;llli I;I'lr 2 1'|, 'lIi '\:'. Ii:-:.
off| |1 ™ ol |
|.| i 1 ;oo
1"Ii!llll 1'5"' .Ii'l l"---l-l 4 j‘rjll
£
o %& " \ T s
T L i "'.’..'::.-'-"{i
".--:_:__-\:: '-"H‘xh = ‘,;__-r.ﬂ
S
.4 T T
4 -2 o i q

Amptude X [*1E-4 )

Figure 7 - Shaft Orbits Numerically Ohtained Using: Present Study (Left) and Lima’ Model
(Right)

already incorporated to the model, in the present study, the time step used during integration
of the equilibrium equations could be fifty times larger than the one used by Lima -

At = 2. x 107s. In his analysis, the bearing was modeled by an equivalent reaction force
model  which required an explicity procedure to obtain the pressure integration domain
considered in the analysis. At the steady-state motion of the rotor, solution trajectorics
vbtained by Lima are similar to the ones generated by the present model. However they
possess some differences due to the representation of the exciting force caused by shaft
unbalancing. In our model instead of using a step loading, a slow exponential time
increasing function was employed to avoid numerical unstabilities in the solution.

Analysis of a Rotor with Tilting-Pad Bearing. In this study the unit of Furnas Hydro-
Power System, located at the suuthern part of Rio de Janeiro state, was considered.
Experiments have been conducted and analized for further predictory maintenance planning
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Figure 8 - Furnas H;fdm-Pﬂwef 'Systern Components and the Finite Element Model
Employed
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Figure 9 - Measured Shaft Orbits at the Pick Up Points: Before (Left) and After (Right)
Filtering
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by CEPEL (Brazilian Research Center for Eletrobras). In the numerical analysis the rotor
was modeled using 19 Hermetian beam elements with two disk elements to represent the unit
generator and the turbine, two tilling-pad bearing models as lateral bearings and one axial
(trust) bearing. In this analysis the axial force due to the equipment weight had to he
considered. Measured rotor orbits were obtained by using displacement transducers placed
on the shaft axis at the position nodes 6,11 and 16. Figure 8 presents the system components
and its finite element representation. Due to external excitation such as unbalancing forces,
electric-magnetic forces and so on, measurement signs were filtered by a digital an eliptic
type, 4th order filter with a4 2.3 - 2.7hz pass band and low band cut of 100 db. All data were
obtained for the rotor at 150 rpm (2.5hz)/160MW, nominal velocity, at a 128hz acquisition
frequency. Orbits for X-Y displacements at acquisition points 1,2 and 3 (nodes 6,11 and 16
in the [inite element model, respectivelly) are shown in Fig. 9, before and after filtering.
The later represents the experimental results caused by rotor unbalancing forces only. In the
numerical simulation, time integration was performed with an increment of Sms. Following
CEPEL’s information on the system running conditions, a 15 kg.m unbalancing was force at
node 5 in the model, - the generator position - which corresponds to the 3700N syncronous
force excitation imposed to the model,

In Fig. 10 numerical solutions for the shaft orhits, at the experiment pick up points,

o o & 3
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Figure 10 - Numerically Obtained shaft Orbits at the Pick Up Points for Tilting-Pad Journal
Assembly (Left) and Plain Journal Assembly (Right)
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are compared for lwo bearing support conditions: the tilting-pad and the plain bearing
Journals. The finite element representation employed for the shaft, rotor and exciting force is
as shown in Fig, 9. It is shown that steady-state running conditions are obtained in both
analyses but with differences for the orbit amplitudes: the plain journal bearing model
presented orbit amplitudes up to four times the ones obtained from the model with tilting-
pad bearing journals. The main reason for such discrepancy is associated to the oil whirl
eflects presented by the plain bearing model results: spectral displacement values - in both x
and y coordinates - at 1.25hz, which is half of the actual rotor rotation frequency (150 rpm).

5. CONCLUSIONS

Numerical procedures to model hydrodynamic bearings, which are compatible to
general finite element formulations, for the analysis of rotating systems is presented. Plain
hydrodynamic bearings and tilting-pad bearing journals are modeled by closed form obtained
stiffness and damping matrices, both reduced (o the transverse displacement degrees-of-
[reedom associated 10 a single node of the shafl model. Gyroscope effects are also included
in the finite element model resulting in a non-symmetric system of equation to be salved for.
Althrough the results of some sample solutions indicate the applicability of the proposed
procedure for very general situations, further performance studies are still required to identify
the limit range of problems for which it can be further employed.
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