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ABSTRACT
A method is presented to identify the source of end-

effector positioning errors in large manipulators using
experimentally measured data.  Both errors due to
manufacturing tolerances and other geometric errors and
elastic structural deformations are identified.  These error
sources are used to predict, and compensate for, the end-point
errors as a function of configuration and measured forces.  The
method is applied to a new large high accuracy medical robot.
Experimental results show that the method is able to
effectively correct for the errors in the system.

INTRODUCTION
Large robot manipulators are needed in field, service and

medical applications to perform high accuracy tasks.
Examples are manipulators that perform decontamination
tasks in nuclear sites, space manipulators such as the Special
Purpose Dexterous Manipulator (SPDM) and manipulators for
medical treatment (Hamel et al., 1997; Vaillancourt and
Gosselin, 1994; Flanz, 1996).  In these applications, a large
robotic system may need to have very fine precision.  Its
accuracy specifications may be very small fractions of its size.
Achieving such high accuracy is difficult because of the
manipulator’s size and its need to carry relatively heavy
payloads.  Further, many tasks, such as space applications,
require systems to be light weight so that structural
deformation errors may become relatively large.  For such
systems geometric errors due to machining tolerances, and
errors due to elastic deformation, create significant end-
effector errors.

Due to task constraints it is often not possible to use direct
end-effector sensing in a closed-loop control scheme to
improve the system accuracy.  Therefore, there is a need for
model based error identification and compensation techniques.
While classical calibration methods can achieve such
compensation for some systems, they cannot correct the errors
in large systems with significant elastic deformations, because
they do not explicitly consider the effects of task forces and
structural compliance.  Here a method is developed that
considers both deformation and more classical geometric
errors in a unified manner.

This method is applied here to a new important medical
application of large manipulator systems.  The manipulator is
used as a high accuracy robotic patient positioning system in a
radiation therapy research facility now being constructed at
the Massachusetts General Hospital (MGH), the Northeast
Proton Therapy Center (NPTC) (Flanz et al., 1995; Flanz et
al., 1996).  The robotic patient positioning system (PPS)
places a patient in a high energy proton beam delivered from a
rotating gantry structure (see Figure 1).  The PPS is a six
degree of freedom manipulator that covers a large workspace
of more than 4m in radius while carrying patients weighing as
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much as 300 lbs.  Patients are finally immobilized on the
“couch” attached to the PPS end-effector.

The PPS, combined with the rotating gantry that carries
the proton beam, enables the beam to enter the patient from
any direction, while avoiding the gantry structure.  Hence
programmable flexibility offered by robotic technology is
needed.

Figure 1: Schematic of the PPS and the Gantry

The required absolute positioning accuracy of the PPS is
±0.5 mm.  This accuracy is critical as larger errors may be
dangerous to the patient (Rabinowitz et al., 1985).  The
required accuracy is roughly 10-4 of the nominal dimension of
system workspace.  This is a greater relative accuracy than
many industrial manipulators.  In addition, FEM studies and
experimental results show that the changing and heavy
payload (between 1 and 300 pounds) creates end-effector
errors due to elastic deformations of the order of 6-8 mm.

Considerable research has been performed in the model-
based error compensation of manipulators, also called robot
calibration (Roth, Mooring, Ravani, 1987; Hollerbach, 1988;
Mooring, Roth and Driels, 1990; Zhuang and Roth, 1996;
Hollerbach and Wampler, 1997).  A major component of this
process is the development of manipulator error models (Wu,
1984; Mirman and Gupta, 1993), some of them considering
the effects of manipulator joint errors, while others focusing
on the effects of link dimensional errors (Waldron and Kumar,
1979; Vaichav and Magrab, 1987).  Some error models have
been developed specifically for use in the calibration of
manipulators (Broderick and Cirpa,1988; Zhuang, Roth and
Hamano, 1992; Zhuang, Wang and Roth, 1993), while some
researchers have studied methods to find the optimal
configurations to reduce the manipulator errors by calibration
(Zhuang, Wang and Roth, 1994; Zhuang, Wu and Huang,
1996; Borm and Menq, 1991).  Several calibration techniques
have been used to improve robot accuracy through software
rather than changing the mechanical structure (Roth, Mooring
and Ravani, 1986), including open and closed-loop methods
(Whitney, Lozinski and Rourke, 1986; Hayati, Tso and
Roston, 1988; Everett and Lin, 1988) as well as screw-axis
measurement methods (Hollerbach and Wampler, 1996)
sometimes combined with local calibration (Everett and Lei,
1995).  Solution methods for the identification of the
manipulator’s unknown parameters have been studied for these
model-based calibration processes (Dubowsky, Maatuk and
Perreira, 1975; Zhuang and Roth, 1993). Most calibration
methods have been applied to industrial or laboratory robots,
achieving good accuracy when geometric errors are dominant.
However, the existing calibration methods do not explicitly
compensate for elastic errors due to the wrench at the end-
effector.  A calibration method that considers the weight
dependency of the errors was developed (Drouet, Mavroidis
and Dubowsky, 1998), but it needs an elastic model of the
system.

In this paper a method that compensates for the position
and orientation errors caused by geometric and elastic errors
in large manipulators is presented.  The method explicitly
considers the weight dependency of the errors.  An error
model, developed by Mavroidis et al.(1997) and a set of
experimentally measured positions and orientations of the
robot end-effector, and measurements of the payload wrench,
are used to calculate the robot “generalized” errors without
needing a manipulator elastic model.  Here, generalized are
called the errors that characterize the relative position and
orientation of frames defined at the manipulator links.  They
are found from measured data as a function of the
configuration of the system and the task forces.  Knowing
these generalized errors the manipulator end-effector position
and orientation errors are calculated and used at any
configuration to correct the robot configuration to compensate
for these errors.  The method treats all errors of the
manipulator such as geometric and elastic errors in a unified
manner.  The method is applied to Patient Positioning System.
A force/torque sensor has been added to the system to measure
the wrench applied by the patient’s weight. It is
experimentally shown to be able to reduce the inherent 5-7mm
to less than the required accuracy of 0.5 mm.

MODEL BASED ERROR COMPENSATION
There are many possible sources of errors in a

manipulator.  These errors are referred to as "physical errors",
to distinguish them from "generalized errors" which are
defined later.  The main sources of physical errors in a
manipulator are:

• Mechanical system errors:  These errors are resulting
from machining and assembly tolerances of the various
manipulator mechanical components.
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• Deflections:  Elastic deformations of the members of the
manipulator under load can result in large end-effector errors,
especially in long reach manipulator systems.

• Measurement and Control:  Measurement, actuator, and
control errors that occur in the control systems will create end-
effector positioning errors.  The resolution of encoders and
stepper motors are examples of this type of error.

• Joint errors: These errors include bearing run-out in
rotating joints, rail curvature in linear joints, and backlash in
manipulator joints and actuator gear box.

In most cases, physical errors are relatively small.
However, their effect at the end-effector can be large.

Further, errors can be distinguished into “repeatable” and
“random” errors (Slocum, 1992).  Repeatable errors are errors
whose numerical value and sign are constant for a given
manipulator configuration.  An example of a repeatable error
is an assembly error.  Random errors are errors whose
numerical value or sign changes unpredictably.  At each
manipulator configuration, the exact magnitude and direction
of random errors cannot be uniquely determined, but only
specified over a range of values.  Random errors cannot be
compensated using classical calibration techniques.  An
example of a random error is the error that occurs due to
backlash of an actuator gear train.  Classical kinematic
calibration and correction can only deal with repeatable errors.
It will be shown experimentally in Section 4 that these errors
dominate in the performance of the PPS.

To describe the kinematics of a manipulator the definition
of reference frames at the manipulator base, end-effector, and
at each of the joints that are characterized by the Denavit and
Hartenberg parameters are defined (Craig, 1989).  The
position and orientation of a reference frame F

i
 with respect to

the previous reference frame F
i-1

 is defined with a 4x4 matrix
A

i
 that has the general form:
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The R
i
 term is a 3x3 orientation matrix composed of the

direction cosines of frame F
i
 with respect to frame F

i-1
 and T is

a 3x1 vector of the coordinates of center O
i
 of frame F

i 
in F

i-1
.

The elements of matrices A
i
 depend on the geometric

parameters of the manipulator and the manipulator joint
variables q.

Physical errors change the geometric properties of a
manipulator.  As a result, the frames defined at the
manipulator joints are slightly displaced from their expected,
ideal locations.  The position and orientation of a frame FT

r

with respect to its ideal location F
i
i is represented by a 4x4
homogeneous matrix E
i
.  The rotation part of matrix E

i
 is the

result of the product of three consecutive rotations e
si
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pi

around the Y, Z and X axes respectively.  (These are the Euler
angles of FT

r  with respect to FT
i ).  The subscripts s, r, and p

represent spin (yaw), roll, and pitch, respectively.  The
translational part of matrix E
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 of point OT
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 are called here "generalized error” parameters.

For a nth degree of freedom manipulator, there are 6n
generalized errors which can be written in vector form as ε =
[...,e
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,…], with i ranging from 1 to n.  Since

the physical errors are small, the generalized errors e
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, e
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,

e
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 and e
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 are also small, so a first order approximation can

be applied to their trigonometric functions and products.
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, after the first order approximation, has the form:
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The generalized errors can be calculated from the
physical errors link by link and they depend on the system
geometry, the system weight if they contain elastic errors, and
the system joint variables.

The end-effector position and orientation error ∆∆X is
defined as the 6x1 vector that represents the difference
between the real position and orientation of the end-effector
and the ideal or desired one:

∆∆X X X= −T
r

T
i   (3)

where, XT
r  and XT

i  are the 6x1 vectors composed of the three

positions and three orientations of the end-effector reference
frame (F

n
) in the inertial reference system (F

0
) for the real and

ideal case, respectively.
When the generalized errors are considered in the model,

the manipulator loop closure equation takes the form:

A
T
(q,εε,s) = A

1
E

1
A

2
E

2
......A

n
E

n   (4)

where A
T
 is a 4x4 homogeneous matrix of the type shown in

Equation (1) that describes the position and orientation of the
end-effector frame F

6
 with respect to the inertial reference

frame F
0
 as a function of the configuration parameters q, the

vector of the generalized errors εε, and the vector of the
structural parameters s.  The three components of the vector
TT and the three angles of the rotation matrix RT are the six
coordinates of vector XT

r  that can be written in a general form:

XT
r = f r(q, εε, s)      (5)

where f r is a vector non-linear function of q, εε, and s.
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Since the generalized errors are small, ∆∆X can be
calculated by the following linear equation in εε:

∆∆X = J
e
 εε (6)

where J
e
 is the 6x6n Jacobian matrix of the function f r with

respect to the elements of the generalized error vector εε.  The
elements of J

e
 are defined as:

J
f r

e i j
i
j

[ , ]
[ ]
[ ]

=
∂
∂εε  

  (7)

The value of i ranges from 1 to 6 and j ranges from 1 to 6n.  In
general J

e
 depends on the system configuration, geometry and

weight if there are elastic deflections in the system.  More
information on the development of the error model can be
found in Mavroidis et al. (1997).

If the generalized errors, ε, are known then the end-
effector position and orientation error can be calculated using
Equation (6).  Figure 2 shows how an error model of the type
of Equation (6) can be used in an error compensation
algorithm.  The method to obtain εε is explained in Section 3.
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Figure 2: Error Compensation Scheme

IDENTIFICATION OF THE GENERALIZED ERRORS

The first step in the method is to calculate the generalized
errors, εε, from off-line measurement data.  The identification
method to calculate εε is based on the assumption that some
components of vector ∆∆X can be obtained experimentally at a
finite number of different manipulator configurations.
However, since position coordinates are much easier to
measure in practice than orientations, in many cases only the
three position coordinates of ∆∆X are measured, requiring then
twice the number of measurements for the calculation.

Assuming that all 6 components of ∆∆X can be measured,
for an nth degree of freedom manipulator, its 6n generalized
errors εε can be calculated by fully measuring vector ∆∆X at n
different configurations and then writing Equation (6) n times:
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εε εε         (8)
where ∆∆XT is the 6n x 1 vector formed by all measured vectors
∆∆X at the n different configurations and JT is the 6n x 6n total
Jacobian matrix formed by the n error Jacobian matrices at the
n configurations.

If matrix JT is non-singular and the generalized errors εε do
not depend on the configuration, then εε is obtained simply by
inverting JT :

εε ∆∆= ⋅−J XT T
1 (9)

If JT is singular then clearly Equation (9) cannot be
applied.  This can occur if some of the generalized errors, εεi,
result in end-effector errors in same direction.  By measuring
this end-effector error it is not possible to distinguish the
amount of the error contributed by each generalized error εi.
This condition usually occurs because of the existence of
special geometric conditions between the manipulator joint
axes such as parallel or orthogonal axes, or the existence of
prismatic joints (Hayati et al., 1988).  Partial measurement of
vector ∆∆X, such as measuring only the position but not the
orientation of the end-effector, can also lead to a singular JT.
In this case only linear combinations of generalized errors εi

can be calculated.  Mathematically, the singularity of JT is
expressed with a linear dependency of the columns of JT.
Equation (9) also cannot be successfully applied when some of
the generalized errors depend on the manipulator
configuration, namely εε(q).  For example, the generalized
errors created by deflections depend on the configuration.  The
procedure to find εε for a singular JT or for ε = εε = ε(q) is
described below.

Reduction of JT to a Non-Singular Matrix

If the columns of JT are reduced to a linear independent set by
grouping the generalized errors that correspond to linear
dependent columns then JT can be made non-singular.

If λ is an eigenvalue of JT and c the corresponding
eigenvector then:

J c cT ⋅ = ⋅λ (10)

If JT is singular, several of its eigenvalues are zero.  Let ci =

[ ]c i i
r
i t

1 2  c  .......  c  be the ith eigenvector that corresponds to a

null eigenvalue where r is equal to 6n which is the maximum
dimension of JT and the superscript "t" denotes the transpose
of a vector.  Then Equation (10) is written as:

0......
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1
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=+++

=⋅=⋅
i
r

r
T

i
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i
T

ir
TTT

i

ccc JJJ

cJJJcJ T     (11)

From Equation (11) it can be seen that the coordinates of the
eigenvector ci are the coefficients of linear dependent columns
of JT.  Assuming that in total, JT has r eigenvectors
corresponding to a null eigenvalue, these eigenvectors can
form a matrix C:
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C c c c= [ ; ; ...; ]1 2 r        (12)

Matrix C represents a basis of a linear space composed of
vectors that when multiplied with JT  result in zero.  After
performing linear combinations of rows of matrix C, it is
obtained in a reduced row echelon form (Leon, 1994).  In this
form matrix C is composed of many zero elements, and hence
it is very easy to distinguish the linear dependent columns of
JT .  By inspection of the elements of each column of matrix
C, the sets of linear dependent columns of JT are identified.
From each set, one column is kept in JT, the others are deleted
and the generalized errors that correspond to these linear
dependent columns form linear combinations using the
coefficients of the column of matrix C.  An example is given
next, to illustrate this procedure.

Assume that one column of matrix C, after its reduction
to row echelon form, has all its elements equal to zero except
the elements of the ith and jth rows, that are equal to 1 and -1
respectively.  From Equation (11) it can be deduced that ith
and jth columns of JT are equal:

[ ][ ... ]J J J J J JT
1

T T T
1

T T...  ... 0 ...  1 ...-1 ...0  i j t i j⋅ = ⇒ =0    (13)

For example, using Equation (8) it can be seen that the
generalized errors εi and εj corresponding to ith and jth columns
of JT can be grouped into one new error εij which is their sum,
and one of the columns either ith or jth of JT  can be eliminated:

r
r
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i

r
r
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j
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εεεε

εεεεε
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TTT
1
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JJJ

JJJJJX

+++++

=++++++=⋅=∆

...)(...

.........

1
1

1   (14)

The same procedure can be applied to every column of
matrix C and thus JT can be reduced to a non-singular matrix
JTr and vector εε is reduced to vector εεr  composed of linear
combinations of the elements of εε.  Hence, Equation (8) is
written as:

∆∆ εεX JT Tr r= ⋅               (15)

The linear dependencies of columns of JT are the same
between the columns of matrix Je  used in Equation (6).
Therefore Equation (6) can be written as:

∆∆ εεX J= ⋅er r
            (16)

where Jer is the reduced error Jacobian matrix of the
manipulator, after linear dependent columns have been
eliminated.  Equation (16) is the new error model of the
system and can be used in the error compensation scheme
described in Figure 2.

Polynomial Approximation of the Generalized Errors

In general, the elements of vector εεr are not constant but
depend on the system configuration, payload weight or other
non-geometric parameters such as temperature.  An example
are the generalized errors due to deflections: they depend on
both the system configuration and payload weight, namely
εεr(q,w).  So, vector εεr cannot be calculated by inverting
Equation (15) because εεr is not the same at all different
configurations where ∆∆X is measured.  In this case, the ith

element of vector εεr must be defined as a function of q and w.
For simplicity of calculation, these functions are approximated
by polynomial series expansions of the form:

ε εr i r i
j

j

a a
n

a
m

bq q q wn
, ,

( ) ( ... )= ⋅ ⋅ ⋅ ⋅ ⋅∑ 1 2
1 2       (17)

where q1, q2, ..., qn are the manipulator joint parameters, wm is
an element of the wrench vector from the end-effector, and εr,i

(j)

are the polynomial coefficients.
Theoretically, there is an infinite number of terms in

Equation (17).  However, for a desired accuracy of the
method, only a few terms are used and their coefficients need
to be calculated.  From the definition of the generalized errors,
the errors associated with the ith link depend only on the
parameters of the ith joint.  If elastic deflections of link i are
considered, then the generalized errors created by these
deflections would depend on the weight wrench wi applied at
the ith link.  For a serial manipulator, this wrench is due to the
weight of the payload and to the configuration of the links
after the ith.  Hence, the wrench wi depends only on the joint
parameters qi+1,...,qn.  Thus, the number of terms in the
products of Equation (17) can be reduced.

In Equation (17) the coefficients εr,i

(j) are constant
parameters and become the new unknowns of the problem.
Equation (17) is substituted into (15), all coefficients εr,i

(j) are
grouped into one vector, εεE, and the part of Equation (17) that
is known is incorporated into matrix JT and forms a new matrix
JTE.  Then Equation (15) becomes:

∆∆ εεX JT TE E= ⋅      (18)

Vector εεE is calculated by inverting Equation (18).  The
minimum number of configurations where ∆∆X is measured
depends on the number of terms used in Equation (17) to
approximate εεr.  To increase the accuracy of inversion of
matrix JTE more measurements then needed are made and a
least mean square procedure is used to invert Equation (18):

$ )εε ∆∆E TE
t

TE TE
t

T= ⋅ ⋅ ⋅−(J J J X1            (19)

The method of identifying the generalized errors is
summarized in Figure 3.

APPLICATION TO THE PATIENT POSITIONING
SYSTEM

The PPS is a six degree of freedom robot manipulator (see
Figure 4) built by General Atomics (General Atomics, 1995;
Flanz et al., 1996).  The first three joints are prismatic, with
maximum travel of 225cm, 56cm and 147cm for the lateral
(X), vertical (Y) and longitudinal (Z) axes, respectively.   The
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Figure 3: Flow-chart of the Method to Identify
Generalized Errors

last three joints are revolute joints.  The first joint rotates
parallel to the vertical (Y) axis and can rotate ±90°.  The last
two joints are used for small corrections around an axis of
rotation parallel to the Z (roll) and X (pitch) axes, and have a
maximum rotation angle of ±3°.  The manipulator "end-
effector" is a couch which supports the patient in a supine
position, accommodating patients up to 188 cm in height and
300 lbs in weight in normal operation.

The intersection point of the proton beam with the gantry
axis of rotation is called the system isocenter.  The couch
treatment volume is defined by a treatment area on the couch
of 50cm x 50cm  and a height of 40cm (see Figure 4).  This
area covers all possible locations of treatment points (i.e.
tumor locations at a patient).  The objective is that the PPS
makes any point in this volume be coincident with the
isocenter at any orientation.

Figure 4: The Patient Positioning System

The joint parameters of the PPS are the displacements d1, d2, d3

of the three prismatic joints and the rotations θ, α, β of the
three rotational joints.  A 6 axes force/torque sensor is placed
between the couch and the last joint.  By measuring the forces
and moment at this point, it is possible to calculate the patient
weight and the coordinates of the patient center of gravity.
The system motions are very slow and smooth due to safety
requirements.  Hence, the system is quasi-static, and its
dynamics do not influence the system accuracy and are
neglected.

The accuracy of the PPS was measured using a Leica 3D
Laser Tracking System (Leica, 1997).  More specifically the
measurements were to evaluate the PPS repeatability, the
nonlinearity of its weight dependent deflections, the inherent
uncompensated PPS accuracy, and the method developed
above.

Three targets were placed on the couch at the positions P1,
P2 and P3, shown in Figure 5.  The targets are located about
10mm above the couch.  The position accuracy of the
measurements is approximately 0.04mm.

Treatment
Area

Couch

P1

P3

P2

Y

Z

X

NTP

Arm

OT

Frame FT

Figure 5: Close View of the Couch

A reference frame FT is fixed to the couch (see Figure 5).
The intersection point of the plane (P1 P2 P3) with the Y axis of
the fixed reference frame is called OT.  A fixed reference
frame, Fo, is used to express the coordinates of all points.
When the PPS is at its home configuration (all joint variables
set equal to zero) the reference frames FT and Fo are
coincident.

The location of a tumor on a patient, defined as the
Nominal Treatment Point (NTP), is specified in the frame
coordinate FT.  For the results presented below, the NTP
coordinates in FT are taken as (0, 90, -840) mm.

For more than 700 cases (at different configurations of the
PPS and using different weights) the location of points P1, P2

and P3 in frame Fo was measured and the NTP coordinates in
frame Fo calculated.  From the system kinematic model with
no errors, the ideal coordinates of NTP were calculated and
subtracted from the experimentally measured values to yield
the vector ∆∆X(q,w).

In this work, 450 measurements were used to evaluate the
basic accuracy of the PPS, and later used to evaluate the
accuracy of the compensation method described above.  For
this preliminary equation two different payloads were
considered: one with no weight and another with a 154 lbs
weight at the center of the treatment area.  The PPS
configurations used were grouped into two sets:
Set a) Treatment Volume.  The 8 vertices of the treatment
volume (see Figure 4) are reached with the NTP with angle θ
6 Copyright © 1998 by ASME



taking values from -90° to 90° with a step of 30°, for a total of
112 configurations.
Set b) Independent Motion of Each Axis.  Each axis is moved
independently while all other axes are held at the home (zero)
values.  The step of motion for d1 is 50 mm, for d2 20 mm, for
d3 25mm and for θ 5°, resulting in 338 configurations.

The PPS uncompensated accuracy combining the two sets
is shown in Figure 6.  The dots represent the positioning errors
of NTP.  It is clearly seen that inspite of the high quality of the
PPS physical system, its uncompensated accuracy is on the
order of 10mm.  This is approximately 20 times higher than
the specification.
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Figure 6: Measured and Residual Errors After
Compensation

The repeatability error is due to the random system errors,
and it cannot be compensated by a model based technique.  It
represents the accuracy limit of any error compensation
algorithm and it also shows how well an error compensation
technique performs.  Here the repeatability was based on how
well the system would return the NTP to certain arbitrary
configurations.  A total of 270 measurements were taken with
zero payload weight.  Figure 7 shows the distributions of the
repeatability error for each axis.  The repeatability error can
be seen to be less than 0.15mm (3σ).  Thus this system with a
specification of 0.50mm is a good candidate for a model based
error correction method.

In implementing the method a general nonlinear function
of the wrench w can be used.  To help establishing this
function, the behavior of the PPS positioning errors for
different payload weights was examined with measurements
made at the home (zero) configuration.  The weights ranged
from 0 to 300 lbs in steps of approximately 25 lbs.  The results
showed that the positioning errors of the PPS are nearly linear
with the payload weight.  The least square error is less than
0.1mm for the linear fit.
Figure 7: Repeatability Distribution

The generalized errors are calculated with Equation (19)
using the configurations of set (b) (independent motion of its
axes) and half of the treatment volume data (set a).  For a
Pentium PC 166MHz, the computing time was less than two
minutes.  The PPS is then commanded to go to compensated
points (see Figure 2) for the remaining configurations of set
(a).  The residual positioning errors of the PPS after
compensation for these points are shown in Figure 6.  The
residual errors are enclosed in a sphere of 0.38mm radius
which is smaller than the sphere of 0.5mm radius that
represents the accuracy specification.  The required number of
data points for this calculation was less than 400.  The error
distribution along each axis is shown in Figure 8.  Hence the
compensation approach used in this paper enables the system
to meet its specification.
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Figure 8: Statistical Results at NTP
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CONCLUSIONS

In this paper, a method is presented to identify the
positioning end-effector errors of large manipulators.  The
method can identify the sources of the end-effector errors,
both geometric and elastic errors.  Previous calibration
techniques didn’t explicitly consider the wrench at the end-
effector to compensate for elastic errors.  This method
considers the weight dependency without the need to develop
an elastic model of the system.  It is evaluated experimentally
on a high accuracy large medical manipulator.  The results
showed that the basic accuracy of the manipulator exceeded its
specifications, but after applying the method to compensate
for end-effector errors the accuracy specifications are met.
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