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Abstract

Important robotic tasks could be most effectively done
by powerful and accurate manipulators. However, high
accuracy is generally unattainable in manipulators
capable of producing high task forces due to such factors
as high joint, actuator, and transmission friction and link
elastic and geometric distortions. A method called Base
Sensor Control (BSC) has been developed to compensate
for nonlinear joint characteristics, such as high joint
friction, to improve system repeatability. A method to
identify and compensate for system geometric and elastic
distortion positioning errors in large manipulators has
also been recently proposed to improve absolute
accuracy in systems with good repeatability using a wrist
forcehorque sensor. This technique is called Geometric
and Elastic Error Compensation (GEC). Here, it is
shown experimentally that the two techniques can be
effective y combined to enable strong manipulators to
achieve high absolute positioning accuracy while
performing tasks requiring high forces.

1 Introduction

Large robotic manipulators are needed in nuclear
maintenance, field, undersea and medical applications to

perform high accuracy tasks requiring the manipulation
of heavy payloads. Hydraulic robot’s high load carrying
capacity is attractive for such applications, but high joint

friction and actuator nonlinearities make them difficult to
control. The nozzle dam positioning task for

maintenance of a nuclear power plant steam generator is

an example of a task that requires a strong manipulator
with very fine absolute positioning accuracy [14].

Absolute accuracy, rather than simple repeatability, is
required for autonomous operation or for teleoperation
with advanced virtual aides, such as virtual viewing.

A number of approaches exist for improving fine motion
manipulator performance through friction compensation.

Some of these require modeling of the difficult to
characterize joint frictional behavior [1, 10]. Some
require the use of specially designed manipulators that

contain complex internal joint-torque sensors [11 ].
A simple, yet effective control method has been
developed that is modeless and does not require internal
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joint sensors [5, 9]. The method, called Base Sensor
Control (BSC), estimates manipulator joint torques ffom
a self-contained external six-axis forcehorque sensor
placed under the manipulator’s base. The joint torque

estimates allow for accurate joint torque control that has
been shown to greatly improve repeatability of both
hydraulic and electric manipulators.

Even with improved repeatability, high absolute
positioning accuracy is still difficult to achieve with a
strong manipulator. Two principal error sources create

this problem. The first is kinematic errors due to the
non-ideal geometry of the links and joints of
manipulators. These errors are often called geometric
errors. Task constraints often make it impossible to use
direct end-point sensing to compensate for these errors.
Therefore, there is a need for model-based error
identification. Research has been done in this area,

commonly referred to as robot calibration [4, 12].
The second error source that often limits the absolute
accuracy of a large manipulator is the elastic errors due

to the distortion of a manipulator’s mechanical
components under large task loads. Methods have been
developed to deal with this problem [13]. These

methods depend upon detailed and difficult to obtain
analytical models of the manipulator.
Recent work has resulted in methods that can correct for
errors in the end-effecter position and orientation caused
by geometric and elastic errors in large manipulators [2,
7]. The similar methods, called Geometric and Elastic
Error Compensation (GEC), yield measurement based

error compensation algorithms that predict the

manipulator’s end-point position and orientation as a

function of the configuration of the system and the task
forces. Given the task loads from a conventional wrist

force/torque senssx and the joint angles of the
manipulator, the algorithm compensates for the

combined elastic and geometric errors. They do not
require detailed modeling of the manipulator’s structural
properties. Instead they use a relatively small set of

offline end-point experimental measurements to build a
“generalized error” representation of the system [6].

These methods can substantially reduce the absolute
errors in manipulators with good inherent repeatability.
substantially improves the absolute accuracy in strong
powerful manipulators lacking good repeatability and



having significant geometric and elastic errors. The
method uses base force/torque sensor information to
apply BSC in concert with GEC, which uses wrist sensor
information to achieve greatly improved absolute

accuracy in a strong manipulator exerting high task

loads. Its effectiveness is shown experimentally on a
large powerful hydraulic industrial manipulator. While

strong, robust and reliable, this manipulator does not
inherently have fine repeatability and absolute accuracy.
The algorithm does not require joint velocity or

acceleration measurements, a model of the actuators or
friction, or the knowledge of manipulator mass
parameters or link stiffnesses, yet it is able to

substantially improve its absolute positioning accuracy.

2 Analytical Background

2.1 Base SensorControl (BSC)

Here the basis for BSC is briefly reviewed. The
complete development is presented in [9]. A simplified
version of the algorithm sufficient and effective for fine-
motion control is formulated in [5],
As shown in Figure 1, the wrench, Wb, exerted by the
manipulator on its base sensor can be expressed as the
sum of three components:

wb=w~+w~+w, (1)

where W~ is the robot gravity component, Wd is caused

by manipulator motion, and W. is the wrench exerted by
the payload on the end-effecter. Note that joint friction
does not appear in the measured base sensor wrench. In

the fine-motion case, it is assumed that the gravity
wrench is essentially constant, and this wrench can be
approximated by the initial value measured by the base
sensor. Hence, the complexity of computing the

gravitational wrench, such as identification of link
weights and a static manipulator model, is eliminated.

Under this assumption, the Newton Euler equations of

the first i links are:

I

w~+1=–Wb
W1+2 = WE I – ‘dl

{ ‘i+i+l = ‘i–l+i – Wd,
(2)

I

where Wi+i+l is the wrench exerted by link i on link
i+l, and Wdl is the dynamic wrench for link i.
For fine tasks it is assumed that the manipulator moves
very slowly so that Wd can be neglected. Therefore, for
slow, fine motions, only the measured wrench at the base
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Figure 1- External and Dynamic Wrenches

is used to estimate the torque in joint i+ 1. The estimated
torque in joint i+ 1 is obtained by projecting the moment
vector at the origin Oi of the i* reference frame along the

joint axis Zi:

Ti+l = –Zi T.wbOi (3)

The value of ~i+l depends only on the robot’s kinematic

parameters, joint angles and base sensor measurements.
With estimates of the joint torque, it is possible to

perform high performance torque control that can greatly
reduce the effects of joint friction and nonlinearities.
This results in greatly improved repeatability. This
method will not compensate for sources of random
repeatability errors, such as limited encoder resolution.
In addition, a manipulator with good repeatability may
not have fine absolute position accuracy.

2.2 Geometric and Elastic Error
Compensation (GEC)

The main sources of absolute accuracy errors in a

manipulator with good repeatability are mechanical
system errors (resulting from machining and assembly
tolerances), elastic deformations of the manipulator
links, and joint errors (bearing run-out). These can be
grouped into geometric and elastic errors. Although

these physical errors are relatively small, their influence
on the end-effecter position of a large manipulator can
be significant. A brief review of the error compensation
method used here is presented below.
The end-effecter position and orientation error, AX, is

defined as the 6x1 vector that represents the difference
between the real position and orientation of the end-

effector and the ideal or desired one:

AX= Xr– Xi (4)

where Xr and Xi are 6x 1 vectors composed of the three

positions and three orientations of the end-effecter
reference frame in the inertial reference system for the
real and ideal cases respectively.
The error compensation method assumes that physical
errors slightly displace manipulator joint frames from
0
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their expected, ideal locations [7]. The real, or actual,
position and orientation of each frame with respect to its
ideal location is represented by three consecutive
rotations and three translational coordinates. These 6

parameters are called here “generalized error”
parameters. For an n’h degree of freedom manipulator,
there are 6n generalized errors represented by a vector e.
When the generalized errors are included in the model,

IkXor

Figure 3- Simulated Robotic Nozzle Dam Task

the six coordinates of the real end-effecter position
vector Xr can be written in a general form:

xr=fr(q, E,S) (5)

where f is a vector non-linear function of the

configuration parameters q, the generalized errors E, and
the structural parameters s. In general, the generalized

errors depend on the manipulator configuration q and the

end-effecter wrench W., or e(q, W.). To predict the
behavior of the manipulator in a given configuration, the

task wrench is necessary to calculate the generalized
errors from previous offline measurements. For
simplicity, the iti element of vector Ekap’~oximated by

a polynomial series expansion of the form:
.i
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where ql, qz, .... q. are the manipulator joint parameters,
w. is an element of the task wrench, and qti) are the

polynomial coefficients. It has been found that good

accuracy can be obtained using only a few terms in the
above expansion. The coefficients of these Go) terms are
constants and become the unknowns of the problem.
Since the generalized errors are small, AX can be
calculated by the following linear equation inE:

AX(q,We)= Je” E (7)

where J. is the 6x6n Jacobian matrix of the iimction f r
with respect to the elements of the generalized error
vector E. The matrix Je depends on the system
configuration, geometry, and task wrench.

Once the generalized errors, E, are identified, the end-
effector position and orientation error can be calculated
using Equation (7). Assuming all six components of AX
can be measured, for an n’h degree of freedom
manipulator, its 6n generalized errors &can be calculated
by fully measuring vector AX at n different

configurations. To increase the accuracy of the

calculated generalized errors, additional measurements

are made and a least mean square procedure is used. All
repeatable errors are identified regardless of their source.
Figure 2 sumnwizes how an error model of the type of
Equation (7) can be used in an error compensation

algorithm, and how the corrected joint angles can be
commanded in a Base Sensor Control scheme.

3 The Task and Experimental System

3.1 The Task

The precision control algorithms presented in this paper
are being developed for a task in the nuclear power
industry. In order for workers to inspect and repair a
nuclear power plant’s steam generator, two very large
pipes (1 meter in diameter) must be sealed with a device
called a nozzle dam. The center section of the nozzle



dam weighs approximately 60 kg and it must be inserted
into a ring with clearances of a few millimeters. In this
operation, workers receive high doses of radiation.
Hence, performing this task with a robotic manipulator

would be very desirable. A simulated robotic nozzle

dam placement can be see in Figure 3, where the
manipulator is moving the nozzle dam side plate into its
position in the nozzle ring. The center plate will then be
inserted within the side plate.

Attempts to place the dam with a manipulator have taken
too long because of the combination of poor operator
visibility and lack of manipulator accuracy. It costs tens

of thousands of dollars per hour to keep a nuclear power
plant offline. Improving manipulator accuracy is a key
to shortening this time. The typical repeatability of

manipulators capable of handling the required load is in
the range of 10 to 20 mm. The absolute accuracy can be

several times these amounts. The automation of this task
would require absolute accuracy of a few mm. In this

work, the combined BSC/GEC method was

experimentally evaluated for this application.

3.2 Experimental System

Figure 4 shows the experimental test-bed constructed for

this study. The manipulator chosen for this system is a
Schilling Titan II, a six DOF hydraulic robot capable of
handling payloads in excess of 100 kg. Its position
accuracy is approximately 40 mm (RMS), many times
the specification of a few mm. A good part of its lack of
accuracy is due to its underlying lack of repeatability.
This can be traced to high seal friction in its joints. It

has been found that this friction is very difficult to
characterize [3, 8]. Hence, model based friction methods
are difficult to apply successful] y. This system is a good

candidate for BSC to improve its repeatability. For this
experimental system, the achievable repeatability is
limited by the particular control electronics used for the

experimental system. The joint resolver signals,

standard on the Schilling, are converted to quadrature

encoder waveforms using a special purpose Delta Tau
Data/PMAC controller design. The joint angle

resolution of this configuration is limited to M.087

degree, which leads to as much as *5 mm errors in the
end-effecter positioning.
A 6-axis force/torque base sensor is mounted under the

manipulator to provide wrench measurements for the
BSC algorithm. A 15 kg replica of the nozzle dam

center-plate was built along with an adjustable plate
receptacle that permits the clearances to be varied from
interference to several cm. An algorithm to successfully
place the rectangulm center plate within the receptacle
would be easily expendable to perform the other high

precision tasks necessary to complete the entire nozzle
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dam installation, either through teleoperation or as an
autonomous subtask.
A pair of Pentax optical theodolites were used to
accurate] y locate the end-effecter in 3D space to

generate the correction matrix, evaluate weight

dependent deflections, and veri~ the algorithm

performance. The resolution of the theodolites was 30
arc seconds, leading to measurement errors of 0.29 mm.
A fixed reference three, FO, is used to express the

coordinates of all points. The origin of this reference lies
at the intersection of the top of the base sensor and the

joint 1 axis. Its z-axis is vertical and its x-axis is defined
by a specific horizontal reference direction.
A PC based graphical user interface provides the
operator with workspace visualization as well as

manipulator control functionality. For all experiments,
the sampling rate was ten milliseconds, which was
sufficient] y fast for the experiments.

4 Results

The objective of the experiment was to see if the method
outlined in Figure 2 could be applied to the experimental
system to improve its repeatability and its absolute
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F@ure 4- Simulated and Real Experimental System



errors perpendicular to the plane of the points, and these
accuracy. The object was to have the residual error
approach the limit set by the position sensing resolution

of the system. In this work, 400 measurements were

used to evaluate the basic accuracy of the Schilling.
Different payloads were used, with weights up to 45 kg.

Most of the measurements focused on two specific

payloads: one with no weight and another with a 18 kg
weight (the replica nozzle dam plate).

End-effecter measurements of the manipulator under PI
control determined the baseline uncompensated system
repeatability and accuracy. The relative positioning root

mean square error was used as a measure of the system
repeatability. Recall that the 12-bit discretization of the

resolver signal leads to random errors up to 5.0 mm, and
imposes a lower limit of 2.0 mm (RMS) on the system
repeatability, which sets the accuracy limit of any error

compensation algorithm.
The results show that the BSC algorithm was able to
reduce the repeatability errors by a factor of 4.73 over PI
control. Data was taken by moving the manipulator an
arbitrary distance from the test point and then
commanding it back to its original position. Figure 5
shows the distributions of the repeatability error with and
without BSC. The maximum errors without BSC were
21.0 mm, and the repeatability was 14.3 mm (RMS).

BSC reduced the maximum errors to 5.5 mm with a
repeatability of only 3.0 mm (RMS).

Although the BSC algorithm greatly reduced the
repeatability errors, there are still 35 mm (RMS) errors
in absolute accuracy. Since BSC reduced the system

repeatability y to 3.0 mm, a model based error correction
method can be applied to reduce the accuracy errors.
In order to implement GEC, the geometric and elastic
deformation correction matrix was calculated using
approximately 350 measurements of the end-effecter in

different configurations and with different payloads.
The remaining points were used to verify the efficiency
of the GEC method.
From the system kinematic model with no errors, the
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Figure 6- Meaeured and Residual Errors After
Compensation

ideal coordinates of the end-effecter were calculated and
subtracted tlom the experimentally measured values to
yield the vector AX(q,W,) in Equation (7). By treating
generalized errors as constant in their respective frames,
the system absolute accuracy was improved to 13.4 mm
(RMS). Since the GEC method allows for the use of

polynomials to describe each generalized error, second
order polynomials achieved an absolute accuracy of 7.3
mm (RMS), an additional 100% improvement.
Figure 6 shows the convergence of original positioning
errors as large as 55.1 mm (34.3 mm RMS) to corrected
errors of less than 10.7 mm (7.3 mm RMS) with respect
to the base frame FO. This demonstrates an overall factor
of nearly 4.7 improvement in absolute accuracy by using
the GEC algorithm.
An experiment was conducted to demonstrate the

application of the joint BSC and GEC algorithm. The
Schilling was commanded to a series of 11 points in the
same plane under pure BSC control and then with the

addition of two forms of the GEC method. The
uncorrected data showed absolute accuracy errors of
29.5 mm (RMS), which are of the same order as the

34.3 mm (RMS) error found from the theodolite
measurements. The implementation of GEC with

constant generalized errors in their frames resulted in
errors being reduced to 11.4 mm (RMS). By expanding

the GEC algorithm to include second order polynomials,
absolute positioning errors were reduced even further to
a RMS value of 8.2 mm.
Figure 7 shows the dramatic improvement in absolute

position tracking by using a polynomial GEC algorithm
over the uncorrected method. Each ideal point is

enclosed by a 5 mm radius circle, since the absolute
position accuracy is limited by the resolution of the
position sensors. The GEC algorithm also corrected for
3



values were measured and included in the error
calculations. It can be seen that residual errors are

approaching the levels of the resolver electronics. With

this improvement in performance, it should make
feasible such tasks as the nozzle dam insertion.

DesiredAbsolute
Position \

/Bsc and OEc

I -ilb. I
Figure 7- Uncorrected and Corrected Accuracy

5 Conclusions

In this paper, the simplified, model-free form of Base

Sensor Control (BSC) is applied to a hydraulic
manipulator. The BSC uses a base force/torque sensor to
accurately control joint torques, thereby compensating
for joint friction. This in turn, substantially improves the
manipulator’s poor position repeatability y. The BSC

controller is then combined with a method, called GEC,
that compensates for geometric and elastic errors that
degrade the absolute positioning accuracy in large
manipulators with inherently good repeatability. The
results showed that applying the combined error
compensation algorithm improved the absolute accuracy

of the manipulator by a factor of 4.7 over pure BSC.
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