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Abstract 

Model based error compensation of a robotic manipulator, 
also known as robot calibration, requires the identification 
of its generalized errors. These errors are found fi'om 
measured data and used to predict, and compensate for, the 
end-point errors as a function of configuration. However, 
the generalized error formulation introduces redundant 
parameters, often non-intuitive, that may compromise the 
robustness of the calibration. The existing numerical 
methods to eliminate such errors are formulated on a case- 
by-case basis. In this paper, the general analytical 
expressions and physical interpretation of the redundant 
parameters are developed for any serial link manipulator, 
expressed through its Denavit-Hartenberg parameters. 
These expressions are used to eliminate the redundant 
parameters from the error model of any manipulator prior 
to the identification process, allowing for systematic robot 
calibration with improved accuracy. Simulations are 
conducted to verify the theory presented in the paper. 

1 Introduction 

Robot calibration is a process to enhance robot position 
accuracy using compensation software. It involves 
identifying a more accurate functional relationship 
between the joint transducer readings and the workspace 
position of the end-effector [9]. The process requires the 
identification of the manipulator generalized errors from 
calibration measurements. Generalized errors characterize 
the relative position and orientation of frames defined at 
the manipulator links. These errors are found from 
measured data and used to predict, and compensate for, the 
end-point errors as a function of configuration. 

Since some generalized errors result in end-effector errors 
in same direction, it is not possible to distinguish the 
amount of the error contributed by each generalized error. 
As a result, only linear combinations of the generalized 
errors can be identified, independently of the identification 
method used. All linear combinations must be eliminated 
from the error model prior to the identification process, 
otherwise the robustness of the calibration may be 
compromised [4, 6]. 

To eliminate redundant error parameters, a number of 
coordinate system representations have been considered. 

The four-parameter representations (such as the Denavit- 
Hartenberg representation) are attractive since they are the 
minimal parameter set required to locate the reference 
frames of the joints [9]. Such representation reduces the 
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number of error combinations to be found, however the 
redundant parameters are not necessarily eliminated. In 
addition, the Denavit-Hartenberg (D.H.) error 
representation does not model some of the generalized 
errors in the presence of parallel joints (see section 3.5). 
The entire calibration can be compromised if such errors 
are significant. Also, the D.H. representation is ill- 
conditioned when neighboring joint axes are nearly 
parallel. Incorporating Hayati's proposed modification to 
the D.H. parameterization [2] eliminates the ill- 
conditioning problem, however it has a singularity when 
axes are nearly perpendicular [3]. Some authors have 
proposed a five-parameter representation [5], however this 
parameterization has a sensitivity problem when 
neighboring coordinate origins are close together [12]. 

Many papers have abandoned the D.H. representation of 
the errors, treating the general case of two coordinate 
systems related by six parameters [3]. The six-parameter 
representation of the errors, called generalized error 
model, does not present the sensitivity problems of the 
D.H. representation. However, it has the disadvantage of 
increased redundancy [3]. Numerical methods have been 
proposed to eliminate redundant errors [1, 10, 11], 
however up to now they must be formulated in a case-by- 
case basis [4]. An analytical algorithm has been proposed 
to eliminate the redundant errors in the D.H. error 
representation [7], however it cannot be applied to the 
generalized error formulation. 

In this paper the analytical expressions and physical 
interpretation of the linear combinations of the generalized 
errors are developed for any serial link manipulator. The 
six-parameter representation is used to define the errors, 
and the linear combination coefficients are expressed 
through the robot's D.H. parameters. The error 
combinations using the D.H. four-parameter error 
representation are also derived from the general 
expressions. A non-singular form of the Identification 
Jacobian matrix is then obtained using these expressions, 
allowing for systematic calibration with improved 
accuracy of any serial link manipulator. 

2 Analytical Background 

2.1 Model Based Error Compensation 
Physical errors, such as machining tolerances, assembly 
errors and elastic deformation, cause the geometric 
properties of a manipulator to be different from their ideal 
values. As a result, the frames defined at the manipulator 

 



joints are slightly displaced from their expected, ideal 
locations, creating significant end-effector errors. As seen 
in Figure 1, the position and orientation of a frame F real i 
with respect to its ideal location F ideal is represented by a 

• i 

4x4 homogeneous matrix E i. The translational part of 

matrix E i is composed of 3 coordinates eta, ~2 and ea 3 
(along the X, Y and Z axes respectively, defined using the 
Denavit-Hartenberg representation). The rotation part of 
matrix E i is the result of the product of three consecutive 

rotations ~i4, ~s and Ei6 around the Y, Z and X axes 
respectively (see Figure 2). These are the Euler angles of 

F ideal Frea'i with respect to i , representing spin (yaw), roll, 

and pitch, respectively. The 6 parameters ~ r  ca2, ~3' ~4, 

~5 and ei 6 are called generalized error parameters, which 
can be a function of the system geometry and joint 
variables. For an n th degree of freedom manipulator, there 
are 6(n+l) generalized errors which can be written in 

vector form as e = [ .... e~ l, Ei2 , El3 , El4, Li5 , E, i6 . . . .  ], with i 
ranging from 0 to n. Here it is assumed that both the 
manipulator and the location of its base are being 
calibrated. If only the manipulator is being calibrated, 
then the error matrix FE0 (which models the generalized 
errors of the robot base location) is not considered, 
reducing the number of generalized errors to 6n. 

Frame F ~deal 

/ ~ - ~  No errors ~ E  i 
\ z.ideal " ~  
~, ,1 z real 2~ 

Frame Fir.eal ~ ~ • 1 Frame Fi real 
~, -! O{ deal [ T_ y ideal With errors 

~ Zi-I x . i d e a l ~  
" ~ _ _ _ _ ~ '  - -x7ea lUi  '~" ~real 

Xi_lJ - -  Yi-I 

Figure  1 - F r a m e  Trans la t i on  and  Rota t ion  
D u e  to E r r o r s  for  i th L i n k  

zi reaJ  ' .~ Ei4J xr.real 

'"~, I , .  • ........ " ' ~  

x~iideal / ~ ; ~ X ,  r : .  

Figure  2 - Def in i t ion  of  the  Trans la t iona l  and  
Rotational Generalized Errors  for i th Link 

The end-effector position and orientation error AX is 

defined as the 6xl vector that represents the difference 
between the real position and orientation of the end- 
effector and the ideal or desired one: 
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~X -- X real - X ideal (I) 

where X real and X ifleal a r e  the 6xl vectors composed of the 
three positions and three orientations of the end-effector 
reference frame in the inertial reference system for the real 
and ideal cases, respectively. Since the generalized errors 
are small, AX can be calculated by the following linear 
equation in e: 

aX = J~ e (2) 

where J~ is the 6x6(n+l) Jacobian matrix of the end- 

effector error AX with respect to the elements of the 
generalized error vector e, also known as Identification 
Jacobian matrix. Also, a first order approximation can 
then be applied to the trigonometric functions and products 
of the generalized errors. After the first order 
approximation, matrix E i has the form: 

r ! 1 -Ei~ Ei, Ell 

E i -  Ei5 1 -el, El2 
•i, 1 e 

I t  0 0 (3) 

If the generalized errors, e, are known then the end- 
effector position and orientation error can be calculated 
using Equation (2). The method to obtain E is explained in 
the next section. 

2 . 2  I d e n t i f i c a t i o n  o f  t h e  G e n e r a l i z e d  E r r o r s  

The identification method to calculate e is based on the 
assumption that some components of vector AX can be 
measured at a finite number of different manipulator 
configurations. However, since position coordinates are 
much easier to measure in practice than orientations, in 
many cases only the three position coordinates of AX are 
measured. In this case, twice the number of 
measurements is required to obtain the same calibration 
accuracy. 

Assuming that all 6 components of AX can be measured, 
for an n degree of freedom manipulator, its 6(n+1) 
generalized errors E can be calculated by measuring AX at 
m different configurations, defined as ql, q2 ..... qm, and 
then writing Equation (2) m times: 

LJoik>J 
where AXt is the m x 1 vector formed by all measured 
vectors AX at the m different configurations and Jt is the 
6m x 6(n+l) Total Identification Jacobian matrix formed 
by the m Identification Jacobian matrices Je at the m 

configurations. To compensate for the effects of 
measurement noise, the number of measurements m is in 
general much larger than n. 

0 



If the generalized errors FE are constant, then a unique least- 
squares estimate [ can be calculated by: 

~..~ T -1 T • 
(JtJt) J, AXt (5) 

If the Identification Jacobian matrix J ,  contains linear 
dependent columns, then Equation (5) can give estimates 
with poor accuracy due to singularities. This occurs if 
there is redundancy in the error model, which is always 
true for the six-parameter representation. In this case, it is 
not possible to distinguish the amount of the error 
contributed by each generalized error ~j by measuring the 
end-effector position and orientation, and only linear 
combinations of ~ij can be obtained. If only the position 

coordinates of vector AX are measured, then additional 
linear combinations may be present. 

If the columns of Jr are reduced to a linear independent 
set, then the non-singular form of the Identification 
Jacobian matrix, called G~, is obtained. In this case, the 
generalized errors must be grouped into a smaller 
independent set, in accordance with the columns of the 
submatrix G~. If Jr is replaced by its submatrix G~ in 
Equation (4), then Equation (5) can be applied resulting in 
estimates with improved accuracy. The next section 
shows how to obtain the non-singular Identification 
Jacobian matrix G~. 

3 Eliminating the Redundant  Errors 

To perform robot calibration with improved accuracy, 
redundant errors must be eliminated from the error model 
prior to the identification process. Section 3.1 presents the 
linear combinations of the columns of the Identification 
Jacobian matrix and the method to obtain the non-singular 
Identification Jacobian matrix. Section 3.2 discusses the 
physical interpretation of each linear combination. Section 
3.3 presents the additional linear combinations introduced 
when only the end-effector position is measured. Section 
3.4 shows the number of independent error parameters for 
any serial link manipulator. Section 3.5 extends the results 
obtained using the six-parameter representation to the 
Denavit-Hartenberg error parameterization. It also shows 
that the D.H. representation of the errors does not model 
some of the generalized errors in the presence of parallel 
joints, which can affect the identification process. 

3.1 Linear Combinations of the Columns of the 
Identification Jacobian matrix 

In this section, the linear combinations of the columns of 
the Identification Jacobian matrix J~ are presented. 

Defining Jij as the column of Jr associated to the 

generalized error eij, then Equation (2) is rewritten as 

AX = [Jq ..... Jh' Jl2, Ji3, Ji4, Jis, Ji6 ..... Jn6]" 

[FEll . . . . .  FAi, Ei2, Ei3, FEi4, FEi5, Ei6 . . . . .  En6 IT (6) 

For each link i (l~_<n), the following linear combinations 
are always valid (see Appendix A for proof): 
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J0-1)3 ~ sin o~iJ is + cos aiJi~ (7) 

J(~-l)~ --- aicoso~Ji, - a i  sin~Ji~ +sinaiJi4 +cos(xiJi~ (8) 

where the manipulator parameters are defined using the 
D.H. representation: link lengths ai, joint offsets di, joint 
angles 0i, and skew angles oq. If joint i is prismatic, then 
additional combinations of the columns of Jr are found: 

J(i-l), ---Ji, (9) 

J0-~)2 -= cos aiJ~2 - sin ofiJi~ (10) 

The linear combinations shown above are always present, 
independently of the values of ai and ~,  even for 
degenerate cases (such as ai=0). As shown in Appendix A, 
if the full pose of the end-effector (both position and 
orientation) is measured, then Equations (7-10) are the 
only linear combinations for link i. 

To obtain the non-singular Identification Jacobian matrix 
Ge, columns J0.1) 3 and J(iq) 5 must be eliminated from the 

matrix Jr for all values of i (1_< i _<n). Columns J(i.l)l and 

J(i_l)2 must also be eliminated if and only if joint i is 
prismatic. For an n-d.o.f, manipulator with r rotary joints 
and p (=n-r) prismatic joints, 2r+4p columns are 
eliminated from the Identification Jacobian J~ to form its 
submatrix G~. This means that 2r+4p generalized errors 
are not obtainable by measuring the end-effector pose. 

If the vector e* containing the independent errors is 
constant, then the matrix G~ can be used to replace Jr in 
Equation (4), and Equation (5) is applied to calculate the 
estimate of the independent generalized errors e*, 
completing the identification process. Note that the 
independent errors e* are a subset of the generalized errors 
E. However, if non-geometric factors are considered (e.g. 
link compliance, gear eccentricity), then it is necessary to 
further model the parameters of e* as a function of the 
system configuration prior to the identification process [8]. 

By definition, non-obtainable parameters do not affect the 
end-effector error, resulting in the identity 

AX = Jr e -= G e* (11) 

Using the above identity and the linear combinations of 
the columns of Jr from Equations (7-10), it is possible to 

obtain all relationships between the generalized error set E 
and its independent subset e*. These expressions are 
presented in Appendix A. 

3.2 Physical Interpretation of the Combinations 

In this section the physical interpretation of Equations (7- 
10) is presented. Each equation associates a generalized 
error from link i-1 with a combination of errors from link i 
that result in end-effector errors in same magnitude and 
direction. Since it is not possible to distinguish the 
amount of the error contributed by each generalized error, 
1 

these errors associated with link i-1 are indistinguishable. 

Equation (7) reflects the fact that the translational error 
along the Z-axis of frame i-I has the same effect as a 
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combination of the translational errors along the Y and Z 
axes of frame i (see Figure 3). This relation is easily 
explained by the fact that the skew angle ~ between the 
axes of joints i-I and i is constant. 

Z , . l "  y ,  . ~  ~ i ~  Z, 

Figure 3 - Linear Combination of Translational 
Generalized Errors 

Equation (8) states that the rotational error along the Z- 
axis of frame i-1 has the same effect as a combination of 
the rotational and translational errors along the Y and Z 
axes of frame i. For simplicity, a planar manipulator is 
used to explain this combination (see Figure 4). The top 
figure shows the end-effector translational and rotational 
errors AXt and AX~ caused by the rotational generalized 
error ~-~)5 of frame i-1. The bottom figure shows that the 
same end-effector errors can be reproduced by a specific 
combination of the translational error ~2 and the rotational 

error ~5 of frame i. To obtain the same end-effector errors, 

it is required that El2 -~ E( i . l )  5 " ai and ei 5 = ~i_1)5 in this case 

(see the relationship between e* and e in Appendix A). 

AX r 

its ? :i ~ ,3zXX ~ 

Figure 4 - Error Combinations Resulting in Same 
End-Effector Errors 

If joint i is prismatic, then Equations (9-10) are also valid. 
These combinations simply state that the effects of the 
generalized errors along the X and Y axes of frame i-I can 
always be reproduced by a combination of the three 
translational generalized errors of frame i (see Figure 5). 
This is always true for prismatic joints, since such joints 
only move along the Z-axis of frame i-I (using the D.H. 
frame definition). 

Zi Ei 3 
Xl "o~ 

E 2 
Figure 5 - Linear Combinations of Generalized 
Errors in Prismatic Joints 
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3.3 Partial Measurement  of  End-Effector Pose 

'The linear combinations of the columns of the 
Identification Jacobian matrix J~ shown in Equations (7- 
10) are obtained when both position and orientation of the 
end-effector are considered. In the case where only the 
end-effector position is measured, its orientation can take 
any value, resulting in additional linear combinations. In 
this case, the three last columns of J~ are zero vectors (see 
Appendix A): 

J~, -=Jn~ ---J., -=0 (12) 
Equation (12) means, as expected, that the three rotational 
errors of the end-effector frame E,4, en 5 and ~6 do not 
influence the end-effector position (they only affect the 
orientation, which is not being measured). As a result, 
these generalized errors are not obtainable. 

If the last joint is prismatic, then no further linear 
combinations are found. However, if the last joint is 
revolute and its link length a. is zero, then three more 
linear combinations are present (see Appendix A): 

J.-l ,  -=dnJ.-l , ,  Jn-l~ -=-dnJ,-12, Jn-x~ -=0 (13) 

meaning that the effects of ~.14 and ~.16 cannot be 

distinguished from the ones caused by ~.1 a and ~.l 2, and 

also the generalized error ~-15 is not obtainable. If both 
link length ~ and joint offset d, are zero, then the origin of 
frames n-1 and n coincide at the end-effector position. In 
this case, Equations (12-13) can be recursively applied to 
frames n-I, n-2, and so on, as long as the origin of these 
frames all lie at the end-effector position. See Appendix A 
for more details. 

3.4 Number of  Independent  Generalized Errors 

As a corollary of Equations (7-13), the number of 
independent generalized errors for a generic serial link 
manipulator can be calculated. Upper bounds of this 
number have been presented in the literature [1, 1 I], but 
not its exact value. Table 1 shows the number of 
generalized errors N, the number of linear dependencies D, 
and the number of independent generalized errors I 
(=N-D) for both robot calibration (without modeling its 
base frame errors) and robot+base location calibration. 

6n 

2r' + 4p' + k 

6n - (2r' + 4p' + k) 

where 

Table 1 - Number of Independent Generalized Errors 
Robot+Base Calibration Robot Calibration 

N 6(n+l) 

D 2 r + 4 p + k  

I 6(n+l) - (2r + 4p + k) 
n : # of joints in the manipulator 
r ; r' : # of revolute joints including/excluding joint 1 
p ; p': # of prismatic joints including/excluding joint 1 

2  



k:. 

0 if measuring end - effector position and orientation 
3 if only measuring end - effector position and either 

the last joint is prismatic or a n ~ 0 
3 + 2 q if only measuring end - effector position, 

the last q joints are revolute, and 

an_q+ 1 ~ an_.q+ 2 ~ an_q+ 3 . . . . .  a n - = 0  

and d n-q+2 ~ d,_q+3 . . . . .  d, --- 0 

3.5 Extension to Four-Parameter Error 
Representations 

The six-parameter representation of the errors is used 
above to obtain all linear combinations of the generalized 
errors. If a four-parameter representation is chosen for the 
identification process, the previous results can still be 
applied to eliminate the redundant parameters, through an 
adaptation of Equations (7-10). The extension of the 
results to four-parameter error representations is easily 
accomplished because such parameterizations are a subset 
of the generalized error representation. 

The four Denavit-Hartenberg error parameters of link i are 
exactly the rotational and translational errors along the Z- 
axis of frame i-1 and the X-axis of frame i of the six- 
parameter representation. Namely, the errors along the 
link lengths ai, skew angles cti, joint offsets di, and joint 
angle offsets 0~ of link i are respectively mapped to the 

generalized errors eft, El6 , E0.1)3, and ~i.1)5. This implies 
that the translational and rotational errors along the Y-axis 
of every frame, ei 2 and ~4, are not modeled when the D.H. 
representation is used. If the manipulator does not have 
parallel joints, then e.i 2 and ei 4 can be replaced by a 

combination of the errors along di and 0i, see Equation 
(30). However, if joints i-1 and i are parallel, then the 
rotation error ei 4 cannot be obtained from the D.H. 
representation. In addition, if the link length ai=0, then the 
translation error ei 2 is also non-obtainable. This means 
that the entire calibration can be compromised if the 
manipulator has significant errors in those directions. 
Hayati's modification of the D.H. representation [2] only 
partially solves this problem, because it introduces an 
angular alignment parameter that models the Y-axis 
rotation error ea 4, but not the translation error ea 2. 

When using the D.H. error representation, the column 
vectors Ji2 and Ji4 are not present in the Identification 

Jacobian, because the generalized errors ei 2 and ~4 are not 
modeled. So, Equations (7-10) can only be applied to the 
D.H. representation if both Ji2 and Ji 4 are not present in the 
linear combination. This is never true for Equations (8) 
and (10), but Equation (7) can be applied if sin(oq) is null, 
due to parallel joints. In this case, the following linear 

combinations of the D.H. error parameters are valid: 

= ei, +el  1, ~6d~+, = 6<1i+,+~5d i 
e~, = ei, +e~_,, L6o~., = ~oi+,+ ~oi (14) 
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Finally, if joint i is prismatic, then Equation (9) results in 
one additional linear combination 

e~ =ei, +e~_~, ~ 6 a i  =6a~+6ai_ ~ (15) 

As seen in Equations (14-15), even though the D.H. 
representation results in fewer linear combinations, 
redundant parameters may still be present. 

In summary, the D.H. error representation does not model 
some of the physical errors if parallel joints are present 
and still presents linear combinations that need to be 
eliminated. Since the redundancy of the six-parameter 
error representation can be eliminated with the method 
described in this paper, the use of such parameterization in 
robot calibration is recommended. 

4 S imula t ion  Resul ts  

Simulations were performed on a PUMA 560 and on an 
Adept SCARA manipulator. The six-parameter error 
representation was used and its redundant parameters were 
eliminated using Equations (7-10). Simulated 
measurements were obtained and the introduced error 
parameters were identified using Equation (5). 

For the calibration of a PUMA 560 robot and its base by 
measuring the end-effector position only, 27 error 
parameters were identified. This result agrees with [6] and 
also with Table 1 (using n=6, r=6, p=0 and k=3). 

For an Adept SCARA robot, 20 error parameters were 
identified by measuring both end-effector position and 
orientation, which agrees with Table 1 (using n=4, r=3, 
p=l and k=0). Although the D.H. error representation also 
models 20 parameters in this case, only 15 of these 
parameters are independent and identifiable. The error 
p a r a m e t e r s  e l4  , e24 , E34 , e42 and ~.,44 cannot be identified 
using the D.H. representation due to parallel joints in the 
system. Even if Hayati's modification [2] is introduced, 
the translation e r r o r  E42 still remains unmodeled, showing 
that only the six-parameter representation can identify all 
20 parameters in this case. 

5 Conc lus ions  

This paper presents a general analytical method to 
eliminate the redundant error parameters in robot 
calibration. These errors, often non-intuitive, must be 
eliminated from the error model prior to the identification 
process, otherwise the robustness of the calibration can be 
compromised. The analytical expressions and physical 
interpretation of the linear combinations present in the 
generalized error parameterization are developed. The 
non-redundant form of the Identification Jacobian matrix 

is then obtained using these expressions, allowing for the 
systematic calibration with improved accuracy of any 
serial link manipulator. 

3 
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Appendix  A - Linear  Dependency  Calculations 

This appendix contains the proof of  the linear combination 
expressions of  the columns of  the Identification Jacobian 
matrix J .  These combinations are obtained from the 

symbolic form of  Je  expressed through the manipulator's 
Denavit-Hartenberg parameters. It is shown that the 
general expressions can be broken down into combinations 
of the columns associated with each pair of  consecutive 
links. This in turn allows for great simplification of  the 
proof. 

Define the position and orientation of  a reference frame F, 
with respect to the previous reference frame F~.~ as a 4x4 
matrix A, using the D.H. parameters: 

lcos!00 snOcos sinOisi i a c°s0  
si ~ cosOicosa i -cosO~sina~ a is inOi/  

A , =  sinai cosa  i di / 

0 0 1 J (16) 

When the generalized errors defined in section 2.1 are 
considered in the model, the manipulator loop closure 
equation takes the form: 

A~c = E 0 A 1E~ A~ E2 ...... A.E.  (17) 

where ALC is a 4x4 homogeneous matrix that describes the 
position and orientation of  the end-effector frame F, with 
respect to the inertial reference frame F 0. 

The Identification Jacobian matrix J~ is determined by 

taking the derivative of  the loop closure matrix ALC with 
respect to each generalized error eij, resulting in 4x4 

sensitivity matrices Li~ 

c9 (EoAiEiA:E: . . . A , E . )  

Lii --= ~eii ekm=0'k~°rm*j (18) 

Clearly, the linear combinations of the columns J~i of the 
Identification Jacobian matrix (defined in section 3.1) are 
the same as the ones of the L~j matrices. Since E~ is the 

only matrix that depends on the generalized error ~j, then 

L~) can be simplified to 

Li i = A  ...Ai_2.Mi, .Ai+ ...An ' Mi ' ~Ai_~A i OE_.___.~. 
O~i, (19) 

Applying the same result for joint i-1, then 

A 0 ~ 1  " I'~i-l)r =flkl" ' /~-2"M~i-l) , ' /~=i+l '°°~'  ~i-q), ~ i - I ~  

~i-I )1 (20) 

Since both products Ai...Ai.2 and A i + l . . . A  n do not depend 
on the coordinates of frames i-1 and i, Equations (19-20) 
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show that the linear combinations of the Lij matrices are 

also the same as the ones of the Mij matrices. Hence, it is 
not necessary to develop the lengthy Equations (18-20), 
since the desired linear combinations can be obtained from 
the much simpler Mij matrices. In addition, all linear 
combination expressions can then be broken down into 
expressions involving the generalized errors of each two 
consecutive links, since the considered system is a serial 
link manipulator. 

Consider the following general expression for the linear 
combinations associated with two consecutive links, 
represented by the unknown coefficients c I . . . . .  Cl2: 

cl Jl-1, +c2 Ji-1, "l'C3 JJ-1, +c4 J~-l, +% JJq, +c6 Jl-~, -= 

c7JI, +csJq  +c9Jl~ +cH~Jl~ +cllJi~ +cl2Ji6 (21) 

To determine the unknown coefficients, the column 
vectors J~j can be replaced by the matrices Mij in the above 

expression, since it was shown that both Jij and Mij sets 

have the same linear combinations. The Mij matrices are 
obtained by substituting Equations (3) and (16) into 
Ec uations (19-20). Equation (21) then results in 

"c4(w i cos0i)+ c5 (v i cos0 i - u  i sin0 i )'a- C6(W i sin0 i) 
+Clo(U i sin0 i s ina i - v  i cos0 i sino~ +w i coso~) 
- c  il(-ui sin0 i coso~ + v i cos0 i cosa~ + w i sinai )_-- 0 

c 4 ( -w i sin0 i cosc~ +u i sinai) - %  cosa~ (v i sin0 i +u  i cos0 i ) 
+c6(w i cos0 i costs - v  i s inai)+%(u i cos0 i + v i sin0i) 
+ Cl2(U i sin0 i sina i - v  i cos0~ sin~ + w i cost:~ )--- 0 

c 4 (w i sin0 i sino~ + u i coso~) + c~ sina i (v i sin0 i + u i cos0 i ) 
- c  6 (w~ cos0~ sin~ -v~ cos~)-C,o(U ~ cos0 i + v i sin0~ ) 
+ cn ( -u  i sin0 i coso~ + v i cos0 i costs + w i sina i) -= 0 

C 1U i "at" C 2 V i "{" C 3 W i +C4(W i a i COS0 i + U  i d i ) 

+%(vi ai cos0 i - u  i a i sin0i) 
+ c6(w i a i sin0 i - v i d i ) - c  7 (u i cos0 i + v~ sin0 i) 
- c s ( - u  i sin0 i coso~ + v i cos0 i coso~ +w i sin~ ) 
-cg(ui sin0~ sint~l - vi cos0~ sin~ +w~ cosai)-= 0 (22) 

where 

[ COS0H 1 [ -  sin01_a costr~l_ l" [ sin0,_~ sin~_~ 1 
sin0H | / cos0H cosq-i 

'vi=-[  sin~t~l ' wi = ] -  c°s0i-a sinctl-I / 

" lxl , , t_ o J(23) 
Solving Equation (22) results in 

c 4 = c  6=cl2 =0,  c l=cT,  cl0 =css inai ,  Cll =cscosai ,  

c 8 = c3sintx i + (c2+csai).cos o~i, 

c9 = %c°sai - (c2+ %ai)' sin Cti (24) 

Then, substituting Equation (24) in (22) results in 
Equations (7-8). If joint i is revolute, then c~ = c2 = c7 = 0, 
and no other combinations are present. However, if joint i 
is prismatic, then Equation (24) also results in Equations 
In the particular case where only the end-effector position 
is measured, only the last equation in (22) must hold, 
resulting in 
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c , = c  a=c  6=c  7, c a=casino~ n+(c:+cS.an).cosa., 
% = c3cosa . - (c: + %. a,).  sin a,  (25) 

Substituting Equation (25) in (21) results in 

%Jn-l~ +c5 Jn-l~ =- (%sina, +%. a,cosa,)J,2 + 

(c3cosa . - %. a,sin a° )Jn, + cl0 J , ,  + cH Jn~ + Cl2 J , ,  (26) 

Equation (26)must hold for all values of c3, c5, cl0, cH, cl2, 
resulting in Equation (12). 

If joint n is prismatic, then c4 and c6 are always zero (even 
if a,=~=0) and no other combinations are present. However, 
if joint n is revolute and the link length a, is zero, then c4 
and c6 are different than zero, and two other linear 
combinations are present, namely 

{•l +c4.dn =0 f(-c4.dn)Jn_l, +c4J,_t, =0 /Jr~, =d.J,q, 
2-c6'dn--0:::::::~zL( c6'dn)Jnq-" +c6J"-t~ =0 ===:'~J"~ =-dnJn'42 (27) 

Equations (8) and (12) also imply that J(..l)5_~ for this 
case. If the joint offset d. is also zero, then reference 
frames n and n-1 have common origins at the manipulator 
end-effector, and Equations (8)and (13) imply that 

Jn-h "~ Jn% -= J.-~ ~" 0 ( 2 8 )  

Equations (12-13) are then recursively applied for link n-1. 

Once the linear combinations of the columns of the 
Jacobian matrix Jo are calculated, the independent 
generalized error set is obtained. From Equation (7), 

Ji_lfl~l_l~ +Ji El: +Jheh  ---J,~ (e h +el_l~ s ina , )+  

J,, (e,~ +e,_,~ cosa,)-= Jj e,~ +Jhe,* (29) 

showing that the generalized error ~-J3 can be incorporated 

into e~: and ei 3 if joint i is revolute, resulting in the 

combined generalized errors E*i2 and E*iy Using Equations 
(7-8) and the approach described above, the combined 
generalized errors are obtained: 

[. e,.~ =e~ +e,_j~ sin~ +e,_], .a~ cos~ 

je  h =e,~ + e,_l, cos~ -~_,~ .a i s ln~ 
/ * 

Le,~ = e,,  + e,_~, cosoq  
(30) 

which holds for both revolute and prismatic joints. 

If joint i is prismatic, then Equations (9-10) are combined 
with Equation (30), resulting in 

~i t "~" ~11 "~-~i-1] 

~12 ~- el2 -'J- ~.'1_12 COS(~, i -I'- ~1_1~ s in~ + el_l, • ai cos~zj 

e l ,  : e l ,  - -  e 1_12 sin a, + ej_ h cosa~ - e~_~, • a~ sin a, 

Ei 4 = E i ~  + E l - i ,  sino~i 
e,~ = e,, + e~_~ costx~ (31) 
In the particular case where the end-effector orientation is 
not considered, Equation (12) implies that the generalized 
errors ~4' en5 and F~n6 do not affect the end-effector 
measurements. Furthermore, if the last joint is revolute 

3 6 1 5
and a,-xO then Equation (27) results in the combined 
generalized errors 

I e~_l~ =E°_l, +E._i. 'd.  

Le._l~ = e._12 - e ._l ,  • dn 
( 3 2 )  

and also implies that ~n.=5 does not influence the end- 
effector position. 
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