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Abstract: A reliable and cost effective two-phase methodology is proposed and
implemented in two pieces of software to predict fatigue crack propagation in generic
two-dimensional structural components under complex loading. First, the fatigue crack
path and its stress intensity factor are calculated in a specialized finite-element software,
using small crack increments. At each crack propagation step, the mesh is automatically
redefined based on a self-adaptive strategy that takes into account the estimation of the
previous step stress analysis numerical errors. Numerical methods are used to calculate
the crack propagation path, based on the computation of the crack incremental direction,
and the stress-intensity factors KI, from the finite element response. An application
example presents a comparison between numerical simulation results and those measured
in physical experiments. Then, an analytical expression is adjusted to the calculated KI(a)
values, where a is the length along the crack path. This KI(a) expression is used as an
input to a powerful general purpose fatigue design software based in the local approach,
developed to predict both initiation and propagation fatigue lives under complex loading
by all classical design methods, including the S-N, the ε-N and the IIW (for welded
structures) to deal with crack initiation, and the da/dN to treat propagation problems. In
particular, its crack propagation module accepts any KI expression and any da/dN rule,
using a ∆Krms or a cycle-by-cycle propagation method to deal with one and two-
dimensional crack propagation under complex loading. If requested, this latter method
may include overload-induced crack retardation effects.
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Introduction

The fatigue crack propagation life prediction under complex loading in intricate two-
dimensional (2D) structural components is a quite interesting modeling problem,
requiring a mixed approach to achieve its optimum solution.

To predict the crack path and to calculate its associated stress intensity factors KI and
KII, a finite element (FE) global discretization of the component, using appropriate crack
tip elements, mesh generation schemes and crack increment criteria, has become a
common engineering design practice. However, such brute force numerical calculation is
not efficient when the load is complex, causing in the general case different crack
increments at each load cycle, requiring remeshing and time-consuming recalculations in
FE. Moreover, crack retardation effects compromise even more the computational
efficiency of this approach.

On the other hand, the local approach, based on the direct integration of the crack
propagation rule, can be efficiently used to calculate the crack increment at each load
cycle, considering crack retardation effects if necessary. However, it requires as input the
stress intensity expression for the crack, which is a major drawback because it is simply
not available for most real components. Therefore, designers must use engineering
common sense to choose approximate KI handbook expressions to solve real problems.
The error involved in such approximations obviously increases as the real crack deviates
from the modeled crack, and in such cases the accuracy of the local approach is
questionable and its predictions unreliable.

Since the advantages of the two approaches are complementary, the problem can be
successfully divided into two steps. First, an appropriate FE software can be used to
calculate the (generally curved) crack path and its associated Mode I stress intensity
factor KI(a) along the crack length a, under simple loading. Then, an analytical
expression should be adjusted to the discrete KI(a) calculated values, to be used as input
to a local approach software. Finally, the actual complex loading can be efficiently
treated by the direct integration of the crack propagation rule, considering retardation
effects if required.

This is a simple and evident idea, but it is easier said than implemented, since FE
experts are normally not fatigue design engineers, and vice-versa. Moreover, to achieve
an engineering tool status, a two-step system must be numerically reliable, simple-to-use,
versatile (since there is no universally accepted design method), and, of course,
economic. All these constraints put a significant burden on the programming effort.

The purpose of this paper is to describe the fundamentals of an integrated system
composed of two complementary programs, designed to implement this two-step method.
This system demonstrates that satisfactory fatigue life predictions under complex load for
2D structural components can now be obtained on a PC platform.

The paper is organized in several sections describing (i) the numerical procedures to
compute stress intensity factors in arbitrary 2D geometries; (ii) the principles of the crack
increment direction numerical computation problem; (iii) a summary of the main features
of the FE software developed to handle these tasks, named QUEBRA2D; (iv) an
experimental verification of the predictions made by this software; (v) the fundamentals
of the local approach to predict fatigue life under complex load; (vi) the main features of
the ViDa software developed to perform such predictions; (vii) the fundamentals of



the ∆Krms method numerical implementation for 1D and 2D crack growth; (viii) the
principles of the cycle-by-cycle method numerical implementation for 1D and 2D crack
propagation; (ix) the minimum number of features required for modeling the load cycle
interaction problems; and finally (x) a conclusion.

Numerical Computation of Stress-Intensity Factors

In 2D finite element models, three methods can be chosen to compute the stress-
intensity factors along the (generally curved) crack path: the displacement correlation
technique (DCT) [1], the potential energy release rate computed by means of a modified
crack-closure integral technique (MCC) [2, 3], and the J-integral computed by means of
the equivalent domain integral (EDI) together with a mode decomposition scheme [4-8].

Displacement Correlation Technique (DCT)

In DCT, the displacements obtained from the finite element analysis at specific
locations are correlated with the analytic solutions expressed in terms of the stress-
intensity factors. For quarter-point singular elements [1], the crack opening displacement
δ is given by
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Figure 1 – Quarter-point elements at the crack tip.

where vj-1 and vj-2 are the relative displacements in the y direction, at the j−1 and j−2
nodes, and L is the element size (Figure 1). The analytical expression for δ is
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where κ = 3 − 4ν for plane strain, κ = (3 − ν)/(1 + ν) for plane stress, ν is the Poisson
ratio, and µ is the shear modulus. By equating the numerical and the analytical
expressions for δ, (1) and (2), the Mode I stress-intensity factor can be evaluated by
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For Mode II, the crack opening displacement is replaced by the crack sliding
displacement and, following the same steps, KII is calculated by
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where uj-1 and uj-2 are the relative displacements in the x direction, at the j−1 and j−2
nodes (Figure 1).

Modified Crack-Closure Integral (MCC)

The modified crack-closure method is based on the Irwin’s crack-closure integral
concept, which assumes that the required work to close a crack from a + δa to a is the
same as that required to extend it from a to a + δa (Figure 2). Based on this assumption,
the strain-energy release rates GI and GII of a mixed-mode condition are obtained by
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Figure 2 – Analytical crack-closure integral method.



In these equations, δa is the virtual crack extension; σy and σxy are the normal and
shear stress distributions ahead of the crack tip; and v(r) and u(r) are the crack opening
and sliding displacements at a distance r behind the new crack tip. In the original form,
the results are obtained from two analyses: one with a crack length a and the other with a
crack length a + δa.

Rybicki and Kanninen [2] were the first to use this approach with a single finite
element analysis, using models with four-noded quadrilateral elements. Raju [3] extended
this method for non-singular and singular elements of any order. This procedure is based
on the symmetry of the elements around the crack tip. In the numerical computation of GI
and GII, the strain-energy release rates given by Equation 5, the stress field is assumed to
have the classical 1/√r distribution and the displacements u(r) and v(r) are determined by
interpolation of nodal displacements using the element shape functions. The normal and
shear stresses are obtained from the nodal forces at and ahead of the crack tip.

As shown by Raju [3], simplified expressions for singularity elements may be
applied, which are easier to use than the consistent expressions. The components GI and
GII for pure Mode I and Mode II, and for mixed mode conditions are given as
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where Fxi, Fxj, Fyi, and Fyj are the consistent nodal forces acting on nodes i and j in the x
and y directions (Figure 3); u and v are the nodal displacements at m, m', l and l' nodes in
the x and y directions, respectively; and t11 = 6 − 3π/2, t12 = 6π − 20, t21 = 1/2, and        
t22 = 1. The nodes and nodal forces Fyi and Fyj are shown in Figure 3.
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Figure 3 – Node at crack tip elements and consistent nodal forces ahead of crack tip.

The nodal forces Fxi and Fyi are computed from elements 1, 2, 3 and 4, but the forces
Fxj and Fyj are computed from element 4 only. Under linear elastic conditions (LEFM),
the stress-intensity factors are related to the energy release rates by
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where κ has been previously defined for plane stress and plane strain conditions. It is
assumed that the classical ASTM E399 requirements for validating a KIC toughness test
can also be used in fatigue crack growth to characterize a plane strain condition.

J-Integral Formulation with Equivalent Domain Integral (EDI)

The J-integral is a path independent contour integral introduced by Rice [9] to study
non-linear elastic materials under small scale yielding. The equivalent domain integral
method replaces the integration along the contour by another one over a finite size
domain, using the divergence theorem. This definition is more convenient for finite
element analysis. For two-dimensional problems, the contour integral is replaced by an
area integral
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where W is the strain energy density; q is a continuous function that allows for the
equivalent domain integral to be treated in the finite element formulation; σij are the
stresses at the contour C, which is any path surrounding the crack tip; ui are the
displacements correspondent to local i-axes; ti is the crack face pressure load, and s is the
arc length of the contour. Usually, a linear function is chosen for q, which assumes a unit
value at the crack tip and a null value along the contour. For the linear-elastic materials
special case, the second term in Equation 9 vanishes. The third term will vanish if the
crack faces are not loaded, or if q = 0 at the loaded portions of the crack faces.

The J-integral definition considers a balance of mechanical energy for a virtual
translation field along the x-axis. In the case of either pure Mode I or pure Mode II,
Equation 9 allows for the calculation of stress-intensity factors KI or KII. However, in the
mixed mode case, KI and KII can not be calculated separately from this equation alone. In
this case, other invariant integrals are used. Usually, the expression defined by Knowles
and Sternberg [10] is adopted
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where k is an index for local crack tip axes (x, y). These integrals were introduced
initially for small deformation [9] and were extended by Atluri [11] for finite
deformations.

The integration is performed in the elements chosen to represent the domain. In this
work, the chosen domain is the rosette of quarter-point elements at the crack tip (Figure
1), and the standard Gaussian quadrature is used over each element.



For linear elastic problems, Bui [4] proposed associated fields to decompose the
loading modes. In this case, the first component in Equation 10 is path independent, but
the second one is not. However, the path dependency may be eliminated if the
displacements and the stress fields are decomposed into symmetric and anti-symmetric
portions. Therefore, the displacement field is rewritten as
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where u and v are displacements in x and y directions, respectively, )y,x(u)y,x(u −′=′ ,
and )y,x(v)y,x(v −′=′ ; and the superscripts I and II correspond to the symmetric and
anti-symmetric components of the displacements field, respectively. The stress field is
then decomposed as
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where ( ) ( )y,xy,x ijij −= '' σσ  and 0II
zz =σ .

New integrals JI and JII are obtained, which satisfy the condition J = JI + JII, where JI
is associated to the symmetric field (Mode I) and JII is associated to anti-symmetric fields
(Mode II)
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This approach has also been applied by Atluri et al. [7, 8] with highly accurate results
for mixed-mode problems. In addition, Eischen [12], and Kienzler and Kordisch [13]
suggested improved methods for obtaining J-integrals for mixed-mode problems. These
modifications and decomposition techniques permit the use of the J-integral and EDI
approaches for a wide range of linear and non-linear deformation crack problems.

In LEFM, J is equal to the energy release rate G, and its components JI and JII may be
used to compute stress-intensity factors by means of Equation 8.



Numerical Computation of the Crack Increment Direction

In 2D finite element analysis, the three most used criteria for numeric computation of
crack (incremental) growth in the linear-elastic regime are: (a) the maximum
circumferential stress (σθmax) [14], (b) the maximum potential energy release rate (Gθmax)
[15], and (c) the minimum strain energy density (Sθmin) [16].

In the first criterion, Erdogan and Sih considered that the crack extension should
occur in the direction that maximizes the circumferential stress in the region close to the
crack tip [14]. In the second, Hussain et al. [15] have suggested that the crack extension
occurs in the direction that causes the maximum fracturing energy release rate. And in the
last, Sih [16] assumed that the crack growth direction is determined by the minimum
strain energy density value near the crack tip. Bittencourt et al. [17] have shown that, if
the crack orientation is allowed to change in automatic fracture simulation, the three
criteria furnish basically the same results. Since the maximum circumferential stress
criterion is the simplest, it is the criterion described below.

The stresses on the crack tip for Modes I and II are given by summing up the stresses
obtained for each mode separately [18]. As a result, the following equations are obtained
in polar coordinates
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These expressions are valid both for plane stress and plane strain. The maximum
circumferential stress criterion determines that the crack extension begins on a plane
perpendicular to the direction in which σθ is maximum, thus τrθ = 0, and that the
monotonic (non-fatigued) extension shall occur when σθmax reaches a critical value
corresponding to a property of the material (KIC for Mode I). From Equations 15-17 and
τrθ = 0, it is found a trivial solution θ = π±  for cos(θ /2) = 0, and a non-trivial solution

0)1cos3(KsinK III =−+ θθ       (18)

Analyzing Equation 18 for the two pure modes, it is found for pure Mode I that KII =
0, KI sinθ = 0, and θ = 0°, and for pure Mode II that KI = 0, KII (3cosθ − 1) = 0, and θ =
±75°. These θ values are the extreme values of the crack propagation angle. The
intermediate values are found solving Equation 18 for θ considering the mixed mode
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where the sign of θ is the opposite of the sign of KII.



Finite Element Crack Propagation Simulation

The computational models described above were implemented in a software called
QUEBRA2D (meaning 2D fracture in Portuguese) [19, 20], which is an interactive
graphical software for simulating two-dimensional fracture processes based on a finite
element adaptive mesh generation strategy [21]. The adaptive process first requires the
results from the analysis of an initial finite element mesh, usually rough, with the
geometric descriptions, the boundary conditions, and their attributes. Then a
discretization of the domain’s region boundary is performed based on the geometric
properties and on the characteristic sizes of the boundary elements, determined from the
error estimate resulting from the previous step FE analysis.

It is important to point out that one advantage of this strategy is that the boundary
curve is discretized independently from the model’s domain, thus resulting in a more
regular boundary discretization. From this discretization, the new mesh is generated [22],
based on quadtree [23] and Delaunay [24] triangulation techniques. The quadtree
generates the mesh in the interior of the model, leaving a band near the boundary to be
discretized by the Delaunay triangulation. This process is repeated until the estimate
discretization error reaches a predefined value [19, 21].

Some other QUEBRA2D highlights are: (i) visualization of iso-strips and iso-lines
from scalar results at the nodes and at the Gauss points; (ii) stress-intensity factor and
crack propagation direction computation by means of all methods described above; (iii)
vectorial or scalar plotting for visualizing the principal stress results; (iv) visualization of
the model's deformed configuration, with zoom, distortion, and translation specification;
(v) visualization of the model’s animation along the several steps; and (vi) option of the
interface language.

The software has been implemented in C language, using the IUP/LUA interface
system (http://www.tecgraf.puc-rio.br/manual/iup) and the CD graphic system
(http://www.tecgraf.puc-rio.br/manual/cd). This environment allows, without any code
modification, automatic portability to several platforms, including workstations based on
the Unix operating system and PCs running under Windows 98/2000 or NT.

Experimental Verification of the Crack Path Prediction

A simple test was performed to verify the crack path predicted by the QUEBRA2D
software and to demonstrate its capabilities. A crack was fatigue propagated in a SEN
specimen with a hole slightly to the left of the starting notch (created using a 0.3mm
jeweler’s saw), loaded in four-point bending (Figure 4). Due to the hole, the crack does
not follow a straight line path, but curves toward the hole.

The material used in the experiment was a 1020 steel (analyzed composition: C 0.19;
Mn 0.46; Si 0.14; Ni 0.052; Cr 0.045; Mo 0.007; Cu 0.11; Nb 0.002; Ti 0.002; Fe
balance) with Young modulus E = 205GPa, yielding strength SY = 285MPa, ultimate
strength SU = 491MPa, and area reduction RA = 54%. Two crack growth equations were
fitted to experimental data (obtained testing CTS in a servohydraulic test machine under
sinusoidal load at 20Hz): the Paris equation, yielding da/dN = 8.5⋅10-14⋅∆K4.2, and a
modified Elber equation, da/dN = 4.5⋅10-10⋅(∆K − ∆Kth)2.1, where the threshold stress
intensity range ∆Kth = 11.6MPa√m.
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Figure 4 – SEN specimen with a hole to the left of the starting notch (dimensions in mm).

The experiment was performed under constant stress intensity range ∆K=18.0MPa√m
and R = 0.1. The maximum loads varied from 11.0kN to 2.8kN to keep ∆K constant as the
crack propagated from 2.5mm to 16.5mm (measured along the crack path).

Figure 5 shows the FE mesh automatically generated for the final crack configuration.
Figure 6 compares the predicted crack path with the actual one. The crack path was
predicted by the σθmax method and KI was computed by the MCC technique. For refined
meshes such as the one shown in Figure 5, all methods predict essentially the same
results, as discussed in [17]. Finally Figure 7 presents the calculated Mode I stress
intensity factor along the crack path, KI(a). This is the information that the local approach
uses for calculating the fatigue life under complex loading.

Figure 5 – FE mesh automatically generated for the final crack configuration.
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Figure 7 – Calculated KI(a) along the crack path for the holed and regular SEN.

Automation of the Fatigue Crack Propagation Calculation under Complex Loading

The modeling and the calculation automation of the LEFM Mode I fatigue crack
propagation under complex loading by the local approach are discussed below. Both 1D
and 2D cracks are studied, even though these last are not dealt with in the FE modeling
discussed above. The loading complexity, whose amplitude can randomly vary in time, is
not limited. Sequence effects, such as overload-induced crack retardation or arrest are
also considered. Only Mode I is discussed, since fatigue cracks almost always propagate
perpendicular to the maximum tensile stress.



The local approach is so-called because it does not require the global solution of the
structure’s stress field, because it is based on the direct integration of the fatigue crack
propagation rule of the material, da/dN = F(∆K, R, ∆Kth, KC, ...), where ∆K is the stress
intensity range, R = Kmin/Kmax is a measure of the mean load, ∆Kth is the fatigue crack
propagation threshold, and KC is the toughness of the material-structure. Appropriate
stress intensity factor expression for ∆K and da/dN rule must be used to obtain
satisfactory predictions. Therefore, neither the ∆K expression nor the type of crack
propagation rule should have their accuracy compromised when using this approach.

The interaction with the environment and out-of-phase loading at multiple origins,
which induce stresses whose principal directions vary significantly in time, are
considered out of the scope of this discussion. In the same way, it does not consider the
small crack problem, whose size is of the order of (i) the size parameter that characterizes
the intrinsic anisotropy of the material (e.g., grain size), or (ii) the plastic zone associated
to the crack tip or to the notch in which the (short) crack is built-in.

In the sequence of this text, first the main features of the software ViDa (which
means life in Portuguese) are concisely described. This software has been developed to
automate all the traditional local approach methods used in fatigue design [25, 26],
including the S-N, the IIW (for welded structures) and the ε-N for crack initiation, and the
da/dN for crack propagation. Then the following topics are discussed: (i) the ∆Krms
method, including the differences between 1D and 2D crack propagation modeling; (ii)
the cycle-by-cycle method, also emphasizing the differences between the 1D and the 2D
problems; (iii) some proposals for increasing the computational efficiency of the models;
and (iv) the modeling of load sequence effects. Finally, the advantages and limitations of
the several studied models are evaluated.

The ViDa Software

The objective of this software is to automate all the calculations required to predict
fatigue life under complex loading using the local approach. It runs on PCs under
Windows 95 or better operating system, and it includes all the necessary tools to perform
the predictions, such as intuitive and friendly graphic interfaces in multiple idioms;
intelligent databases for stress concentration and intensity factors, crack propagation
rules, material properties, and the like; traditional and sequential rain-flow counters,
graphic generators of elastoplastic hysteresis loops and of 2D cracks fronts; automatic
adjustment of crack initiation and propagation experimental data; an equation interpreter,
etc. The software calculates crack growth considering any propagation rule and any ∆K
expression that can be written in a BASIC syntax (making it an ideal companion to
QUEBRA2D software, which can be used to generate the ∆K(a) expression if it is not
available in its database).

The loading can be given by a sequential list of peaks (σmax) and valleys (σmin), or
else by the equivalent sequence of the number of reversions (n/2) of alternate (σa) and
mean (σm) stresses. The loading can also be specified in strain instead of stress. The data
can be typed or imported from any text file, including those experimentally generated
(e.g. by strain-gages).



The propagation is calculated at each load event. An event is defined by a block of
simple load, in which σa and σm remain constant during n cycles, or at each variation of
the load amplitude in the complex case. In any case, the software automatically stops the
calculations, and indicates the value of the parameters that caused the stop, if during the
loading it detects that: (i) Kmax = KC ; (ii) the crack reaches its maximum specified size;
(iii) the stress in the residual ligament reaches the rupture strength of the material SU;
(iv) the crack propagation rate da/dN reaches 0.1mm/cycle (above this rate fracturing
occurs, not fatigue cracking); or (v) one of the borders of the piece is reached by the front
of the crack, in the 2D crack propagation case. However, for some geometries, the
software is able to calculate 2D crack propagation even after the borders of the piece are
reached, by modeling the stress intensity factors of the transition from part-through to
through cracks.

Moreover, the software informs when there is yielding in the residual ligament before
the maximum specified crack size or number of load cycles is reached. In this way, the
calculated values can be used with the guarantee that the limit of validity of the
mathematical models is never exceeded.

The ∆∆∆∆Krms Method

The stress intensity factor range is expressed as ∆K = ∆σ⋅[√(πa)⋅f(a/W)], where ∆σ is
the nominal stress range (in relation to which the ∆K expression is defined), a is the crack
length, f(a/W) is a non-dimensional function of a/W, and W is a characteristic size of the
structure. Therefore, ∆σ quantifies the influence of the loading and √(πa)⋅f(a/W)
quantifies the effect of the geometry of the piece and of the crack shape and size in ∆K.

The simplest way to treat the fatigue life prediction under a complex loading problem
is to substitute a simple equivalent loading, causing the same growth of the crack. It has
been experimentally discovered that ∆Krms, the root mean square value of the stress
intensity range, can in some cases be used for this purpose [18].

According to Hudson [27], ∆Krms can be calculated from the rms values of the
positive peaks and valleys of the loading (since the crack does not grow while closed, the
compressive part of the loading should be discarded). Therefore
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As ∆Krms = ∆σrms⋅[√(πa)⋅f(a/W)], the number of cycles the crack takes to grow from
the initial length a0 to the final one af  is given by
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In the ViDa software, a variation of the Simpson's algorithm can be used for the
numerical integration of the simple loading case and, consequently, also for the ∆Krms
method. Crack increments δa > 0.1µm for the discretization of the integral can be
specified by the user, who can also choose an integration method based on adjustable
steps depending on the variation of the crack length, as will be discussed later on the
study of the cycle-by-cycle method.

It should be mentioned that the ∆Krms value of a complex loading is similar but not
identical to the ∆K of a simple loading. As with any statistics, ∆Krms does not recognize
temporal order, and cannot detect some important problems such as: sudden fracture
caused by a single large peak during the complex loading (in order to start the fracture
process, it is enough that in just one event Kmax = KC); or any interaction among the
loading cycles (e.g. the crack retardation or arrest phenomena after an overload). Also, it
is not possible to guarantee the inactivity of the crack if ∆Krms(a0) < ∆Kth(Rrms).

In complex loading, this latter problem can be caused by all the (∆σi, Ri) events that
induce ∆Ki > ∆Kth(Ri), which can make the crack grow even if ∆Krms < ∆Kth(Rrms).
Therefore, as ∆Ki depends both on the stress range ∆σi and on the crack size ai in that
event, even if the value of ∆σrms stays constant, the same cannot be guaranteed for ∆Krms.

The ∆Krms Method for 2D Cracks

Equation 22 can only be applied to 1D cracks, but in practice many times it is
necessary to study surface, corner, or internal cracks that propagate in 2D. The principal
characteristic of these cracks is a non-homologous fatigue propagation: in general, the
crack front tends to change form from cycle to cycle, because ∆K varies from point to
point along the crack front.

There are analytical expressions for the stress intensity factor of some 2D cracks. If
the cracks have ellipsoidal fronts built in a plate of width W or 2W and thickness t, ∆K is
function of ∆σ, a, a/c, a/t, c/W and θ [28-30], where a and c are the ellipsis semi-axes,
and θ is defined in Figure 8.

The 2D ellipsoidal crack propagation problem is a reasonable approximation for
many actual surface, corner, or internal cracks. Fractographic observations indicate that
the successive fronts of those cracks tend to achieve an elliptical form, see Figure 9, and
to stay approximately elliptic during their fatigue propagation, even when the initial crack
shape is far from an ellipsis [31, 32]. Therefore, it can be quite reasonable to assume in
the modeling that the fatigue propagation just changes the shape of the 2D cracks (given
by the ratio a/c between the ellipsis semi-axes, which quantifies how elongated the cracks
are), but preserves their basic ellipsoidal geometry.

As an ellipsis is completely defined by its two semi-axes, to predict the growth of 2D
(elliptical) cracks, including their shape changes, it is enough to calculate at each load
cycle the lengths of the ellipsis axes a and c, jointly solving the da/dN and the dc/dN
propagation problems.



Figure 8 − Surface semi-elliptical, corner quart-elliptical, and internal elliptical cracks.

Figure 9 − A surface fatigue crack that started from a sharp rectangular notch and
grew with an approximately semi-elliptical front.

To exemplify the simplest case of this type of problem, the semi-elliptical surface
crack with a < c under pure normal loading ∆σ is briefly analyzed. The expression for
∆K(a) = ∆σ⋅[√(πa)⋅fa(a/c, a/t, c/W)] from the Newman and Raju solution [29] is quite
complex, although the ratio ∆K(a)/∆K(c) is relatively simple, allowing for the
visualization of the basic ideas of the calculation methodology
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The calculation model requires the crack type and initial size a0 and c0, the bar
geometry, the loading type, the mechanical properties, and the crack propagation rule
da/dN = F(∆K, R, ∆Kth, Kc, ...) of the material. A small crack increment δa must also be
specified (50µm, a number of the order of the resolution threshold of the crack
measurement methods in fatigue tests, can be a good choice both from the physical and
from the numeric points of view). From the complex loading, ∆σrms and Rrms are
calculated to obtain

∆Krms(a0) = ∆σrms⋅[√(πa0)⋅fa(a0/c0, a0/t, c0/W)]              (24)

The number of cycles N0 the crack takes to grow from a0 to a0 + δa is given by
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∆Krms(c0) can be calculated by Equation 23, or by an expression similar to Equation 24,
to get the correspondent growth in the direction of the semi-axis c, δc0, which is given by

 ,...)K,K,R),c(K(FNc cthrms0rms00 ∆∆δ ⋅=     (26)

The numerical calculation process can now start the coupled interactions making
∆Krms(a1) = ∆Krms(a0 + δa) and calculating N1 = δa/F(∆Krms(a1), Rrms, ∆Kth, Kc,...), in
order to get ,...)K,K,R),c(K(FNc cthrms1rms11 ∆∆δ ⋅= , where c1 = c0 + δc0, etc. The
precision of the methodology can be adjusted by the value of δa.

When compared to the 1D growth, the application of the ∆Krms method to the 2D
problem is more laborious and uses a less efficient integration method but does not
present supplementary conceptual difficulties. However, it should be noticed that the 2D
propagation presents some particularities that differentiate it from the 1D case. As these
cracks have different values for ∆K(a) and ∆K(c), there are three distinct 2D propagation
cases under simple loading (assuming ∆K(a) > ∆K(c) to start with)
1) ∆K(a0) and ∆K(c0) > ∆Kth: the crack spreads in both directions, changing shape at

each i-th load cycle depending on the ratio ∆K(ai)/∆K(ci).
2) ∆K(a0) > ∆Kth and ∆K(c0) < ∆Kth: the crack grows only in the a direction, until its size

is big enough to make ∆K(c0) > ∆Kth, when the problem reverts to Case 1 (there are,
however, pathological cases in which ∆K(a) decreases with a, and in these cases a
crack can start spreading to later on stop if it reaches ∆K(a) < ∆Kth). Moreover, it is
worth mentioning that this Case 2 is particularly deceiving in inspections, since the
trace of a surface crack can remain constant during millions of cycles [32], apparently
hinting that it is inactive, when in fact it is growing toward the inside of the piece,
until reaching ∆K(c0) > ∆Kth, when it starts to spread laterally in a relatively fast rate.

3) ∆K(a0) and ∆K(c0) < ∆Kth: the crack does not propagate.



In the complex loading case there are other details to consider. For instance, it is not
possible to guarantee 2D crack inactivity if ∆Krms(a0) and ∆Krms(c0) < ∆Kth. But, due to
space limitations, the study of these details is left for another work.

To conclude, it is worthwhile remembering that the ∆Krms method is the simplest way
to treat a complex loading problem, but it should only be used, as with any model, with
the due appreciation of its limitations.

The Cycle-by-Cycle Method

In the cycle-by-cycle method, each load reversion is associated to the crack growth it
would cause if it was the only one to load the piece (this implicates neglecting interaction
effects among the several events of a complex loading, such as overload-induced
retardation or arrest in the crack growth). Using this assumption, it is easy to write a
general expression for the cycle-by-cycle crack growth, by any crack propagation rule: if
da/dN = F(∆K, R, ∆Kth, KC,...), and if in the i-th 1/2 cycle of the loading the length of the
crack is ai, the stress range is ∆σi and the mean load causes Ri, then the crack grows by a
δai given by
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The total growth of the crack is quantified by Σ(δai). Therefore, the cycle-by-cycle
rule is similar in concept to the linear damage accumulation used in the SN and εN fatigue
design methods. And, as in Miner’s rule, it requests that all the events that cause fatigue
damage be recognized before the calculation, by rain-flow counting the loading.

However, this counting algorithm alters the order of the loading, as shown in Figure
10. This can cause serious problems in the predictions, because the loading order effects
in crack propagation are of two different natures.
• Delayed effects can retard or stop the subsequent growth of the crack due, e.g., to

plasticity-induced Elber-type crack closure [33] or to crack tip bifurcation. These
interaction effects among the loading cycles normally increase the crack life and, if
neglected in the calculation, may induce excessively conservative predictions.

• Instantaneous fracture occurs when Kmax = KC in one event, which must be precisely
predicted.
As already mentioned above, the loading input in the ViDa software is

sequential, and preserves the time order information that is lost when histograms or any
other loading statistics are generated. To take advantage of this feature, a sequential rain-
flow counting option was introduced in the software (Figure 10). The sequential rain-
flow reorders the results from the traditional rain-flow based on the ending point location
of each counted range pair [25]. With this technique, the effect of each large loading
event is counted when it happens (and not before its occurrence, as in the traditional rain-
flow method).
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Figure 10 − Traditional rain-flow counting, anticipating the large load events, and
sequential rain-flow counting, which preserves most of the loading order.

The main advantage of the sequential rain-flow counting algorithm is to avoid the
premature calculation of the overload effects, which can cause non-conservative crack
propagation life predictions (as K(σ, a) in general grows with the crack, a given overload
applied when the crack is large can be much more harmful than applied when the crack is
small). The sequential rain-flow does not eliminate all the sequencing problems caused
by the traditional method, but it is certainly an advisable option because it presents
advantages over the original algorithm, without increasing its difficulty.

As discussed in the ∆Krms method, the compressive part of the loading can be
discarded in the calculations, that is, the negative peaks and valleys can be zeroed before
the computations to decrease the numerical effort of the cycle-by-cycle method. And, in
the same way, a range filtering option can be very useful to discard small loads that cause
no damage inducing ∆Ki <∆Kth(Ri), following the ideas of the race-track method [34].

The range filtering can indeed significantly reduce the computational effort in fatigue
damage calculations if the complex loading history is long. But this procedure is
intrinsically non-conservative, because it can disregard damaging events as ∆Ki is not
available before the crack growth calculations (∆K depends not only on the loads, but
also on the size of the crack). In consequence, the conservative rule is to limit the cut of
the loading to the pairs (∆σi, Ri) that cause ∆K(af) < ∆Kth[R(af)], where af is the expected
final length for the crack. But, in practice it can be easier numerically to try decreasing
the ranges for the filtering, until there is no significant variation in the results.

The computational implementation of Equation 27, even with the pre-zeroing of the
compressive peaks and valleys and with the range filtering of the loading, is still not
numerically efficient. For this reason, an additional feature to reduce the computational
time can be quite useful: the option of maintaining the geometrical part of ∆K constant
during small variations in crack size.

As ∆K = ∆σ⋅[√(πa).f(a/W)], where f(a/W) is a non-dimensional function (usually
complicated) that depends only on the piece and crack geometry and not on the loading, it



can be said that the range of the stress intensity factor ∆Ki at each load reversion depends
on two variables of different nature:
1. on the stress range ∆σi in that event, and
2. on the length of the crack ai in that instant.
∆σi, of course, can vary significantly at each load reversion when the loading is complex,
but fatigue cracks always grow very slowly. In fact, at least in structural metals, the
largest rates of stable crack growth observed in practice are of the order of µm/cycle, and
during most of the life the crack growth rates are better measured in nm/cycle.

However, as in general the usually complicated  f(a/W) expressions do not present
discontinuities, one can take advantage of the small changes in f(a/W) during small
increments in crack length. In this way, instead of calculating at each load cycle the value
of ∆Ki = ∆σi⋅[√(πai)⋅f(ai/W)], a task that demands great computational effort, it is more
efficient to hold  f(ai/W) constant during a (small) percentage of crack increment δa%,
that should be specifiable by the calculation software user. The errors introduced by this
procedure are non-conservative, but they decrease quickly with the value specified for
δa%. Convergence is assumed when decreasing values of δa% do not influence
significantly the calculated crack growth. In practice, δa% values of the order of 0.5%
result in adequate predictions for most calculations [25].

Two-Dimensional Crack Growth by the Cycle-by-Cycle Method

The 2D growth of elliptical cracks problem can be treated in manner similar to that
already discussed in the ∆Krms method: if in the i-th loading event the ellipsoidal crack
has semi-axes ai and ci, under

∆K(ai) = ∆σi⋅[√(πai)⋅fa(ai/ci, ai/t, ci/W)]  and ∆K(ci) = ∆σi⋅[√(πai)⋅fc(ai/ci, ai/t, ci/W)]  (28)

stress intensity ranges, and if da/dN = F(∆K, R, ∆Kth, KC,...) is the crack growth rule of
the material, then the crack increment in this i-th 1/2 cycle is given by
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The crack growth is calculated by the simultaneous solution of Σδai and Σδci. As the
crack increments δai and δci depend on both ai and ci, the coupled 2D growth is well
characterized.

It is worth mentioning that all the comments made above about the filtering and the
counting of the loading can be also applied to 2D crack growth. In the same way, the
maintenance of  fa and  fc constant during a small δa% (or δc%) variation in crack length
is still more useful in 2D calculations, because the analytical expressions for fa and fc are
generally very complex, and demand great numerical effort. But, besides the



computational complexity, the 2D cycle-by-cycle problem does not present significant
supplementary conceptual difficulties over the 1D case.

Load Cycle Interaction Effects

It is a well-known fact that interaction problems among load cycles can have a very
significant effect in the prediction of fatigue crack growth. There is a vast literature
proving that tensile overloads, when applied over a loading whose amplitude otherwise
stays constant, can cause retardation or arrest in the crack growth, and that even
compressive overloads can sometimes affect the rate of subsequent crack propagation
[33, 35, 36].

Neglecting these effects in fatigue life calculations can completely invalidate the
predictions. In fact, only after considering overload induced retardation effects can the
life reached by real structural components be justified when modeling many practical
problems. However, the generation of an universal algorithm to quantify these effects is
particularly difficult, due to the number and to the complexity of the mechanisms
involved in fatigue crack retardation, among them: plasticity-induced crack closure;
blunting and/or bifurcation of the crack tip; residual stresses and/or strains; strain-
hardening; crack face roughness, and oxidation of the crack faces.

Besides, depending on the case, several of these mechanisms may act concomitantly
or competitively, as a function of factors such as: size of the crack; microstructure of the
material; dominant stress state, and environment.

The detailed discussion of this complex phenomenology is considered beyond the
scope of this work (a revision of the phenomenological problem can be found in [33]).
Moreover, the relative importance of the several mechanisms can vary from case to case,
and there is, so far, no universally accepted single equation capable of describing the
whole problem. Therefore, from the designer’s point of view it must necessarily be
treated in the most reasonably simplified way.

A simplified model can not be unrealistic so it is worthwhile mentioning that some
simplistic models are unacceptable. For example, attributing the overloads to a significant
variation in the residual stress state at the crack tip in order to justify the retardation
effects is not reasonable. This is mechanically impossible: the tensile yielding during the
loading and the compressive yielding during the unloading close to the crack tip during
fatigue crack propagation prevent any significant variation in the residual stress state at
the crack tip after an overload. On the other hand, the principal characteristic of fatigue
cracks is to propagate cutting a material that has already been deformed by the plastic
zone that always accompanies their tips. In this way, the fatigue crack faces are
embedded in an envelope of (plastic) residual strains and, consequently, they compress
their faces when completely discharged, and they open alleviating in a progressive way
the (compressive) load transmitted through their faces.

According to Elber [37], only after completely opening the crack at a load Kop, would
the crack tip be stressed. Therefore, the bigger the Kop, the less would be the effective
stress intensity range ∆Keff = Kmax − Kop, and this ∆Keff  instead of ∆K would be the crack
propagation rate controlling parameter. Most load interaction models are, although
indirectly, based in this idea. This implicates in the supposition that the principal
retardation mechanism is caused by plasticity induced crack closure: in these cases, the



opening load should increase when the crack penetrates into the plastic zone inflated by
the overload, reducing the ∆Keff  and stopping or delaying the crack, while the plastic
zones associated with the loading are contained in the overload induced plastic zone.

It is very important to emphasize that this is by no means the only mechanism that can
induce crack retardation. For example, Castro and Parks [38] showed that, under
dominant plane strain conditions, overload induced fatigue crack retardation or arrest can
occur while ∆Keff  increases. The principal retardation mechanism in those cases was
bifurcation of the crack tip.

The Wheeler model is the most popular retardation model [35]. The model is
simplistic and assumes, more or less arbitrarily, that while the loading plastic zone ZPi is
embedded in the overload plastic zone ZPov, the crack growth rate retardation depends on
the distance from the border of ZPov to the tip of the crack, see Figure 11.

The retardation is maximum just after the overload, and stops when the border of ZPi
touches the border of ZPov. Therefore, if aov and ai are the crack sizes at the instant of the
overload and at the i-th cycle, and (da/dN)reti and (da/dN)i are the retarded and the non-
retarded crack growth rate (at which the crack would be growing in the i-th cycle if the
overload had not occurred), then, according to Wheeler
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where β is an experimentally adjustable constant. Broek [35, 36] mentions Wheeler’s
data for steels (β = 1.43) and for Ti-6AL-4V (β = 3.4), and suggests that other typical
values for β are between 0 and 2.

Figure 11 − Wheeler crack growth retardation model.

It should be noticed that this model cannot predict crack arrest that has been observed.
As ZP ≈ (Kmax/SY)2, where SY is the yielding strength of the material, the maximum value
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of the predicted retardation happens immediately after the overload, and is equal to
(Kmax/Kov)2β, where Kmax is the maximum load in the cycle just after the overload, and
Kov is the overload peak. Therefore, the phenomenology of the load cycle interaction
problem is not completely reproducible by the Wheeler original model. However, also to
model crack arrest, a simple modification that seems reasonable is to use a Wheeler-like
parameter to multiply ∆K instead of da/dN after the overload
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where ∆Kret(ai) and ∆K(ai) are the values of the stress intensity factors that would be
acting at ai with and without retardation due to the overload, and γ is in general different
from the original model exponent β.  This simple modification can be used with any of
the propagation rules that recognize ∆Kth to predict both the retardation and the stop of
fatigue cracks after an overload (the stop occurring if ∆Kret(ai) < ∆Kth).

The numeric implementation of these retardation models in a cycle-by-cycle
algorithm is not conceptually difficult, but it requires a considerable programming effort.
To illustrate the main ideas, a simplified flow-chart of the calculation algorithm used in
the ViDa software is shown in Figure 12.
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Figure 12 − Simplified flow-chart of the calculation algorithm used in the ViDa
software to predict fatigue crack propagation under complex loading.



Some calculation details are worth mentioning. The first one refers to the use of the
δa% filter, since crack size increments that work well otherwise can cause troubles with
the retardation models, as the plastic zone sizes can be very small compared to the crack
size. In order to quantify the propagation gradient inside the overload affected zone, δa%
must be much smaller than ZPov.

A second one can save a lot of computational time when the loading is complex.
Small variations in the loading amplitude do not cause experimentally detectable crack
retardation, and they should not be considered as overloads in the calculation model.
Therefore, a numerical filter for overloads can be profitably introduced in the algorithm,
specifying that there is no overload effect if σj/σj-1 < α, where σj-1 and σj are successive
peaks of the loading and α is an adjustable constant (that, in the absence of better
information, can be chosen as 1.25 or 1.3).

There are several other retardation models [33, 39], but none of those that can be
implemented in a local approach code has definitive advantages over the simpler Wheeler
models discussed above. This is no surprise, since single equations are too simplistic to
model all the several mechanisms that can induce retardation effects. Therefore, in the
same way that a curve da/dN vs. ∆K is experimentally measured, a propagation model
can be adjusted to experimental data to calibrate the exponents of Equations 31 or 32, as
recommended by Broek [35].

Using these same concepts, it is not particularly difficult to model retardation effects
in 2D crack propagation. The idea is to maintain the fundamental hypothesis of the
ellipsoidal geometry preservation, accounting for the coupled growth of the semi-axes a
and c. However, as the size of the plastic zones depends on the value of ∆K, and as in
general ∆K(a) ≠ ∆K(c), the retardation effects in 2D growth can be different in each
direction. Thus, after each overload the value of ∆Kret(ai) and ∆Kret(ci) are calculated by

γ
∆∆ 









−+
⋅=

iovov

i
iiret a)a(ZPa

)a(ZP
)a(K)a(K ,  ai + ZP(ai) < aov + ZP(aov)       (33)

γ
∆∆ 









−+
⋅=

iovov

i
iiret c)c(ZPc

)c(ZP
)c(K)c(K ,  ci + ZP(ci) < cov + ZP(cov)        (34)

From these values, it is easy to calculate the crack growth in the two elliptic semi-
axes directions during the i-th 1/2 cycle of the loading
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,...)K,K),,(R),f,a,(K(F
2
1c cthmaxiciireti i ∆σσ∆σ∆∆δ ⋅=  (36)

Only the modified Wheeler model is presented above, but it is trivial to write similar
equations for the original model. Finally, it should be mentioned that all the filtering
remarks already discussed are also applied to the 2D case.



Conclusions

In this paper, a two-phase methodology was presented to predict fatigue crack
propagation in generic 2D structures under complex loading. First, self-adaptive finite-
elements were used to calculate, by three different methods, the fatigue crack path and
the stress intensity factors along the crack length KI(a) and KII(a), at each propagation
step. The calculated KI(a) was then used to predict the propagation fatigue life of the
structure by the local approach, using the root mean square or the cycle-by-cycle
integration methods, even considering overload-induced crack retardation effects in this
latter one. Two complementary software programs were developed to implement this
methodology. The first software package is an interactive graphics program for
simulating two-dimensional fracture processes based on a finite element adaptive mesh
generation strategy. The second is general purpose fatigue design software developed to
predict both initiation and propagation fatigue lives under complex loading by all
classical design methods. In particular, its crack propagation module accepts any stress
intensity factor expressions, including the ones generated by the finite-element software.
Experimental results showed that the presented methodology and its software
implementation could effectively predict fatigue crack propagation in an arbitrary two-
dimensional structural component.
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