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Summary 

 The modeling of load interaction effects on mode I fatigue crack propagation 
is discussed in this paper. Overload-induced retardation effects on the crack growth 
rate are considered, based on the crack closure idea, and a taxonomy of the load 
interaction models is presented. Modifications to the traditional retardation models 
are proposed to better model such effects as crack arrest, crack acceleration due to 
compressive underloads, and the effect of small cracks. These models are 
implemented on the ViDa software, developed to automate the fatigue dimensioning 
process by all the traditional methods used in mechanical design. Using this 
software, the presented load interaction models and the proposed modifications are 
compared with experimental results from various load spectra. In particular, the 
proposed modifications to the Wheeler model showed a good agreement with the 
experimental data. In a companion paper, these ideas are expanded to 2D crack 
propagation. 
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1. Introduction 
 It is a well known fact that load cycle interactions can have a very significant 
effect in the prediction of fatigue crack growth. There is a vast literature proving that 
tensile overloads, when applied over a constant amplitude loading, can cause 
retardation or arrest in the crack growth, and that even compressive overloads can 
sometimes affect the rate of subsequent crack propagation [1, 2, 3].  

Neglecting these effects in fatigue life calculations can completely invalidate 
the predictions. In fact, only after considering overload induced retardation effects 
can the life reached by real structural components be justified when modeling many 
practical problems. However, the generation of a universal algorithm to quantify 
these effects is particularly difficult, due to the number and to the complexity of the 
mechanisms involved in fatigue crack retardation, such as plasticity-induced crack 
closure, blunting and/or bifurcation of the crack tip, residual stresses and/or strains, 
strain-hardening, crack face roughness, and oxidation of the crack faces. Besides, 
depending on the case, several of these mechanisms may act concomitantly or 
competitively, as a function of factors such as crack size, material microstructure, 
dominant stress state, and environment. Moreover, the relative importance of the 
several mechanisms can vary from case to case, and there is so far no universally 
accepted single equation capable of describing the whole problem. 

On the other hand, the principal characteristic of fatigue cracks is to 
propagate cutting a material that has already been deformed by the plastic zone that 
always accompanies their tips. The fatigue crack faces are embedded in an 
envelope of (plastic) residual strains and, consequently they compress their faces 
when completely discharged, and open alleviating in a progressive way the 
(compressive) load transmitted through their faces.  

In this work, a review of plasticity induced crack closure is presented, along 
with the associated physical models. A taxonomy of load interaction models based 
on the crack closure idea is introduced, and improvements to the traditional 
retardation models are proposed to model crack arrest, crack acceleration after 
compressive underloads, and even the effect of small cracks. These models are 
extended to 2D cracks in [1]. A review of the crack closure models is presented next.  
 
2. Crack Closure 

In the early seventies, Elber [4] discovered that fatigue cracks can remain 
closed for loads substantially higher than the minimum applied load. This was 
attributed to the deformation of the crack plane remaining behind the crack tip, as the 
crack propagated through its plastic zone, a phenomenon termed plasticity-induced 
fatigue crack closure. According to him, only after the load completely opened the 
crack at a stress intensity factor Kop > 0, would the crack tip be stressed: the bigger 
the Kop, the less would be the effective stress intensity range ∆∆∆∆Keff = Kmax − Kop, and 
this ∆∆∆∆Keff  instead of ∆∆∆∆K would be the crack propagation rate controlling parameter. 
Elber was able to show by experiment on 2024T3 aluminum that the effective stress 
intensity ∆∆∆∆Keff, and consequently ∆∆∆∆Kth, is mainly dependent on the stress ratio R. To 
calculate crack propagation under constant amplitude loads, taking into account the 
crack closure concept, Elber proposed a modification to the Paris law by using this 
effective stress-intensity range, da/dN = A⋅⋅⋅⋅(∆∆∆∆Keff)m, where A and m are the growth 
rate constants.  From Elber's original expression, it follows that: 
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where ∆∆∆∆Kth is the threshold stress intensity factor range and ∆∆∆∆K is the stress 
intensity factor range. The threshold stress intensity factor range used in the above 
model can be determined for any positive stress ratio R > 0 using [5] 

∆∆∆∆Kth = (4/ππππ) ⋅⋅⋅⋅ ∆∆∆∆K0  arctan(1−−−−R)                                        (2) 

where ∆∆∆∆K0 is the threshold value of the stress-intensity factor range for R = 0 tests. 
Most load interaction models are, directly or indirectly, based on Elber's 

original crack closure idea. This implicates in the supposition that the main 
retardation mechanism is caused by plasticity induced crack closure: in these cases, 
the opening load should increase due to the plastic zone ahead of the crack tip, 
reducing the ∆∆∆∆Keff and delaying the crack growth. 

However, it is very important to emphasize that crack closure is by no means 
the only mechanism that can induce crack retardation. For example, Castro & Parks 
[6] showed that, under dominant plane strain conditions, overload induced fatigue 
crack retardation or stop can occur while ∆∆∆∆Keff increases. It was found that just after 
the overload the opening load decreased, a behavior incompatible with Elber-type 
crack closure. The main retardation mechanism in those cases was bifurcation of the 
crack tip. The next section presents analytical models to account for load interaction. 
 
3. Load Interaction Models 

Several mathematical models have been developed to account for load 
interaction in crack propagation based on Elber’s crack closure idea. In these 
methods, the retardation mechanism is only considered within the plastic zone 
situated in front of the crack tip. According to these procedures, a larger plastic zone 
is created by means of an overload. When the overload is removed, an increased 
compressive stress state is set up in the volume of its plastic zone, reducing crack 
propagation under a smaller succeeding load cycle. 

Perhaps the best-known models in the literature are those developed by 
Wheeler [7] and Willenborg [8]. They used the same model to decide whether crack 
propagation will be retarded or not. In both methods, retardation takes place as long 
as the crack a with its accompanying plastic zone remains within the plastic zone 
created by the peak load. That is, while the current plastic zone Zi is embedded in 
the overload zone Zol, the crack growth retardation depends on the distance from the 
border of Zol to the crack tip, see Figure 1. 
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Figure 1 − Yield zone retardation model used by Wheeler and Willenborg  
The main difference between the Wheeler and Willenborg procedures is that 

Willenborg takes account of the retardation effect by reducing the maximum and 
minimum stress intensity factors acting on the crack tip, while Wheeler takes account 
of the retardation effect by direct reduction of the crack propagation rate da/dN using 
a retardation function. Based on this and other differences, the load interaction 
models presented in this paper are divided in 4 categories: (i) da/dN models, such 
as the Wheeler model, which use retardation functions to directly reduce the 
calculated crack propagation rate da/dN; (ii) ∆∆∆∆K models, which use retardation 
functions to reduce the value of the stress intensity factor range ∆∆∆∆K; (iii) Reff models, 
such as the Willenborg model, which introduce an effective stress ratio Reff, 
calculated by reducing the maximum and minimum stress intensity factors acting on 
the crack tip, however not necessarily changing the value of ∆∆∆∆K; and (iv) Kop models, 
such as the strip yield model, which use estimates of the opening stress intensity 
factor Kop to directly account for Elber-type crack closure. 

The da/dN load interaction models are discussed next.  
 
3.1. da/dN Interaction Models 
 The da/dN interaction models use retardation functions to directly reduce the 
calculated crack propagation rate da/dN. Wheeler is the most popular of such 
models [7]. Wheeler introduced a crack-growth reduction factor, bounded by zero 
and unity, which is calculated for each cycle and is used as a multiplying factor on 
the crack growth increment for each cycle. There is retardation as long as the current 
plastic zone is contained within a previously overload-induced plastic zone. The 
retardation is maximum just after the overload, and stops when the border of Zi 
touches the border of Zol, see Figure 1. Therefore, if aol and ai are the crack sizes at 
the instant of the overload and at the i-th cycle, and (da/dN)eff,i and (da/dN)i are the 
effective (retarded) and the non-retarded crack growth rate (at which the crack would 
be growing if the overload had not occurred), then, according to Wheeler:  
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where ββββ is an experimentally adjustable constant. 
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The exponent ββββ is obtained by selecting the closest match among predicted 
crack growth curves (using several ββββ-values) with an experimental curve obtained 
under spectrum loading [9]. Wheeler found experimentally that the shaping 
exponent, ββββ, was material dependent, having values of 1.43 for a steel and 3.4 for 
the titanium alloy Ti-6AL-4V. Broek [2] suggests that other typical values for ββββ are 
between 0 and 2. However, flight-by-flight crack propagation tests performed by 
Sippel et al. [10] have shown that the exponent ββββ is dependent not only on the 
material, but also on crack shape, stress level, as well as type of load spectrum. 
Finney [11] found experimentally that the calibration ββββ-value depends on the 
maximum stress in the spectrum and on the crack shape parameter Q (defined as   
Q = 1+1.464⋅⋅⋅⋅[a/c]1.65 for surface cracks with depth a and width 2c, and Q = 1 for 
through cracks). Therefore, life predictions based on limited amounts of supporting 
test data, or with spectra radically different from those for which the exponent ββββ was 
derived, can lead to inaccurate and unconservative results. 
 In summary, the selection of proper values for the Wheeler exponent ββββ usually 
yields adequate crack-growth predictions. In fact, one of the earlier advantages of 
the Wheeler model is that the exponent ββββ can be tailored to allow for reasonably 
accurate life predictions. However, the Wheeler model cannot predict the observed 
phenomenon of crack arrest. As Zi ≈≈≈≈ (Kmax/Sy)2, the lowest value of the predicted 
retardation factor happens immediately after the overload, and is equal to 
(Kmax/Kol)2ββββ, where Kmax is the maximum stress intensity factor in the cycle just after 
the overload, and Kol is the overload stress intensity factor. Therefore, the 
phenomenology of the load cycle interaction problem is not completely reproducible 
by the Wheeler model, since such retardation factor is always different than zero. To 
consider crack arrest, a modification of the Wheeler original model is presented next. 
 
3.2.  ∆∆∆∆K Interaction Models 
 The ∆∆∆∆K interaction models use retardation functions to directly reduce the 
value of the stress intensity range ∆∆∆∆K. Meggiolaro and Castro [12] proposed a simple 
but effective modification to the original Wheeler model in order to predict crack 
arrest. This modified approach, called Modified Wheeler model, uses a Wheeler-like 
parameter to multiply ∆∆∆∆K instead of da/dN after the overload: 
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where ∆∆∆∆Keff(ai) and ∆∆∆∆K(ai) are the values of the stress intensity ranges that would be 
acting at ai with and without retardation due to the overload, and γγγγ is an 
experimentally adjustable constant, in general different from the original Wheeler 
model exponent ββββ. This simple modification can be used with any of the propagation 
rules that recognize ∆∆∆∆Kth to predict both the retardation and the arrest of fatigue 
cracks after an overload (the arrest occurring if ∆∆∆∆Keff(ai) ≤≤≤≤ ∆∆∆∆Kth). 

The Modified Wheeler model predicts both crack retardation and crack arrest, 
however it does not model the reduction of retardation effects due to underloads. An 
underload stress, defined as the lowest compressive or tensile stress subsequent to 
the last overload cycle, can reduce the overload-induced retardation effects (also 
referred to as crack acceleration). Several mechanisms can be used to explain this 
crack acceleration phenomenon. 
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Chang et al. [13] proposed the concept of an effective overload plastic zone to 
model crack acceleration. In Chang's crack acceleration concept, the overload 
plastic zone Zol is reduced to an effective value (Zol)eff after a compressive 
underload, reducing the crack retardation effects by increasing the retardation 
parameter from equations (3) and (4), 

oluleffol Z)R1()Z( ⋅⋅⋅⋅++++==== , where  




<<<<
≥≥≥≥
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R
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where Rul is the underload stress ratio σσσσul / σσσσol, σσσσul is the lowest underload stress 
after the most recent overload σσσσol, and R−−−− is a cutoff value for negative stress ratios 
(with −−−−1 < R−−−− < 0). The overload plastic zone Zol is then replaced in equation (4) by its 
effective value (Zol)eff to calculate the (increased) value of ∆∆∆∆Keff. 
 Equations (4-5), when applied to a crack propagation law that recognizes 
∆∆∆∆Kth, can effectively predict crack retardation, arrest, and even acceleration. 
However, for a constant amplitude loading history, all Wheeler and Willenborg-type 
models predict no retardation, since the current plastic zone is always on or slightly 
ahead of the previous ones, never embedded. Even though these load interaction 
models are indirectly based on Elber’s crack closure idea, none of them can predict 
the reduction in crack growth due to closure under constant amplitude. The reason 
for this idiosyncrasy is that most load interaction models only consider the 
retardation effects due to secondary plasticity, not primary. Primary plasticity refers 
to a plastic zone that causes yielding on previously virgin material, while secondary 
plasticity is termed for a plastic zone fully contained within a previous plastic zone 
generated by an overload, see Figure 1. Both primary and secondary plasticities 
cause a rise in the crack opening stress, decreasing the crack growth rate, however 
only secondary plasticity is considered in such load interaction models. 
 To consider the retardation effect due to both primary and secondary 
plasticities, a load interaction model called Generalized Wheeler is proposed here. 
Based on the Modified Wheeler model and on Chang’s crack acceleration concept, 
the Generalized Wheeler model calculates the effective stress intensity range by 
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where ulR  is defined in equation (5), f is the Newman closure function [14], defined 
as the ratio Kop/Kmax between the crack opening and the maximum stress intensity 
factors at each cycle, and γγγγ’ is an experimentally adjustable constant. This proposed 
model recognizes crack retardation and arrest due to overloads, crack acceleration 
(reduction in retardation) due to underloads, and even retardation due to crack 
closure under constant amplitude loading. Another advantage of the Generalized 
Wheeler model is that it can be applied to any da/dN equation, in contrast with the 
Willenborg model, which can only be applied to da/dN equations that explicitly model 
the stress ratio R, as explained below. 
 
3.3.  Reff Interaction Models 

In the Reff models, an effective stress ratio Reff is introduced, calculated by 
reducing the maximum and minimum stress intensity factors acting on the crack tip. 
The best-known Reff model is the Willenborg model [8]. As in the Wheeler model, 
the retardation for a given applied cycle depends on the loading and the extent of 
crack growth into the overload plastic zone. Willenborg et al. assumed that the 
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maximum stress intensity factor Kmax occurring at the current crack length ai will be 
reduced by a residual stress intensity KR

W. The value of KR
W is calculated, more or 

less arbitrarily, from the difference between the stress intensity required to produce a 
plastic zone that would reach the overload zone border (distant Zol + aol − ai from the 
current crack tip) and the current maximum applied stress intensity Kmax, 

maxoliololol
W

R KZ)aaZ(KK −−−−−−−−++++====   (7) 

where Kol is the maximum stress intensity of the overload, Zol is the overload plastic 
zone size, and aol is the crack size at the ocurrence of the overload (see Figure 1).   

Willenborg et al. expect that both stress intensity factors Kmax and Kmin at the 
current i-th cycle are effectively reduced by an amount KR

W. Since the stress-
intensity range ∆∆∆∆K is unchanged by the uniform reduction, the retardation effect is 
only sensed by the change in the effective stress ratio Reff calculated by 
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As a result, crack propagation rules that do not model explicitly the effects of the 
stress ratio R cannot be used with the Willenborg retardation model. For instance, if 
the Paris law is used for crack propagation, the Willenborg model will not predict 
crack retardation after overloads, since the value of ∆∆∆∆K remains unchanged (and 
thus the value of da/dN as well). This is a limitation of the original Willenborg 
formulation, not present in the Wheeler model. 

A problem in the original Willenborg model is the prediction that Keff,max = 0 
(and therefore crack arrest) immediately after overload if Kol ≥≥≥≥ 2 Kmax. That is, if the 
overload is twice as large as (or larger than) the following loads, the Willenborg 
model implies that the crack always arrests. 

To account for the observations of continuing crack propagation after 
overloads larger than a factor of two or more (i.e. shut-off ratios larger than 2), 
Gallagher [15] generalized Willenborg's original development [8] by introducing an 
empirical (spectra/material) constant into the calculations. In Gallagher's 
Generalized Willenborg model, a modified residual stress intensity KR = ΦΦΦΦ⋅⋅⋅⋅KR

W is 
used, instead of Willenborg's original KR

W, where ΦΦΦΦ is given by 

1R
K/K1

so

th
−−−−
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and Rso is a constant defined as the overload (shut-off) ratio required to cause crack 
arrest. Using this constant it is possible to model shut-off ratios different than 2 for 
Kol/Kmax, compensating for this Willenborg's original model limitation. Typical values 
for Rso are 3.5 for steel and nickel alloys, and 2.3 for aluminum and titanium alloys. 
The value of the shut-off ratio Rso is not only material-dependent, but it is also 
affected by the stress level and the frequency of overload cycle occurrence. Note 
that in general the GW model predicts larger Reff values (and thus less retardation) 
than Willenborg's original model. However, in the Generalized Willenborg model, no 
special consideration is given to multiple overloads or stress levels, and their effect is 
taken to be the same as that for a single overload. Also, this model cannot predict 
the observed reduction in crack retardation after underloads. 

Several other Reff models have been proposed, such as the Modified 
Generalized Willenborg and the Walker-Chang Willenborg [16, 17]. However, 
even with all proposed modifications to improve the original Willenborg model, the 
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assumption regarding the residual compressive stresses through the residual stress 
intensity KR

W is still very doubtful [2]. To better model the closure effects on crack 
retardation, some methods directly estimate the value of the opening stress 
intensity factor Kop, instead of indirectly accounting for its effects through arbitrary 
parameters such as KR

W. These Kop load interaction models are presented next. 
 
3.4.  Kop Interaction Models 

In the Kop models, the opening stress intensity factor Kop caused by an 
overload is directly computed and applied to the subsequent crack growth to 
account for Elber-type crack closure. Perhaps the simplest Kop model is the 
Constant Closure model, originally developed at Northrop for use on their classified 
programs [18]. This load interaction model is based on the observation that for some 
load spectra the closure stress does not deviate substantially from a certain 
stabilized value. This stabilized value is determined by assuming that the spectrum 
has a "controlling overload" and a "controlling underload" that occur often enough to 
keep the residual stresses constant, and thus the closure level constant. 

In the constant closure model, the opening stress intensity factor Kop is the 
only empirical parameter, with estimates between 30% and 50% of the maximum 
overload stress intensity factor. The crack opening stress Kop can also be calculated, 
for instance, from Newman's closure function [14], using the stress ratio R between 
the controlling underload and overload stresses. The value of Kop, calculated for the 
controlling overload event, is then applied to the following (smaller) loads to compute 
crack growth, recognizing crack retardation and even crack arrest (if Kmax ≤≤≤≤ Kop). 

The main limitation of the Constant Closure model is that it can only be 
applied to loading histories with "frequent controlling overloads", because it does not 
model the decreasing retardation effects as the crack tip cuts through the overload 
plastic zone, as shown in equations (3) and (7) for the Wheeler and Willenborg 
models. In the Constant Closure model, it is assumed that a new overload zone, with 
primary plasticity, is formed often enough before the crack can significantly 
propagate through the previous plastic zone, thus not modeling secondary plasticity 
effects by keeping Kop constant. 
 To account for crack retardation due to both primary and secondary plasticity, 
the European Space Agency and the National Aerospace Laboratory in the 
Netherlands, in cooperation with NASA, developed the DeKoning-Newman Strip 
Yield load interaction model [19, 20]. In this model, a crack growth law is described 
in an incremental way, modeling crack growth attributed to increments δδδδK in the 
stress intensity factor as the crack changes from closed to fully open configurations. 
This incremental law is then integrated at each cycle from the minimum to the 
maximum stress intensity factors Kmin and Kmax to find the crack growth rate da/dN. 

This incremental description also allows that a distinction be made between 
the part of a load range where secondary plastic flow is observed and the part where 
primary plastic flow starts developing under a monotonic increasing load. For each of 
these domains, a different incremental crack growth law can be formulated [1]. In this 
way, it is possible to effectively calculate fatigue crack growth considering retardation 
and arrest due to both primary and secondary plasticity. However, the penalty of this 
approach is the large number of required experimental constants, in addition to the 
numerical effort. 
 There are several other load interaction models in the literature [21, 22], but 
none of them has definitive advantages over the models discussed above. This is no 
surprise, since single equations are too simplistic to model all the several 
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mechanisms that can induce retardation effects. Therefore, in the same way that a 
curve da/dN vs. ∆∆∆∆K must be experimentally measured, a load interaction model must 
be calibrated through experimental data, as recommended by Broek [2]. 
 
4. Comparison of the Load Interaction Models 

All load interaction models presented in this work have been implemented in 
ViDa, a powerful software developed to automate the fatigue dimensioning process 
by all the traditional methods used in mechanical design [23-25]. This software has 
been developed to predict both initiation and propagation fatigue lives under 
complex loading by all classical design methods: SN, IIW (for welded structures) and 
εεεεN to predict crack initiation, and da/dN for studying 1D and 2D crack propagation, 
considering retardation effects. Here, the presented load interaction models and the 
proposed modifications are compared, using the efficient numerical methods in 
ViDa, with experimental results from various load histories. 
 Using ViDa, the crack propagation life of an 8-mm-thick center-cracked 
tensile specimen, made of a 7475-T7351 aluminum alloy, is calculated using several 
block loading histories, including underload and overload events (see Table 1). The 
calculated lives are compared to experimental tests performed by Zhang [26, 27], 
who measured crack growth rates through scanning electron microscopy. Forman's 
da/dN equation proposed in [5] is used to compute crack growth (in mm), using        
A = 6.9⋅⋅⋅⋅10-7, m = 2.212, p = 0.5, q = 1.0, ∆∆∆∆K0 = 3MPa√√√√m, and KC = 73MPa√√√√m. All 
models are calibrated using the first history (except for the Willenborg model, without 
parameters to be adjusted), and a comparison is made through the remaining 
loadings. Table 1 shows Zhang's test results and the percentage error of the 
predicted lives using several load interaction models.  

 
 
 

Loading history 

 
 
 

Zhang's 
test life 
(cycles) 

       

50

1 0 0
60
20

N /m m 2

 
474,240 −17%    0%    0% +293%    0%    0%    0% 

1 0 0

1 0 0
60
20

 
637,730 −36% −22% −22% +269% −22% −22% −22% 

1 0 0

1 0 0
6 0
2 0

5  
409,620 −13% +2.3% +2.3% +185% +2.2% +2.6% +2.4% 

39

1 0 0
6 0
2 0

1 4 0

 
251,050 −27% −18% −18% +27% −20% +24% −75% 

40

1 0 0
60
20

1 4 0

 
149,890 −2.3% +6.6% +6.4% +44% +4.0% +42% −60% 

Table 1 − Percentage errors in the test lives predicted by the load interaction models 
 
 As expected, the Willenborg model resulted in poor predictions, since this 
model cannot be calibrated. The remaining models performed similarly for the 
second and third histories. However, as the maximum load increased from 100 to 
140 MPa in the last two histories, the Modified Generalized Willenborg and the 
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Constant Closure models showed increased errors. The Wheeler and Generalized 
Wheeler models performed very similarly, because the considered histories didn't 
include compressive underloads. These two models and the Generalized Willenborg 
model resulted in the best predictions for Zhang's histories. Unfortunately, these 
tests were performed under the second crack growth regimen (not influenced by the 
threshold ∆∆∆∆Kth), so the advantages of the Modified and Generalized Wheeler in 
modeling crack arrest could not be exemplified here. 
 
5. Conclusions 

In this work, load interaction effects on fatigue crack propagation were 
discussed. Overload-induced retardation effects on the crack growth rate were 
evaluated using several different models, and improvements to the traditional 
equations were proposed to recognize crack arrest and acceleration due to 
compressive underloads. The models have been implemented on a general-purpose 
fatigue design software named ViDa, developed to predict both initiation and 
propagation fatigue lives under complex loading by all classical design methods. 
Using this software, the presented load interaction models and the proposed 
modifications were compared with experimental results on center-cracked tensile 
specimens for various load spectra. In particular, the proposed modifications to the 
Wheeler model showed a good agreement with the experimental data. 
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