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Abstract. Several mathematical models have been developed to account for load interaction effects in mode I fatigue crack
propagation, based on Elber's crack closure idea. Elber described, with the aid of a physical model, the connection between load
sequence, plastic deformation and crack propagation, assuming that crack growth cannot take place under cyclic loads until the
crack is fully opened. Since overloads induce compressive stress states ahead of the crack tip after the load is removed, a reduction
in crack propagation under a smaller succeeding load cycle is expected. Such retardation mechanisms are only considered within
the overload-induced plastic zone situated in front of the crack tip. In this paper a review of the main load interaction models, such
as the Wheeler and the Generalized Willenborg models, is presented. Modifications to the traditional retardation models are
proposed to better model such effects as crack arrest and reduction in crack retardation due to underloads. The traditional models
and the proposed modifications have been implemented on a software called ViDa, developed to automate the fatigue dimensioning
process by all the traditional methods used in mechanical design. Using this software, the presented load interaction models and the
proposed modifications are compared with experimental results from the literature for various load spectra.
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1. Introduction

It is well known that load cycle interactions can have a very significant effect in the prediction of fatigue crack
growth. There is a vast literature proving that tensile overloads, when applied over a loading whose amplitude otherwise
stays constant, can retard or even arrest the subsequent crack growth (Broek, 1988; Suresh, 1998; Castro and
Meggiolaro, 2001). Neglecting these effects in fatigue life calculations under complex loading can completely
invalidate the predictions.

However, the generation of a universal algorithm to quantify these effects for design purposes is particularly
difficult, due to the number and to the complexity of the mechanisms involved in fatigue crack retardation, among
them: plasticity-induced crack closure; blunting and/or bifurcation of the crack tip; residual stresses and/or strains;
strain-hardening and/or strain induced phase transformation; crack face roughness; and oxidation of the crack faces. The
detailed discussion of this complex phenomenology is considered beyond the scope of this work, but a revision of the
phenomenological problem can be found in Suresh (1998).

Besides, depending on the case, several of these mechanisms may act concomitantly or competitively, as a function
of factors such as size of the crack; microstructure of the material; dominant stress state; and environment. Moreover,
the relative importance of the several mechanisms can vary from case to case, and there is so far no universally accepted
single equation capable of describing the whole problem. Therefore, from the fatigue designer’s point of view, it must
necessarily be treated in the most reasonably simplified way.

On the other hand, the principal characteristic of fatigue cracks is to propagate cutting a material that has already
been deformed by the plastic zone that always accompanies their tips. Therefore, fatigue crack faces are always
embedded in an envelope of (plastic) residual strains and, consequently, they compress their faces when completely
discharged, and open alleviating in a progressive way the (compressive) load transmitted through them.

In this work, a review of plasticity induced crack closure is presented, along with the models proposed to quantify
its effect on the subsequent crack growth rate. A taxonomy of load interaction models based on the crack closure idea is
introduced, and improvements to the traditional retardation models are proposed to better model crack arrest and crack
acceleration after compressive underloads. The models are compared using a general-purpose fatigue design software
named ViDa . A review of the crack closure models is presented next.

2. Crack closure

Elber (1971) discovered that fatigue cracks opened gradually, remaining partially closed for loads substantially
higher than zero. This was attributed to the compressive loads transmitted through the faces of an unloaded fatigue
crack, caused by the plastic strains surrounding it, a phenomenon termed plasticity-induced fatigue crack closure.
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Elber was one of the first to attempt to describe, with the aid of a physical model, the connection between load
sequence, plastic deformation (by way of crack closure) and crack growth rate. He assumed that crack expansion cannot
take place under cyclic loads until the fatigue crack is fully opened. According to him, only after the load completely
opened the crack at a stress intensity factor Kop > 0, would the crack tip be stressed. Therefore, the bigger the Kop, the
less would be the effective stress intensity range ∆∆∆∆Keff = Kmax −−−− Kop, and this ∆∆∆∆Keff instead of ∆∆∆∆K = Kmax – Kmin would
be the fatigue crack propagation rate controlling parameter.

Based on experiments on 2024-T3 aluminum, Elber proposed a modification to the Paris growth law by using this
effective stress-intensity range to calculate the crack propagation under constant amplitude loads, taking into account
the crack closure concept:
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where A and m are the experimental growth rate constants. Note that ∆∆∆∆K = (1 –R) ⋅⋅⋅⋅Kmax, and the fatigue crack growth
rate da/dN tends to 0 when ∆∆∆∆K tends to ∆∆∆∆Kth, the propagation threshold. This implies that ∆∆∆∆Kth = (1 – R) ⋅⋅⋅⋅Kop when
closure is the only crack arrest mechanism, and that ∆∆∆∆Keff  is dependent on the stress ratio R = Kmin/Kmax:
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The threshold stress intensity factor range used in this model can be determined for any stress ratio R > 0 by:

∆∆∆∆Kth = (4/ππππ) ⋅⋅⋅⋅ ∆∆∆∆K0 ⋅⋅⋅⋅ arctan(1−−−−R)                                                  (3)

where ∆∆∆∆K0 is the crack propagation threshold value of the stress-intensity factor range obtained from R = 0 constant
amplitude tests (Forman et al., 1992).

Newman (1984) found that crack closure does not only depend on R, as Elber found, but is also dependent on the
maximum stress level σσσσmax. He proposed an equation for the crack opening function f, which includes the effects of the
ratio between the maximum stress σσσσmax and the material flow strength Sfl (defined as the average between the material
yielding and ultimate strengths, Sfl = (SY + SU)/2), and of a plane stress/strain constraint factor αααα, with values ranging
from α α α α = 1 for plane stress to α α α α = 3 for plane strain:
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where the polynomial coefficients are given by:
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Increasing values of the maximum stress cause reduction in the Newman closure function, resulting in reduction in
crack retardation. From the definition of the Newman’s closure function f, the effective stress intensity range ∆∆∆∆Keff =
Kmax −−−− Kop can be rewritten as
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Assuming that the fatigue crack growth rate is controlled by ∆∆∆∆Keff instead of by ∆∆∆∆K (and, therefore, that closure is
the only mechanism which affects the propagation process), the need for taking into account crack closure effects when
experimentally obtaining da/dN equation constants must be stressed. Consider, for instance, the effective stress
intensity range ∆∆∆∆Keff predicted by Newman for the plane stress case with R = 0, using Eqs. (4-6). In this case, ∆∆∆∆Keff is
approximately equal to half the value of ∆∆∆∆K. This means that the da/dN curves experimentally fitted to ∆∆∆∆K values
without considering the crack closure effect would be actually correlating the measured da/dN rates with twice the
actual (effective) stress intensity range acting on the crack tip. On the other hand, da/dN curves obtained in the same
way (R = 0) under plane strain conditions would be actually correlating da/dN with 4/3 (and not twice) of the effective
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stress intensity range. Therefore, one could not indiscriminately use crack growth equation constants obtained under a
certain stress condition (e.g. plane stress) to predict crack growth under a different state (e.g. plane strain), even under
the same stress ratio R.

E.g., if a Paris da/dN vs. ∆∆∆∆K equation with exponent m = 3.0, measured under plane stress conditions and R = 0, is
used to predict crack propagation under plane strain, the predicted crack growth rate would be [(4/3)/2]m ≈≈≈≈ 0.3 times the
actual rate, a non-conservative error of 70%. In this case, it would be necessary to convert the measured crack growth
constants associated with one stress condition to the other using appropriate crack closure functions, to avoid this error.
Another approach would be to use in the predictions da/dN vs. ∆∆∆∆K equations that already have embedded the closure
functions.

This alarming result implies that the usual practice of plotting da/dN vs. ∆∆∆∆K instead of ∆∆∆∆Keff would be highly
inappropriate, because da/dN would also be a strong function of the specimen thickness t, which controls the dominant
stress state at the crack tip. Assuming that the classical ASTM E399 requirements for validating a KIC toughness test
can also be used in fatigue crack growth, plane strain conditions would apply if t > 2.5(Kmax/SY)2. Therefore, one could
expect quite different da/dN fatigue crack growth rates when thin or thick specimens were tested under the same ∆∆∆∆K.
But fatigue designers normally do not consider t as such an important parameter in crack growth calculations.

In any way, it is very important to emphasize that crack closure is by no means the only mechanism that can induce
crack retardation. For example, Castro and Parks (1982) showed that, under dominant plane strain conditions, overload
induced fatigue crack retardation or stop can occur while ∆∆∆∆Keff increases. It was found that just after the overload the
opening load decreased, a behavior completely incompatible with Elber-type crack closure. The principal retardation
mechanism in those cases was bifurcation of the crack tip.

Even though the above example shows the crack closure concept in a different light, most load interaction models
are, directly or indirectly, based on Elber's original idea. This implicates in the supposition that the main retardation
mechanism is caused by plasticity induced crack closure: in these cases, the opening load Kop should increase due to
the plastic zone ahead of the crack tip, reducing the ∆∆∆∆Keff and delaying the crack growth.

However, the equations presented in this section are derived from experimental data or finite-element predictions
for constant-amplitude fatigue tests. As such they can account for closure effects in constant amplitude fatigue data (by
collapsing da/dN vs. ∆∆∆∆K curves for multiple R values), but they cannot account for stress-interaction effects such as
growth rate retardation or acceleration after overloads or underloads. To recognize load interaction effects, it is in
general necessary to compute the overload-induced plastic zone size and compare it with the (embedded) current plastic
zone. The next section presents analytical models to account for such load interaction effects.

3. Load interaction models

Several mathematical models have been developed to account for load interaction effects in fatigue crack
propagation based on Elber’s crack closure idea. In these models, the retardation mechanism is considered to act only
within the overload-induced plastic zone situated in front of the crack tip. The size of this overload plastic zone being
(considerably) greater than the size of the plastic zone induced by subsequent load cycles, an increased compressive
stress state would be set up inside that region, which would be then the main contributing factor for reducing the crack
propagation rate under smaller succeeding load cycles.

Perhaps the best-known fatigue crack growth retardation models are those developed by Wheeler (1972) and by
Willenborg et al. (1971). Both use the same idea to decide whether the crack is retarded or not: under variable loading,
fatigue crack growth retardation is predicted when the plastic zone of the i-th load event Zi is embedded within the
plastic zone Zol induced by a previous overload, and it is assumed dependent on the distance from the border of Zol to
the tip of the i-th crack plastic zone Zi, see Fig. (1).

Figure 1. Yield zone crack growth retardation region used by Wheeler and by Willenborg.

In Fig. (1), aol is the size of the crack when the overload occurs, and ai is the (larger) crack size at  the  i-th load
event, which occurs after the overload. According to both the Wheeler and the Willenborg models, load interaction
effects would end when aol + Zol = ai + Zi. Moreover, the magnitude of the retardation effect would be a function of
Zi/(Zol + aol – ai), it would be maximum in the very first cycle after the overload, and it would steadily decrease as the
crack progressively grew though the overload plastic zone.

This assumption may be mathematically convenient, but it is hard to physically justify. If the crack must enter the
overload inflated plastic zone to be retarded, it does not seem reasonable to assume that the maximum retardation effect
occurs in the very first cycle after it, when the crack barely crossed the Zol frontier. In fact, Von Euw et al. (1972)
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obtained experimental results under plane stress conditions which support this view. Moreover, it must be emphasized
again that plasticity induced crack closure is not the only important mechanism which can induce retardation effects.

The main difference between the Wheeler and Willenborg models is that the latter quantifies the retardation effect
by reducing Kmax and Kmin acting on the crack tip, while Wheeler accounts it by direct reduction of the crack
propagation rate da/dN. Based on this and other differences, the load interaction models presented in this paper are
divided in 4 categories:
(i) da/dN models, such as the Wheeler model, which use retardation functions to directly reduce the calculated crack

propagation rate da/dN;
(ii) ∆∆∆∆K models, which use retardation functions to reduce the stress intensity range ∆∆∆∆K;
(iii) Reff models, such as the Willenborg model, which introduce an effective stress ratio Reff, calculated by reducing the

maximum and minimum stress intensity factors Kmax and Kmin acting on the crack tip (however not necessarily
changing the value of ∆∆∆∆K); and

(iv) Kop models, such as the strip yield model, which use estimates of the opening stress intensity factor Kop to directly
account for Elber-type crack closure.

3.1. da/dN interaction models

The da/dN interaction models use retardation functions to directly reduce the calculated crack propagation rate
da/dN. Wheeler (1972) is the most popular of such models. He introduced a crack-growth reduction factor, Cr, bounded
by zero and unity, which is calculated for each cycle and is used as a multiplying factor on the crack growth rate for
each cycle. There is retardation as long as the current plastic zone is contained within a previously overload-induced
plastic zone; this is the fundamental assumption of the yield zone models. The retardation is maximum just after the
overload, and stops when the border of Zi touches the border of Zol, see Fig. (1).

Therefore, if aol and ai are the crack sizes at the instant of the overload and at the (later) i-th cycle, and (da/dN)ret,i

and (da/dN)i are the retarded and the corresponding non-retarded crack growth rate (at which the crack would be
growing in the i-th cycle if the overload had not occurred), then, according to Wheeler:
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where ββββ is an experimentally adjustable constant.
The exponent ββββ is obtained by selecting the closest match among predicted crack growth curves (using several ββββ-

values) with an experimental curve obtained under spectrum loading. Wheeler found experimentally that the shaping
exponent, ββββ, was material dependent, having values of 1.43 for a steel and 3.4 for the titanium alloy Ti-6AL-4V. Broek
(1988) suggests that other typical values for ββββ are between 0 and 2. However, flight-by-flight crack propagation tests
performed by Sippel et al. (1977) have shown that the exponent ββββ is dependent not only on the material, but also on
crack shape, stress level, as well as type of load spectrum. Therefore, the designer should be aware that life predictions
based on limited amounts of supporting test data, or for spectra radically different from those for which the exponent ββββ
was derived, can lead to inaccurate and non-conservative results.

In summary, the selection of proper values for the Wheeler exponent ββββ can yield reasonable crack-growth
predictions when the (complex) loads have similar spectra. However, the Wheeler model cannot predict the
phenomenon of crack arrest. As Zi ≈≈≈≈ (Kmax/SY)2, the lowest value of the predicted retardation factor happens
immediately after the overload, and is equal to (Kmax/Kol)

2ββββ, where Kmax is the maximum stress intensity factor in the
cycle just after the overload, and Kol is the overload stress intensity factor. Therefore, the phenomenology of the load
cycle interaction problem is not completely reproducible by the Wheeler model, since such retardation factor is always
different than zero. To consider crack arrest, a modification of the Wheeler original model is presented next.

3.2.  ∆∆∆∆K interaction models

The ∆∆∆∆K interaction models use retardation functions to directly reduce the value of the stress intensity range ∆∆∆∆K.
Meggiolaro and Castro (1997) proposed a simple but effective modification to the original Wheeler model in order to
predict both crack retardation and arrest. This approach, called the Modified Wheeler model, uses a Wheeler-like
parameter to multiply ∆∆∆∆K instead of da/dN after the overload:
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where ∆∆∆∆Kret(ai) and ∆∆∆∆K(ai) are the values of the stress intensity ranges that would be acting at ai with and without
retardation due to the overload, and γγγγ is an experimentally adjustable constant, in general different from the original
Wheeler model exponent ββββ. This simple modification can be used with any of the propagation rules that recognize ∆∆∆∆Kth
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to predict both the retardation and the arrest of fatigue cracks after an overload (the arrest occurring if ∆∆∆∆Kret(ai) ≤≤≤≤ ∆∆∆∆Kth).
In addition to the retarded stress intensity range ∆∆∆∆Kret, the retarded stress ratio Rret can also be calculated:

Rret(ai) = 1 −−−− ∆∆∆∆Kret(ai) / Kmax            (9)

where Kmax is the maximum load at the i-th cycle.
However, the Modified Wheeler model does not predict the reduction of retardation effects due to underloads

subsequent to overload cycles, a phenomenon also referred to as crack acceleration (Suresh, 1998). An underload cycle
occurs when its minimum value Kmin is significantly smaller than the corresponding values of the previous or the
subsequent cycles.

Chang et al. (1984) proposed the concept of an effective overload plastic zone to model crack acceleration. In
Chang's crack acceleration concept, the overload plastic zone Zol is reduced to (Zol)ul after a compressive underload,
reducing the crack retardation effects by increasing the retardation parameter from Eqs. (7-8). Chang’s acceleration
concept was originally developed for the Willenborg model, considering that the compressive underload immediately
follows the overload, but it may be adapted to the Wheeler and Modified Wheeler models using

olululol Z)R1()Z( ⋅⋅⋅⋅++++==== , where )R,Rmax(R ulul
−−−−====          (10)

where Rul < 0 is the underload stress ratio σσσσul /σσσσol, σσσσul is the lowest underload stress after the most recent overload σσσσol,
and R−−−− is a cutoff value for negative stress ratios (with −−−−1 < R−−−− < 0 and, in general, R−−−− = −−−−0.5).

To consider the crack acceleration effect due to underload stresses, an extension of the Modified Wheeler model,
called Generalized Wheeler, is proposed here. Based on Chang’s crack acceleration concept, the Generalized Wheeler
model calculates the reduced stress intensity range by:
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where ulR  is defined in Equation (28), αααα’ is a positive parameter to multiply ulR  to better model the influence of
underload stresses on crack acceleration, and γγγγ is the Modified Wheeler's exponent. This proposed model recognizes
crack retardation and arrest due to overloads and crack acceleration (reduction in retardation) due to underloads.
Furthermore, closure effects under constant amplitude loading can be easily considered in all ∆∆∆∆K interaction models by
multiplying ∆∆∆∆Kred by (1−−−−f)/(1−−−−R), where f is Newman's closure function from Eqs. (4-5). Another advantage of the
Generalized Wheeler model is that it can be applied to any da/dN equation (preferably to one that recognizes ∆∆∆∆Kth to
also model crack arrest), in contrast with the Willenborg model, which can only be applied to da/dN equations that
explicitly model the stress ratio R, as explained below.

3.3.  Reff interaction models

In the Reff models, an effective stress ratio Reff is introduced, calculated by reducing the maximum and minimum
stress intensity factors acting on the crack tip. The best-known Reff model is the Willenborg (1971) model. As in the
Wheeler model, the retardation for a given applied cycle depends on the loading and the extent of crack growth into the
overload plastic zone. Willenborg et al. assumed that the maximum stress intensity factor Kmax occurring at the current
crack length ai will be reduced by a residual stress intensity KR

W. The value of KRW is calculated, more or less
arbitrarily, from the difference between the stress intensity required to produce a plastic zone that would reach the
overload zone border (distant Zol + aol −−−− ai from the current crack tip) and the current maximum stress intensity Kmax,

maxoliolololRW KZ)aaZ(KK −−−−−−−−++++====          (12)

where Kol is the maximum stress intensity of the overload, Zol is the overload plastic zone size, and aol is the crack size
at the ocurrence of the overload, see Fig. (1).

Willenborg et al. expect that the stress-intensity factor cycle, and therefore, its maximum and minimum levels Kmax

and Kmin, are reduced by the same amount KRW. Thus, since the range in stress-intensity factor ∆∆∆∆K is unchanged by the
uniform reduction, the retardation effect is only sensed by the change in the effective stress ratio Reff calculated by
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As a result, crack propagation rules that do not model explicitly the effects of the stress ratio R cannot be used with
the Willenborg retardation model. For instance, if the Paris law is used for crack propagation, the Willenborg model
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will not predict crack retardation after overloads, since the value of ∆∆∆∆K remains unchanged (and thus the value of
da/dN as well). This is a limitation of the original Willenborg formulation, not present in the Wheeler model.

Another problem in the original Willenborg model is the prediction that Keff,max = 0 (and therefore crack arrest)
immediately after an overload if Kol ≥≥≥≥ 2 Kmax. That is, if the overload is twice as large as (or larger than) the following
loads, the Willenborg model implies that the crack arrests, independently of the material properties, stress level, or load
spectrum.

To account for the observations of continuing crack propagation after overloads larger than a factor of two or more
(i.e. shut-off ratios larger than 2), Gallagher (1974) generalized Willenborg's original development by introducing an
empirical (spectra/material) constant into the calculations. In Gallagher's Generalized Willenborg model, a modified
residual stress intensity KR = ΦΦΦΦ⋅⋅⋅⋅KRW is used, instead of Willenborg's original KRW, where ΦΦΦΦ is given by

1R
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th
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∆∆∆∆∆∆∆∆−−−−====ΦΦΦΦ         (14)

and Rso is a constant defined as the overload (shut-off) ratio required to cause crack arrest. Using this constant it is
possible to model shut-off ratios different than 2 for Kol/Kmax, compensating for this Willenborg's original model
limitation. Typical values for Rso are 3.5 for steel and nickel alloys, and 2.3 for aluminum and titanium alloys. The
value of the shut-off ratio Rso is not only material-dependent, but it is also affected by the stress level and the frequency
of overload cycle occurrence. However, in the Generalized Willenborg model, no special consideration is given to
multiple overloads or stress levels, and their effect is taken to be the same as that for a single overload. Also, this model
cannot predict the observed reduction in crack retardation after underloads.

To account for the reduction of retardation effects due to compressive or even tensile underloads, a load interaction
model termed Modified Generalized Willenborg (MGW) has been developed (Gallagher, 1974). As in the Generalized
Willenborg (GW) model, the MGW model uses a residual stress intensity KR to determine the effective maximum and
minimum stress intensity factors due to a load interaction. In the MGW model, the effective maximum stress intensity
factor Keff,max is calculated in the same way as in the GW model, however the effective minimum stress intensity factor
Keff,min is modified to better model the influence of negative values of Reff:
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As seen in Eq. (15), the value of Keff,min is set to zero for positive Kmin smaller than the residual stress intensity KR,
and the KR correction on Keff,min is ignored for negative values of Kmin. In these cases, both the values of ∆∆∆∆Keff = Keff,max

−−−− Keff,min and Reff are increased if compared to the Willenborg and GW models, resulting in less predicted retardation by
the MGW than by the other two models. However, such reduction in retardation for small or negative values of Kmin is
only accounted at the underload event.

To account for reduction in retardation after an underload, the MGW model uses a different modifying parameter
ΦΦΦΦ for the value of KRW. The new value of ΦΦΦΦ, used to achieve the reduction in retardation, is defined in the MGW model
as a function of the underload stress ratio Rul, given by Sul / Sol (where Sul is the lowest underload stress after the most
recent overload Sol),
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where the parameter ΦΦΦΦ0 is the value of ΦΦΦΦ for Rul = 0. The material-dependent parameter ΦΦΦΦ0 can be determined by
conducting a series of experimental spectrum tests, and its value ranges typically from 0.2 to 0.8. Note that the MGW
model predicts reduction in retardation not only for compressive underloads, but also for tensile underloads with
magnitudes up to 25% of the maximum overload stress (Rul ≤≤≤≤ 0.25).

Figure (2) shows a comparison of the Willenborg, GW, and MGW models, representing the calculated value of Reff

immediately after the overload (thus ai = aol and KRW = Kol −−−− Kmax) as a function of the overload ratio Kol/Kmax for
various stress ratios R. In this plot, it is assumed that both GW's and MGW's modifying parameters ΦΦΦΦ are equal to 0.3
(considering ∆∆∆∆Kth/∆∆∆∆K = 0.22 for the current cycle and the estimate Rso = 2.3 for aluminiums for the GW, and Rul = 0
and ΦΦΦΦ0 = 0.6 for the MGW model).
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Figure 2. Influence of the overload ratio Kol/Kmax on the effective stress ratio Reff.

Note that in general the GW model predicts larger Reff values (and thus less retardation) than Willenborg's original
model. Also, note the increase in the Reff predicted by the MGW model when Kmin is smaller than KR (as seen on the
R = −−−−0.4 and part of the R = 0.2 curves).

Another variation of the Generalized Willenborg model to account for reduction in retardation due to underloads is
the Walker-Chang Willenborg (WCW) model, developed by Chang and Engle (1984). The WCW model applies the
GW model to Walker-Chang's da/dN equation (Chang et al., 1984), and introduces an effective overload plastic zone
(Zol)eff, similar to Eq. (10), to model reduction in crack retardation. A limitation of the WCW model is that the reduction
of the retardation effect is only accounted for an underload immediately following the tensile overload.

However, even with all proposed modifications to improve the original Willenborg model, the assumption
regarding the residual compressive stresses through the residual stress intensity KRW is still very doubtful (Broek,
1988). To better model the closure effects on crack retardation, some methods directly estimate the value of the opening
stress intensity factor Kop, instead of indirectly accounting for its effects through arbitrary parameters such as KRW.
These Kop load interaction models are presented next.

3.4.  Kop interaction models

In the Kop models, the opening stress intensity factor Kop caused by an overload is directly computed and applied to
the subsequent crack growth to account for Elber-type crack closure. Perhaps the simplest Kop model is the Constant
Closure model, developed at Northrop for use on their classified programs (Bunch et al., 1996). This model is based on
the observation that for some load spectra the closure stress does not deviate substantially from a certain stabilized
value. This stabilized value is determined by assuming that the spectrum has a "controlling overload" and a "controlling
underload" that occur often enough to keep the residual stresses constant, and thus the closure level constant.

In the constant closure model, the opening stress intensity factor Kop is the only empirical parameter, with estimates
between 30% and 50% of the maximum overload stress intensity factor. The crack opening stress Kop can also be
calculated, for instance, from Newman's closure function in Eqs. (4-5), using the stress ratio R between the controlling
underload and overload stresses. The calculated value of Kop is then applied to the following (smaller) loads to compute
crack growth, recognizing crack retardation and crack arrest (if Kmax ≤≤≤≤ Kop).

The main limitation of the Constant Closure model is that it can only be applied to loading histories with "frequent
controlling overloads", because it does not model the decreasing retardation effects as the crack tip cuts through the
overload plastic zone, as shown in Eqs. (7) and (12) for the Wheeler and Willenborg models. In the Constant Closure
model, it is assumed that a new overload zone, with primary plasticity, is formed often enough before the crack can
significantly propagate through the previous plastic zone, thus not modeling secondary plasticity effects.

To account for crack retardation due to both primary and secondary plasticity, the European Space Agency and the
National Aerospace Laboratory in the Netherlands, in cooperation with the NASA Langley Research Center and the
NASA Johnson Space Center, developed the DeKoning-Newman Strip Yield load interaction model (De Koning et al.,
1997). In this model, a crack growth law is described in an incremental way, modeling crack growth attributed to
increments δδδδK in the stress intensity factor as the crack changes from closed to fully open configurations. This
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incremental law is then integrated at each cycle from the minimum to the maximum applied stress intensity factors Kmin

and Kmax to find the crack growth rate da/dN.
This incremental description allows that a distinction be made between the part of a load range where secondary

plastic flow is observed and the part where primary plastic flow starts developing under a monotonic increasing load.
For each of these domains, a different incremental crack growth law can be formulated. In DeKoning-Newman's Strip
Yield model, four different loading regimens are considered as the crack is loaded from closed to fully open
configurations: (i) closed crack regime, where the crack tip is at least partly closed, and no crack growth is assumed; (ii)
opened crack but no growth regime, where the crack is fully opened, but only crack tip blunting without crack growth is
observed; (iii) fatigue crack growth regime, where an incremental form of Elber's law is used to compute crack growth
under secondary plastic flow; and (iv) quasi-static crack extension regime, where an incremental form of Paris' law is
used to compute crack growth under primary plastic flow (insensitive to Kop or any other threshold behavior).

Using this model, it is possible to effectively calculate fatigue crack growth considering retardation and arrest due
to both primary and secondary plasticity. The penalty of DeKoning-Newman's approach is the large number of
experimental constants required by its crack propagation law, in addition to the numerical effort.

There are several other load interaction models in the literature (Suresh, 1998), but none of them has definitive
advantages over the models discussed above. This is no surprise, since single equations are too simplistic to model all
the several mechanisms that can induce retardation effects. Therefore, in the same way that a curve da/dN vs. ∆∆∆∆K must
be experimentally measured, a load interaction model must be adjusted to experimental data to calibrate its parameters,
as recommended by Broek (1988).

4. Comparison of the load interaction models

The load interaction models presented in this work have been implemented in ViDa , a powerful software
developed to automate the fatigue dimensioning process by all the traditional methods used in mechanical design
(Meggiolaro et al., 1998; Castro et al., 2000; Miranda et al., 2000). This software has been developed to predict both
initiation and propagation fatigue lives under complex loading by all classical design methods: SN, IIW (for welded
structures) and εεεεN to predict crack initiation, and da/dN for studying plane and 2D crack propagation, considering load
sequence effects. In this section, the presented load interaction models and the proposed modifications are compared
with experimental results from various load spectra.

Using ViDa , the crack propagation life of an 8-mm-thick center-cracked tensile specimen, made of a 7475-
T7351 aluminum alloy, is calculated using several block loading histories, see Tab. (1). The calculated lives are
compared to experimental tests performed by Zhang (1987), who measured crack growth rates through scanning
electron microscopy. Forman's crack growth equation (Forman et al., 1992) and Eq. (3) are used to compute crack
growth (in mm), using A = 6.9⋅⋅⋅⋅10-7, m = 2.212, p = 0.5, q = 1.0, ∆∆∆∆K0 = 3MPa√√√√m, and KC = 73MPa√√√√m. All models are
calibrated using the first loading history (except for the Willenborg model, without parameters to be adjusted), and a
comparison is made through the remaining loadings. Table (1) shows Zhang's test results and the percentage error of the
predicted lives using several load interaction models.

Table 1. Percentage errors in the test lives predicted by the load interaction models.

Loading history

Zhang's
test life
(cycles)

50

100
60
20

N/mm 2

474,240 −17% 0% 0% +293% 0% 0% 0%

100

100
60
20 637,730 −36% −22% −22% +269% −22% −22% −22%

100

100
60
20

5
409,620 −13% +2.3% +2.3% +185% +2.2% +2.6% +2.4%

39

100
60
20

140

251,050 −27% −18% −18% +27% −20% +24% −75%

40

100
60
20

140

149,890 −2.3% +6.6% +6.4% +44% +4.0% +42% −60%

As expected, the Willenborg model resulted in poor predictions, since this model cannot be calibrated. The
remaining models performed similarly for the second and third histories. However, as the maximum load increased
from 100 to 140 MPa in the last two histories, the Modified Generalized Willenborg and the Constant Closure models
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showed increased errors. The Wheeler and Generalized Wheeler models performed very similarly, because the
considered histories didn't include compressive underloads. These two models and the Generalized Willenborg model
resulted in the best predictions for Zhang's histories. Unfortunately, these tests were performed under the second crack
growth regimen (not influenced by the threshold ∆∆∆∆Kth), so the advantages of the Modified and Generalized Wheeler in
modeling crack arrest were not exemplified above.

To compare the predictions of the load interaction models in the presence of underloads, an underload event Sul was
introduced after each overload of Zhang's second loading history, see Tab. (2).

Table 2. Comparison of life predictions in cycles for different underload stresses.

100

100
60
20

Sul

Underload stress
Sul (MPa)

20.0 497,100 496,900 496,900 497,650 499,350 497,100

0.0 493,700 493,600 493,600 494,500 457,850 495,700

−20.0 491,600 491,350 470,850 492,350 444,300 494,600

−50.0 488,200 487,950 427,750 488,950 433,000 492,350

As expected, the Generalized Wheeler and the Modified Generalized Willenborg were the only load interaction
models that predicted reduction in retardation (and thus reduced life) after compressive underloads. The other models
showed a slight reduction in the calculated lives in the presence of underloads, however this small change was caused
only by the increased ∆∆∆∆K at (and not after) the overload/underload event.

Finally, to compare the performance of the several models under the first crack growth regimen (near the threshold
∆∆∆∆Kth), decreasing values of the initial crack 2a0 are considered in Zhang's second loading history. Table (3) compares
the lives predicted by the main load interaction models with the Generalized Wheeler predictions, using the calibrated
parameters from Zhang's test results. Note that here the Modified Wheeler predictions are identical to the Generalized
Wheeler ones, since the history below does not contain underload events.

Table 3. Comparison of life predictions for decreasing initial crack sizes.

100

100
60
20

Initial crack
size 2a0 (mm)

Generalized Wheeler
prediction (cycles)

20.0 496,900 0.0% +373% +0.2% +0.5% 0.0%
10.0 966,000 −0.7% +406% −3.6% −0.2% +0.1%
4.0 1,890,500 −3.1% +920% −10% −0.4% +0.1%
2.0 8,295,900 −47% +313% −67% +8.1% +0.2%

Except for the Willenborg model, all load interaction models predicted roughly the same fatigue life for 2a0 =
20mm. However, as the initial crack size was decreased, the influence of the threshold ∆∆∆∆Kth was magnified. In fact,
when 2a0 = 2.0mm the closure effects caused crack arrest (stop) between overloads during most of the specimen life,
which was only captured by the Generalized (and the Modified) Wheeler and the Constant Closure models. The
Generalized Willenborg model was too conservative, not predicting crack arrest in this case, because it requires that
Kol,max (100MPa in this history) be at least twice Kmax (60MPa) to stop the crack, independently of ∆∆∆∆Kth. Even though
the Modified Generalized Willenborg didn't capture crack arrest in this case either, its predictions were surprisingly
close to the Generalized Wheeler and Constant Closure ones.

However, as seen in Tab. (1), both Modified Generalized Willenborg and Constant Closure models only resulted in
good predictions when the 100MPa overload level (used in their calibration) was maintained. Furthermore, as discussed
before, the Constant Closure model could only be successfully applied because all Zhang's histories have frequent
controlling overloads (100 or 140MPa). In summary, the Generalized Wheeler model was the only one that performed
well at both overload levels, while considering crack acceleration due to underloads and crack arrest. A qualitative
comparison of the load interaction models, showing their main advantages and disadvantages, is presented in Tab. (4).
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Table 4. Qualitative comparison of the load interaction models.

da/dN ∆∆∆∆K models Reff models Kop models

models crack retardation √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
models crack arrest √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
models crack acceleration √√√√ √√√√ √√√√ √√√√ √√√√
works for any load spectrum √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√
works with any da/dN equation √√√√ √√√√ √√√√ √√√√
models primary plasticity √√√√ √√√√ √√√√
number of experimental parameters 1 1 1-2 0 1 1 1-2 1 5

5. Conclusions

In this work, load interaction effects on fatigue crack propagation were discussed. Overload-induced retardation
effects were evaluated using several different models, and improvements to the traditional equations were proposed to
recognize crack arrest and acceleration due to compressive underloads. The models were evaluated using a general-
purpose fatigue design software named ViDa . Using this software, the presented load interaction models and the
proposed modifications were compared with experimental results for various load spectra. In particular, the proposed
modifications to the Wheeler model showed an excellent agreement with the experimental data.
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