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Abstract. Powerful robotic manipulators are needed in nuclear maintenance, field, undersea and medical applications to perform
high accuracy tasks requiring the manipulation of heavy payloads. The nozzle dam positioning task for maintenance of a nuclear
power plant steam generator is an example of a task that requires a strong manipulator with very fine absolute positioning
accuracy. Absolute accuracy, rather than simple repeatability, is required for autonomous operation or for teleoperation with
advanced virtual aides, such as virtual viewing. However, high accuracy is generally unattainable in manipulators capable of
producing high task forces due to such factors as high joint, actuator, and transmission friction and link geometric distortions. A
method called Base Sensor Control (BSC) has been developed to compensate for nonlinear joint characteristics, such as high joint
friction, to improve system repeatability. A method to identify and compensate for system geometric distortion positioning errors in
large manipulators has also been proposed to improve absolute accuracy in systems with good repeatability. This technique is
called Geometric and Elastic Error Compensation (GEC). Here, it is shown experimentally that the two techniques can be
effectively combined to enable strong manipulators to achieve high absolute positioning accuracy while performing tasks requiring
high forces. These developed control techniques are being implemented at the Korean and French power companies.
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1. Introduction

Large robot manipulators are needed in field, service and medical applications to perform high accuracy tasks.
Examples are manipulators that perform decontamination tasks in nuclear sites, space manipulators such as the Special
Purpose Dexterous Manipulator (SPDM) and manipulators for medical treatment. In these applications, a large robotic
system is often needed to have very fine precision. Its accuracy specifications may be very small fractions of its size.
Achieving such high accuracy is difficult because of the manipulator’s size and its need to carry heavy payloads.
Hydraulic robot’s high load carrying capacity is attractive for such applications, but high joint friction and actuator
nonlinearities make them difficult to control.

A number of approaches exist for improving fine motion manipulator performance through friction compensation.
Some of these require modeling of the difficult to characterize joint frictional behavior (Canudas de Wit et al., 1996;
Popovic et al., 1994). Some require the use of specially designed manipulators that contain complex internal joint-
torque sensors (Pfeffer et al., 1989).

A simple, yet effective control method has been developed that is modeless and does not require internal joint
sensors (Iagnemma et al., 1997; Morel and Dubowsky, 1996). The method, called Base Sensor Control (BSC),
estimates manipulator joint torques from a self-contained external six-axis force/torque sensor placed under the
manipulator’s base. The joint torque estimates allow for accurate joint torque control that has been shown to greatly
improve repeatability of both hydraulic and electric manipulators.

Even with improved repeatability, high absolute positioning accuracy is still difficult to achieve with a strong
manipulator. In such systems, two principal error sources create significant end-effector errors. The first is kinematic
errors due to the non-ideal geometry of the links and joints of manipulators, such as errors due to machining tolerances.
These errors are often called geometric errors. Task constraints often make it impossible to use direct end-point sensing
in a closed-loop control scheme to compensate for these errors. Therefore, there is a need for model-based error
identification and compensation techniques, often called robot calibration.

The second error source that can limit the absolute accuracy of a large manipulator is the elastic errors due to the
distortion of a manipulator’s mechanical components under large task loads or even its own weight. Classical error
compensation methods cannot correct the errors in large systems with significant elastic deformations, because they do
not explicitly consider the effects of task forces and structural compliance.

Considerable research has been performed in robot calibration (Roth et al. 1986; Hollerbach 1988; Holle rbach et al.
1996; Zhuang et al. 1996). In these methods robot position accuracy is improved using compensation methods that
essentially identify a more accurate functional relationship between the joint transducer readings and the workspace
position of the end-effector based on experimental calibration measurements. A major component of this process is the
development of manipulator error models, some of which consider the effects of manipulator joint errors, while others
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focus on the effects of link dimensional errors (Waldron et al. 1979; Wu 1984; Vaichav et al. 1987; Mirman et al.
1993). Some researchers have studied methods to find the optimal configurations during the calibration measurements
to reduce the manipulator errors by calibration (Borm et al. 1991; Zhuang et al. 1996). Solution methods for the
identification of the manipulator’s unknown parameters have been studied for these model-based calibration processes
(Dubowsky et al. 1975; Zhuang et al. 1993). Most calibration methods have been applied to industrial or laboratory
robots, achieving good accuracy when geometric errors are dominant.

However, with only one or two exceptions, calibration methods do not explicitly compensate for elastic errors due
to the wrench at the end-effector, or they require explicit structural modeling of the system (Drouet et al. 1998; Drouet
1999). While conceptually very similar to the classical geometric problem, the combined problem is far more complex.
Compensating for geometric errors requires building a model that is a function of the n (usually 6) joint variables. To
compensate for a general 6 variable end-point task wrench (three end-point forces and three end-point moments)
requires a model that is a function of both the joint variables and the end-point wrench variables, or a function of at least
12 variables. The number of measurements required to characterize this 12 dimensional space is far larger than required
for the 6 dimensional space. The time and cost of the physical calibration measurements often dominates the calibration
problem. Simple calculations suggest that a brute force identification would require several million calibration
measurements.

Recent work has resulted in a method to correct for errors in the end-effector position and orientation caused by
geometric and elastic errors in large manipulators (Meggiolaro et al., 1999). The method, called Geometric and Elastic
Error Compensation (GEC), yields measurement based error compensation algorithms that predict the manipulator’s
end-point position and orientation as a function of the configuration of the system and the task forces. Given the task
loads from a conventional wrist force/torque sensor and the joint angles of the manipulator, the algorithm compensates
for the combined elastic and geometric errors. It does not require detailed modeling of the manipulator’s structural
properties. Instead it uses a relatively small set of offline end-point experimental measurements to build a “generalized
error” representation of the system (Mavroidis et al., 1997). In the GEC method each generalized error parameter can be
represented as a function of only a few of the system variables. As a result, the number of measurements required to
characterize the system is dramatically smaller than might be expected. This method can substantially reduce the
absolute errors in manipulators with good inherent repeatability.

In this research, an approach is developed that substantially improves the absolute accuracy in strong powerful
manipulators lacking good repeatability and having significant geometric and elastic errors. The method uses base
force/torque sensor information to apply BSC in concert with GEC, which uses wrist sensor information to achieve
greatly improved absolute accuracy in a strong manipulator exerting high task loads. The algorithm does not require
joint velocity or acceleration measurements, a model of the actuators or friction, or the knowledge of manipulator mass
parameters or link stiffnesses, yet it is able to substantially improve its absolute positioning accuracy.

In addition, the error formulation introduces redundant parameters, often non-intuitive, that may compromise the
robustness of the calibration. The existing numerical methods to eliminate such errors are formulated on a case-by-case
basis. In this paper, the general analytical expressions of the redundant parameters are developed for any serial link
manipulator, expressed through its Denavit-Hartenberg parameters. These expressions are used to eliminate the
redundant parameters from the error model of any manipulator prior to the identification process, allowing for
systematic robot calibration with improved accuracy.

The combined methods are applied to an important application in nuclear maintenance. The nozzle dam positioning
task for maintenance of a nuclear power plant steam generator is an example of a task that requires a strong manipulator
with very fine absolute positioning accuracy (Zezza, 1985). Absolute accuracy, rather than simple repeatability, is
required for autonomous operation or for teleoperation with advanced virtual aides, such as virtual viewing. Here, it is
shown experimentally that the two techniques can be effectively combined to enable strong manipulators to achieve
high absolute positioning accuracy while performing tasks requiring high forces.

2. Analytical background

2.1. Base sensor control (BSC)

Here the basis for BSC is briefly reviewed. The complete development is presented in (Morel and Dubowsky,
1996). A simplified version of the algorithm sufficient and effective for fine-motion control is formulated in (Iagnemma
et al., 1997).

As shown in Fig. (1), the wrench, Wb, exerted by the manipulator on its base sensor can be expressed as the sum of
three components Wg + Wd + We , where Wg is the robot gravity component, Wd is caused by manipulator motion, and
We is the wrench exerted by the payload on the end-effector. Note that joint friction does not appear in the measured
base sensor wrench. In the fine-motion case, it is assumed that the gravity wrench is essentially constant, and this
wrench can be approximated by the initial value measured by the base sensor. Hence, the complexity of computing the
gravitational wrench, such as identification of link weights and a static manipulator model, is eliminated. Under this
assumption, the Newton Euler equations of the first i links are:
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where Wififi i+1  is the wrench exerted by link i on link i+1, and Wdi is the dynamic wrench for link i.
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Figure 1. External and dynamic wrenches.

For fine tasks it is assumed that the manipulator moves very slowly so that Wd can be neglected. Therefore, for
slow, fine motions, only the measured wrench at the base is used to estimate the torque in joint i+1. The estimated
torque in joint i+1 is obtained by projecting the moment vector at the origin Oi of the i

th reference frame along the joint
axis zi:

iOT
i1i z bW⋅−=+t            (2)

The value of ti+1 depends only on the robot's kinematic parameters, joint angles and base sensor measurements.
With estimates of the joint torque, high performance torque control can be achieved to greatly reduce the effects of

joint friction and nonlinearities. This results in greatly improved repeatability. This method will not compensate for
sources of random repeatability errors, such as limited encoder resolution. In addition, a manipulator with good
repeatability may not have fine absolute position accuracy.

2.2. Robot calibration

The main sources of absolute accuracy errors in a manipulator with good repeatability are mechanical system errors
(resulting from machining and assembly tolerances), elastic deformations of the manipulator links, and joint errors
(bearing run-out). These can be grouped into geometric and elastic errors. Although these physical errors are relatively
small, their influence on the end-effector position of a large manipulator can be significant. A brief review of the error
compensation method used here is presented below.

The end-effector position and orientation error, DDX, is defined as the 6x1 vector that represents the difference
between the real position and orientation of the end-effector and the ideal or desired one:

DDX = Xreal − Xideal           (3)

where Xreal and Xideal are 6x1 vectors composed of the three positions and three orientations of the end-effector
reference frame in the inertial reference system for the real and ideal cases respectively.

The error compensation method assumes that physical errors slightly displace manipulator joint frames from their
expected, ideal locations (Mavroidis et al., 1997). The actual position and orientation of a frame with respect to its ideal
location is represented by 3 translations εx,i, εy,i and εz,i  (along the X, Y and Z axes respectively, defined using the
Denavit-Hartenberg representation) and 3 consecutive rotations εs,i , εr,i, εp,i  around the Y, Z and X axes respectively, see
Fig. (2). The subscripts s, r, and p represent spin (yaw), roll, and pitch, respectively. The 6 parameters εx,i, εy,i, εz,i, εs,i ,
εr,i and εp,i are called generalized error parameters, which can be a function of the system geometry and joint variables.
For an n degree of freedom manipulator, there are 6(n+1) generalized errors which can be written in the form of a
6(n+1) x 1 vector ee = [εx,0,..., εx,i, εy,i, εz,i, εs,i , εr,i, εp,i,…, εp,n], with i ranging from 0 to n, assuming that both the
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manipulator and the location of its base are being calibrated. The generalized errors that depend on the system
geometry, the system task loads and the system joint variables can be calculated from the physical errors link by link.
Note that actual system weight effects can be included in the model as a simple function of joint variables.
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Figure 2. Definition of the translational and rotational generalized errors for ith link.

Since the generalized errors are small, DDX can be calculated by the following linear equation in ee:

DDX = Je ee            (4)

where Je is the 6x6(n+1) Jacobian matrix of the end-effector error DDX with respect to the elements of the generalized
error vector ee, also known as Identification Jacobian matrix (Zhuang et al. 1999). As with the generalized errors, Je
depends on the system configuration, geometry and task loads.

If the generalized errors, ee, can be found from calibration measurements, then the correct end-effector position and
orientation error can be calculated using Eq. (4) and be compensated. Figure (3) shows schematically an error
compensation algorithm based on Eq. (4). The method to obtain ee from experimental measurements is explained below.
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Figure 3. Error compensation scheme.

To calculate the generalized errors ee it is assumed that some components of vector DDX can be measured at a finite
number of different manipulator configurations. However, since position coordinates are much easier to measure in
practice than orientations, in many cases only the three position coordinates of DDX are measured.

Assuming that all 6 components of DDX can be measured, for an n degree of freedom manipulator, 6(n+1)
generalized errors ee can be calculated by measuring DDX at m different configurations, defined as q1, q2 ,…, qm, then
writing Eq. (4) m times:
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where DDXt is the m x 1 vector formed by all measured vectors DDX at m different configurations and Jt is the 6m x
6(n+1) matrix formed by the m Identification Jacobian matrices Je at m configurations, called here Total Identification
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Jacobian. To compensate for the effects of measurement noise, the number of measurements m is, in general, much
larger than n.

If the generalized errors ee are constant, then a unique least-squares estimate $ee  can be calculated by:

( )$
1

ee DD= ⋅
−

J J J Xt
T

t t
T

t
              (6)

However, if the Identification Jacobian matrix Je(qi) contains linearly dependent columns, Eq. (6) will produce
estimates with poor accuracy (Hollerbach et al. 1996). This occurs when there is redundancy in the error model, in
which case it is not possible to distinguish the error contributed by each generalized error component. Conventional
calibration methods also cannot be successfully applied when some of the generalized errors depend on the manipulator
configuration q or the end-effector wrench w, namely ee(q,w), such as when elastic deflections that depend on the
configuration and applied forces at the end-effector are significant. Below, methods are presented for finding the
generalized errors (ee) where there is a singular Identification Jacobian matrix and for the case where there is significant
elastic deformation combined with conventional geometric errors.

3. Geometric and elastic error compensation

In the GEC method (Geometric and Elastic Error Compensation), elastic deformation and classical geometric errors
are considered in a unified manner. The method can identify and compensate for both types of error, without an elastic
model of the system. Two steps are necessary to successfully apply the GEC method: the redundant error parameters
must be eliminated from the identification model (as with any calibration method), and the error model must be
extended to explicitly consider the task loading wrench and configuration dependency of the errors. These two steps are
presented below.

3.1. Eliminating the redundant error parameters

In robot calibration, redundant errors must be eliminated from the error model prior to the identification process.
This is usually done in an ad hoc or numerical manner by reducing the columns of the Identification Jacobian matrix Je
to a linearly independent set, thus obtaining a non-singular form of Je, called Ge. This is accomplished by grouping the
generalized errors into a smaller independent set, called ee*, in accordance with the columns of the submatrix Ge. If Je is
replaced by its submatrix Ge in Eq. (5), then application of Eq. (6) will result in estimates with improved accuracy.

By definition, the dependent error parameters eliminated from ee do not affect the end-effector error, resulting in the
identity

DDX = Je e e ≡ Ge ee
*            (7)

Using the above identity and the linear combinations of the columns of Je calculated in (Meggiolaro et al., 2000), it
is possible to obtain all relationships between the generalized error set ee and its independent subset ee*.

Defining Jx,i, Jy,i, Jz,i, Js,i , Jr,i  and Jp,i as the columns of Je associated with the generalized error components εx,i, εy,i ,
εz,i, εs,i , εr,i and εp,i  respectively (0 ≤ i ≤ n), Eq. (4) can be rewritten as

DDX = [Jx,0,…, Jx,i, Jy,i, Jz,i, Js,i , Jr,i, Jp,i , …, Jp,n]⋅[ εx,0,…, εx,i, εy,i, εz,i, εs,i , εr,i, εp,i, …, εp,n]T             (8)

To obtain the non-singular Identification Jacobian matrix Ge, columns Jz,(i-1) and Jr,(i-1) must be eliminated from the
matrix Je for all values of i between 1 and n. If joint i is prismatic, then columns Jx,(i-1) and Jy,(i-1) must also be
eliminated. For an n DOF manipulator with r rotary joints and p (p equal to n-r) prismatic joints, a total of 2r+4p
columns are eliminated from the Identification Jacobian Je to form its submatrix Ge. This means that 2r+4p generalized
errors cannot be obtained by measuring the end-effector pose.

Once the linearly dependent columns of matrix Je are eliminated, the independent generalized error set ee* can be
obtained. Note that the independent errors ee* are a subset of the generalized errors ee. If joint i is revolute (1 ≤ i ≤ n), then
the generalized errors εz,(i-1) and εr,(i-1) are eliminated, and their values are incorporated into the independent error
parameters ε∗
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where the manipulator parameters are defined using the D.H. representation: link lengths ai, joint offsets di, joint angles
θi, and skew angles αi.
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If joint i is prismatic, then the translational errors εx,(i-1) and εy,(i-1) are also eliminated, and their values are
incorporated into ε∗

x,i, ε∗
y,i  and ε∗

z,i . In this case, Eq. (9) becomes:
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Note that Eqs. (9) and (10) are obtained when both position and orientation of the end-effector are considered. In
cases where only the end-effector position is measured, its orientation can take any value, resulting in additional linear
combinations of the columns of Je. Since the three rotational errors εs,n, εr,n and εp,n  of the end-effector frame do not
influence the end-effector position (they only affect the orientation, which is not being measured), these errors cannot
be identified and must be eliminated to form ee*. In this case, the three last columns of Je are also eliminated to form the
submatrix Ge. Further linear combinations exist if the last joint is revolute and its link length an is zero, refer to
(Meggiolaro et al., 2000) for more information on the elimination of the redundant errors.

If the vector ee* containing the independent errors is constant, then the matrix Ge can be used to replace Je in Eq. (5),
and Eq. (6) is applied to calculate the estimate of the independent generalized errors ee*, completing the identification
process. However, if non-geometric factors are considered such as link compliance or gear eccentricity, then it is
necessary to represent the parameters of ee* as a function of the system configuration and task loadings prior to the
identification process. This extended modeling is presented below.

3.2. Polynomial approximation of the generalized errors

For a system with significant geometric and elastic errors, the independent generalized errors ee* are a function of
the manipulator configuration q and the end-effector wrench w, or ee*(q,w). To predict the endpoint position of the
manipulator for a given configuration and task wrench, it is necessary to calculate the generalized errors from a set of
offline measurements. The complexity of these calculations can be substantially reduced if the generalized errors are
parameterized using polynomial functions. The ith element of vector ee* is approximated by a polynomial series
expansion of the form:
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where ni is the number of terms used in each expansion, ci,j  are the polynomial coefficients, wmj is an element of the
task wrench w, and q1, q2, ..., qn are the manipulator joint parameters. It has been found that good accuracy can be
obtained using only a few terms ni in the above expansion (Meggiolaro et al., 1998). From the definition of the
generalized errors, the errors associated with the ith link depend only on the parameters of the ith joint. If elastic
deflections of link i are considered, then the generalized errors created by these deflections would depend on the weight
wrench wi applied at the i

th link. For a serial manipulator, this wrench is due to the wrench at the end-effector and to the
configuration of the links after the ith. Hence, the wrench wi depends only on the joint parameters qi+1,...,qn. Thus, the
number of terms in the products of Eq. (11) is substantially reduced. Each generalized error parameter is then
represented as a function of only a few of the system variables, greatly reducing the number of measurements required
to characterize the system using the GEC method.

The constant coefficients ci,j are grouped into one vector c, becoming the unknowns of the problem. The total
number of unknown coefficients, called nc, is the sum of the number of terms used in Eq. (11) to approximate each
generalized error, i.e. nc = Σni. The nc functions fi,j(q,w) are then incorporated into the non-singular Identification
Jacobian matrix Ge by substituting Eq. (11) into (7). Equation (7) becomes:

DDX = Ge(q) ⋅ ee*(q,w) ≡ He(q,w) ⋅ c         (12)

where He is the (6 x nc) Jacobian matrix of the end-effector error DDX with respect to the polynomial coefficients ci,j . The
matrix He, called here Extended Identification Jacobian matrix, can be obtained from Eqs. (11) and (12):

He(q,w) ≡ [G1⋅f1,1, … ,G1⋅f1,n1, … , Gi⋅fi,1, Gi⋅fi,2, … , Gi⋅fi,ni, …]          (13)

where Gi is the column of matrix Ge associated to the generalized error component ε∗
i.

An estimate of the coefficient vector c is then calculated by replacing Je with the matrix He in Eq. (5) and applying
Eq. (6), completing the identification process. Once the polynomial coefficients, c, are identified, the end-effector
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position and orientation error DDX can be calculated and compensated using Eq. (12). The method of identifying the
generalized errors as a function of the manipulator configuration and the end-effector wrench is summarized in Fig. (4).
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Figure 4. Flow-chart of the method to identify generalized errors.

4. Application to the nozzle dam task

The precision control algorithms presented in this paper are being developed for a task in the nuclear power
industry. In order for workers to inspect and repair a nuclear power plant’s steam generator, two very large pipes (1
meter in diameter) must be sealed with a device called a nozzle dam. The center section of the nozzle dam weighs
approximately 60 kg and it must be inserted into a ring with clearances of a few millimeters. In this operation, workers
receive high doses of radiation. Hence, performing this task with a robotic manipulator would be very desirable. A
simulated robotic nozzle dam placement can be see in Fig. (5), where the manipulator is moving the nozzle dam side
plate into its position in the nozzle ring. The center plate will then be inserted within the side plate.

Figure 5. Simulated robotic nozzle dam task.

Attempts to place the dam with a manipulator have taken too long because of the combination of poor operator
visibility and lack of manipulator accuracy. It costs tens of thousands of dollars per hour to keep a nuclear power plant
offline. Improving manipulator accuracy is a key to shortening this time. The typical repeatability of manipulators
capable of handling the required load is in the range of 10 to 20 mm. The absolute accuracy can be several times these
amounts. The automation of this task would require absolute accuracy of a few mm. In this work, the combined
BSC/GEC method was experimentally evaluated for this application.
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Figure (6) shows the experimental test-bed constructed for this study. The manipulator chosen for this system is a
Schilling Titan II, a six DOF hydraulic robot capable of handling payloads in excess of 100 kg. Its position accuracy is
approximately 34 mm (RMS), many times the specification of a few mm. A good part of its lack of accuracy is due to
its underlying lack of repeatability. This can be traced to high seal friction in its joints. It has been found that this
friction is very difficult to characterize (Habibi et al., 1994; Merritt, 1967). Hence, model based friction methods are
difficult to apply successfully. This system is a good candidate for BSC to improve its repeatability. For this
experimental system, the achievable repeatability is limited by the particular control electronics used. The joint resolver
signals, standard on the Schilling, are converted to quadrature encoder waveforms using a special purpose Delta Tau
Data/PMAC controller design. The joint angle resolution of this configuration is limited to  ±0.087 degree, which leads
to as much as ±5 mm errors in the end-effector positioning.

    

Figure 6. Simulated and real experimental system.

A 6-axis force/torque base sensor is mounted under the manipulator to provide wrench measurements for the BSC
algorithm. An 18kg replica of the nozzle dam center-plate was built along with an adjustable plate receptacle that
permits the clearances to be varied from interference to several cm. An algorithm to successfully place the rectangular
center plate within the receptacle would be easily extendable to perform the other high precision tasks necessary to
complete the entire nozzle dam installation, either through teleoperation or as an autonomous subtask.

A pair of Pentax optical theodolites was used to accurately locate the end-effector in 3D space to generate the
correction matrix, evaluate weight dependent deflections, and verify the algorithm performance. The resolution of the
theodolites was 30 arc seconds, leading to measurement errors of 0.29 mm.

A fixed reference frame, F0, is used to express the coordinates of all points. The origin of this reference lies at the
intersection of the top of the base sensor and the joint 1 axis. Its z-axis is vertical and its x-axis is defined by a specific
horizontal reference direction.

A PC based graphical user interface provides the operator with workspace visualization as well as manipulator
control functionality. For all experiments, the sampling rate was ten milliseconds, which was sufficiently fast for the
experiments.

The objective of the experiment was to see if the method outlined in Fig. (4) could be applied to the experimental
system to improve its repeatability and its absolute accuracy. The object was to have the residual error approach the
limit set by the position sensing resolution of the system. In this work, 400 measurements were used to evaluate the
basic accuracy of the Schilling. Different payloads were used, with weights up to 45kg. Most of the measurements
focused on two specific payloads: one with no weight and another with an 18kg weight (the replica nozzle dam plate).

End-effector measurements of the manipulator under PI control determined the baseline uncompensated system
repeatability and accuracy. The relative positioning root mean square error was used as a measure of the system
repeatability. Recall that the 12-bit discretization of the resolver signal leads to random errors up to 5.0 mm, and
imposes a lower limit of 2.0mm (RMS) on the system repeatability, which sets the accuracy limit of any error
compensation algorithm.

The results show that the BSC algorithm was able to reduce the repeatability errors by a factor of 4.8 over PI
control. Data was taken by moving the manipulator an arbitrary distance from the test point and then commanding it
back to its original position. The maximum errors without BSC were 21.0 mm, and the repeatability was 14.3 mm
(RMS). BSC reduced the maximum errors to 5.5 mm with a repeatability of only 3.0 mm (RMS).
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Although the BSC algorithm greatly reduced the repeatability errors, there are still 35 mm (RMS) errors in absolute
accuracy. Since BSC reduced the system repeatability to 3.0 mm, a model based error correction method can be applied
to reduce the accuracy errors.

In order to implement GEC, the geometric and elastic deformation correction matrix was calculated using
approximately 350 measurements of the end-effector in different configurations and with different payloads. The
remaining points were used to verify the efficiency of the GEC method.

From the system kinematic model with no errors, the ideal coordinates of the end-effector were calculated and
subtracted from the experimentally measured values to yield the vector DDX(q,We) in Eq. (5). The redundant error
parameters are eliminated from the error model using Eqs. (9) and (10). The generalized errors are then calculated with
Eq. (6). By treating generalized errors as constant in their respective frames, the system absolute accuracy was
improved to 13.4 mm (RMS). Since the GEC method allows for the use of polynomials to describe each generalized
error, second order polynomials achieved an absolute accuracy of 7.3mm (RMS), an additional 100% improvement.

Figure (7) shows the convergence of original positioning errors as large as 55.1 mm (34.3 mm RMS) to corrected
errors of less than 10.7 mm (7.3 mm RMS) with respect to the base frame F0. This demonstrates an overall factor of
nearly 4.7 improvement in absolute accuracy by using the GEC algorithm. With this improvement in performance, it
should make feasible such tasks as the nozzle dam insertion.

Figure 7. Measured and residual errors after compensation.

5. Conclusions

In this paper, the simplified, model-free form of Base Sensor Control (BSC) is applied to a hydraulic manipulator.
The BSC uses a base force/torque sensor to accurately control joint torques, thereby compensating for joint friction.
This in turn, substantially improves the manipulator’s poor position repeatability. The BSC controller is then combined
with a method, called GEC, that compensates for geometric and elastic errors that degrade the absolute positioning
accuracy in large manipulators with inherently good repeatability. To improve the accuracy of GEC, a general
analytical method to eliminate redundant error parameters in robot calibration is presented. These errors, often non-
intuitive, must be eliminated from the error model prior to the identification process, otherwise the robustness of the
calibration can be compromised. The results showed that applying the combined error compensation algorithm
improved the absolute accuracy of the manipulator by a factor of 4.7 over pure BSC. These developed control
techniques are being implemented at the Korean and French power companies.

6. Acknowledgments

The assistance and encouragement of Dr. Byung-Hak Cho of the Korean Electric Power Research Institute
(KEPRI) and Mr. Jacque Pot of the Electricité de France (EDF) in this research is most appreciated, as the financial
support of KEPRI and EDF.

dx (mm)dy (mm)

dz (mm)

dy (mm) x dx (mm)

dz (mm) x dx (mm) dz (mm) x dy (mm)

corrected errors

uncorrected errors



Proceedings of  COBEM 2001, Robotics and Control,  Vol. 15,  219

7. References

Borm, J.H., Menq, C.H., 1991, "Determination of Optimal Measurement Configurations for Robot Calibration Based on
Observability Measure, Int. Journal of Robotics Research," Vol.10, No. 1, pp. 51-63.

Canudas de Wit, C., Olsson, H., Astrom, K.J., Lischinsky, P., 1996, “A New Model for Control of Systems with
Friction,”  IEEE Transactions on Automatic Control, Vol.40, No. 3, pp. 419-425.

Drouet, P., Dubowsky, S., Mavroidis, C., 1998, "Compensation of Geometric and Elastic Deflection Errors in Large
Manipulators Based on Experimental Measurements: Application to a High Accuracy Medical Manipulator,"
Proceedings of the 6th International Symposium on Advances in Robot Kinematics, Austria, pp. 513-522.

Drouet, P., 1999, "Modeling, Identification and Compensation of Positioning Errors in High Accuracy Manipulators
under Variable Loading: Application to a Medical Patient Positioning System," Ph.D. Thesis, Un. Poitiers, France.

Dubowsky, S., Maatuk, J., Perreira, N.D., 1975, "A Parametric Identification Study of Kinematic Errors in Planar
Mechanisms," Trans. of ASME, Journal of Engineering for Industry, pp. 635-642.

Habibi, S.R., Richards, R.J., Goldenberg, A.A., 1994, “Hydraulic Actuator Analysis for Industrial Robot Multivariable
Control,” Proceedings of the American Control Conference, Vol.1, pp. 1003-1007.

Hollerbach, J., 1988, "A Survey of Kinematic Calibration," Robotics Review, Khatib ed., MIT Press, Cambridge, MA.
Hollerbach, J.M., Wampler, C.W., 1996, "The Calibration Index and Taxonomy for Robot Kinematic Calibration

Methods," International Journal of Robotics Research, Vol. 15, No. 6, pp. 573-591.
Iagnemma, K., Morel, G., Dubowsky, S., 1997, “A Model-Free Fine Position Control System Using the Base-Sensor:

With Application to a Hydraulic Manipulator,” Symposium on Robot Control, SYROCO ‘97, Vol.2, pp. 359-365.
Mavroidis, C., Dubowsky, S., Drouet, P., Hintersteiner, J., Flanz, J., 1997, "A Systematic Error Analysis of Robotic

Manipulators: Application to a High Performance Medical Robot," Proceedings of the 1997 IEEE Int. Conference of
Robotics and Automation, Albuquerque, New Mexico, pp. 980-985.

Meggiolaro, M., Mavroidis, C., Dubowsky, S., 1998, "Identification and Compensation of Geometric and Elastic Errors
in Large Manipulators: Application to a High Accuracy Medical Robot," Proceedings of the 25th Biennial
Mechanisms Conference, ASME, Atlanta.

Meggiolaro, M., Jaffe, P.C.L., Dubowsky, S., 1999, "Achieving Fine Absolute Positioning Accuracy in Large Powerful
Manipulators", Proceedings of the International Conference on Robotics and Automation (ICRA '99), IEEE, Detroit,
Michigan, pp.2819-2824.

Meggiolaro, M., Dubowsky, S., 2000, "An Analytical Method to Eliminate the Redundant Parameters in Robot
Calibration," Proceedings of the International Conference on Robotics and Automation (ICRA '2000), IEEE, San
Francisco, pp. 3609-3615.

Merritt, H., 1967, "Hydraulic Control Systems," John Wiley and Sons, New York, USA.
Mirman, C. and Gupta, K., 1993, "Identification of Position Independent Robot Parameter Errors Using Special

Jacobian Matrices," International Journal of Robotics Research, Vol.12, No. 3, pp. 288-298.
Morel, G., Dubowsky, S., 1996, “The Precise Control of Manipulators with Joint Friction: A Base Force/Torque Sensor

Method,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.1, pp. 360-365.
Pfeffer, L.E., Khatib, O., Hake, J., 1989, “Joint Torque Sensory Feedback of a PUMA Manipulator,” IEEE Transactions

on Robotics and Automation, Vol.5, No. 4, pp. 418-425.
Popovic, M.R., Shimoga, K.B., Goldenberg, A.A., 1994, “Model-Based Compensation of Friction in Direct Drive

Robotic Arms,” Journal of Studies in Information and Control, Vol.3, No. 1, pp. 75-88.
Roth, Z.S., Mooring, B.W., Ravani, B., 1986, "An Overview of Robot Calibration," IEEE Southcon Conference,

Orlando, Florida, pp. 377-384.
Vaichav, R., Magrab, E., 1987, "A General Procedure to Evaluate Robot Positioning Errors," International Journal of

Robotics Research, Vol.6, No.1, pp. 59-74.
Waldron, K., Kumar, V., 1979, "Development of a Theory of Errors for Manipulators," Proceedings of the Fifth World

Congress on the Theory of Machines and Mechanisms, pp. 821-826.
Wu, C., 1984,  "A Kinematic CAD Tool for the Design and Control of a Robot Manipulator," International Journal of

Robotics Research, Vol.3, No. 1, pp. 58-67.
Zezza, L.J., 1985, “Steam Generator Nozzle Dam System,” Trans. American Nuclear Society, Vol.50, pp. 412-413.
Zhuang, H., Roth, Z.S., 1993, "A Linear Solution to the Kinematic Parameter Identification of Robot Manipulators,"

IEEE Transactions in Robotics and Automation, Vol.9, No. 2, pp. 174-185.
Zhuang, H., Wu, J., Huang, W., 1996, "Optimal Planning of Robot Calibration Experiments by Genetic Algorithms,"

Proc. IEEE Int. Conf. Robotics and Automation, Minneapolis, pp. 981-986.
Zhuang, H., Motaghedi, S.H., Roth, Z.S., 1999, "Robot Calibration with Planar Constraints," Proc. IEEE International

Conference of Robotics and Automation, Detroit, Michigan, pp. 805-810.


	Robotics and Control
	Paper ID
	TRB0010 
	TRB0021 
	TRB0073 
	TRB0103
	TRB0121
	TRB0140 
	TRB0150 
	TRB0158 
	TRB0219
	TRB0268
	TRB0284 
	TRB0289
	TRB0363 
	TRB0366 
	TRB0404
	TRB0479
	TRB0537
	TRB0551
	TRB0782 
	TRB0799
	TRB0829
	TRB0853 
	TRB0854 
	TRB0860 
	TRB0906
	TRB0918 
	TRB0920
	TRB0959 
	TRB0976
	TRB1010 
	TRB1012
	TRB1060
	TRB1067 
	TRB1144
	TRB1315 
	TRB1326
	TRB1329 
	TRB1332 
	TRB1627
	TRB1686
	TRB1893 
	TRB1930 
	TRB2050
	TRB2121
	TRB2164 
	TRB2216 
	TRB2226 
	TRB2278 
	TRB2315 
	TRB2331
	TRB2376 
	TRB2378 
	TRB2396 
	TRB2401 
	TRB2410
	TRB2426 
	TRB2428 
	TRB2653
	TRB2668
	TRB2681 

	Title
	METHOD OF CAMERA'S CALIBRATION TO BUILT A VIRTUAL ENVIRONMENT 
	THREE-AXIS FORCE SENSOR WITH STRAIN GAGES FOR ROBOTICS APPLICATIONS 
	DEVELOPMENT OF AN OMNIDIRECTIONAL VISION SYSTEM 
	BASIC PRINCIPLES AND CONCEPTS OF BALLISTIC LOCOMOTION 
	GENERATION OF WALKING PATTERNS OF AN HEXAPOD ROBOT THROUGH SCHEDULING ALGORITHMS 
	MONOCULAR VISION SYSTEM FOR AUTOMATIC GUIDANCE OF A WELDING ROBOT 
	INSTRUMENTED VEHICLE FOR INSPECTION AND MAINTE-NANCE OF PIPES 
	PETRI NETS AND OBJECT-ORIENTATION FOR HYBRID CONTROL SYSTEM DEVELOPMENT 
	ULTIMATE BOUNDEDNESS POLYHEDRA FOR DISCRETE-TIME LINEAR SYSTEMS WITH DEADZONES 
	DYNAMIC  MODELING  AND SIMULATION OF A BIPED ROBOT 
	POSITION CONTROL OF A FLEXIBLE STRUCTURE WITH PIEZOELECTRIC ACTUATORS 
	OPTIMUM DESIGN OF GENERAL 3R MANIPULATORS BY USING TRADITIONAL AND RANDOM SEARCH OPTIMIZATION TECHNIQUES 
	NUMERICAL SIMULATION AND EXPERIMENTAL VALIDA-TION OF DYNAMIC CHARACTERISTICS OF CAPAMAN (CASSINO PARALLEL MANIPULATOR) 
	OBSTACLE AVOIDANCE PROCEDURES FOR MOBILE ROBOTS 
	DESIGN AND IMPLEMENTATION OF A HAPTIC INTERFACE FOR TELEPRESENCE 
	PIEZOELECTRIC ACTIVE SYSTEMS FOR MONTORING SURFACE BREAKING DEFECTS 
	THERMAL ALARM USING A SHAPE MEMORY ALLOY HELICAL SPRING 
	THE CONTROL DESIGN OF A ROTARY PNEUMATIC POSITIONING SYSTEM 
	APPLICATION OF FUZZY CONTROLLERS IN MICRO-CONTROLLERS TO THE CONTROL OF VIBRATIONS IN FLEXIBLE BEAM TYPE STRUCTURE 
	STRUCTURAL VIBRATION CONTROL USING THICKNESS-SHEAR MODE OF PIEZOELECTRIC ACTUATORS 
	DIRECT ADAPTIVE NEURAL CONTROL APPLIED TO A HYDRAULIC ACTUATOR 
	IMPROVING THE POSITIONING ACCURACY OF POWERFUL MANIPULATORS WITH APPLICATION IN NUCLEAR MAINTENANCE 
	MODELING, SIMULATION  AND  FORCE CONTROL OF A  FLEXIBLE ROBOTIC ARM IMPACTING ITS ENVIROMENT 
	POSITION CONTROL OF A MILLING MODULE USING PROPORTIONAL HYDRAULIC 
	A GLOBAL VISION SYSTEM FOR MOBILE MINI-ROBOTS 
	WORKSPACE FOR A QUADRUPED ROBOT CONSIDERING YOUR LEG MECHANISM 
	A CONTROLLER AREA NETWORK FIELD BUS FOR AN UNMANNED ROBOTIC AIRSHIP 
	CONTROL OF A FLEXIBLE MANIPULATOR USING A NEURAL NETWORK FOR NON LINEAR FRICTION IDENTIFICATION AND COMPENSATION 
	HIERARCHICAL SINGULARITY ANALYSIS OF AN ARTICU-LATED ROBOT 
	FRICTION COMPENSATION OF ROBOTIC ACTUATORS THROUGH NEURAL NETWORK 
	IMPLEMENTATION OF BOOLEAN OPERATION USING INTERVAL ARITHMETIC IN B-REP SOLID MODELLING 
	DETERMINATION OF OPERATION PERFORMANCE OF AN ULTRASONIC MOTOR FOR LINEAR DISPLACEMENT 
	MULTIPLE NEURAL NETWORKS IN FLEXIBLE LINK CONTROL USING FEEDBACK-ERROR-LEARNING 
	VIBRATION CONTROL USING FUZZY LOGIC AND IMPLEMENTED IN MICROCONTROLLERS 
	DESIGN METHODOLOGY OF A ROBOT FOR SURGICAL APPLICATIONS 
	VISUAL SERVO CONTROL OF NONHOLONOMIC MOBILE ROBOTS 
	DESIGN AND IMPLEMENTATION OF A TACTILE SENSOR FOR A ROBOTIC GRIPPER 
	PROPOSAL OF UPPER LIMB PROSTHESIS MOVEMENT FROM THE MODELING FORWARD AND INVERSE KINEMATICS 
	LASER INTERFEROMETRY TECHNIQUE APPLIED TO THE MEASUREMENT OF FLEXTENSIONAL TRANSDUCERS DISPLA-CEMENTS 
	A DESIGN METHODOLOGY FOR THE ESTIMATION OF POSITIONING DEVIATION FOR GANTRY MANIPULATORS 
	KINEMATICS MODELLING OF AN HEXAPOD ROBOT 
	PROJECT OF A CONTROLLER LQG FOR A PNEUMATIC SYSTEM 
	CASCADE CONTROL OF A PNEUMATIC SERVODRIVE 
	ANALYSIS AND EXPERIMENTAL DEVELOPMENT OF A PLOTTER FOR DRAWING ON VERTICAL SURFACES 
	AN APPROACH TO STATE SPACE COMPUTATIONAL MODELING AND PREDICTION OF TIME SERIES IN PARALLEL AND DISTRIBUTED COMPUTERS 
	PETRI NET TOOLS: A GRAPHICAL OPEN SYSTEM EDITOR AND SIMULATOR 
	END MILL TOOL WEAR MONITORING TROUGH TORQUE MEASUREMENT 
	SUBSPACE IDENTIFICATION METHOD FOR MULTIVA-RIABLE SYSTEMS WITH INTERCONNECTED STRUCTURE 
	PARALLEL AND DISTRIBUTED MULTIVARIABLE IDENTI-FICATION VIA THE MOESP APPROACH. 
	SEMI-ACIVE SUSPENSION FOR PASSENGER VEHICLES USING FUZZY CONTROLLERS 
	SCREW-BASED JACOBIAN ANALYSIS OF A 3-DOF PARALLEL MANIPULATOR 
	METHODOLOGY FOR MODELING FLEXIBLE SYSTEMS OF MATERIALS MOVEMENT 
	DYNAMICS AND CONTROL OF A FLEXIBLE ROTATING ARM THROUGH THE MOVEMENT OF A SLIDING MASS 
	AUTOMATIC GENERATION OF CONTROL RULES FOR RESOURCE ALLOCATION IN PRODUCTION SYSTEMS WITH CONCURRENT PROCESSES 
	GENERALIZED PREDICTIVE CONTROL FOR COOLING SYSTEMS BASED IN VAPOR COMPRESSION 
	STRUCTURED MODEL BASED CONTROL ARCHITECTURE FOR PRODUCTION SYSTEMS 
	MICRO-ROBOT SOCCER TEAM - MECHANICAL AND HARD-WARE IMPLEMENTATION 
	SPECIFIC PROBLEMS OF THE CAM MECHANISMS KINETO-ELASTODYNAMICS 
	NEURAL NETWORKS APLLIED TO THE PATTERN RECOGNITION 
	KINEMATIC MODEL FOR A QUADRUPED ROBOT 

	Authors
	Silva, Silvana  Aparecida Graminho da 
	Okamoto-Jr.,  Jun 
	Villaça, Rodolfo da Silva 
	Amaral, Paulo Faria Santos 
	Pinto, Benedito Geraldo Miglio 
	Bento Filho, Antônio 
	Grassi Junior, Valdir 
	Deccó, Cláudia C. G. 
	Okamoto Junior, Jun 
	Porto, Arthur José Vieira 
	Dutra, Max Suell 
	Pina Filho, Armando Carlos de 
	Dutra, Max Suell 
	Mello, Vinícius da Costa 
	Alfaro, Sadek Absi 
	Siqueira, Milton L. 
	Motta, José M. S. T. 
	Dutra, Max Suell 
	Catunda, Carlos Eduardo Guedes 
	Ferreira, Cesar Gomes 
	Villani, Emilia 
	Miyagi, Paulo Eigi 
	Valette, Robert 
	Milani, Basilio E. A. 
	Coelho, Alessandra D. 
	Campos, Daniel Carmona de 
	Bezerra, Carlos Andre Dias 
	Zampieri, Douglas Eduardo 
	Mendeleck, Andre 
	Tamai, Edilson Hiroshi 
	Lanni, Chiara 
	Saramago, Sezimaria F. P. 
	Ceccarelli, Marco 
	Carvalho, João Carlos Mendes 
	Ceccarelli, Marco 
	Becker, Marcelo 
	Rodrigues, Denilson Laudares 
	Campos, Mario Fernando Montenegro 
	Kumar, Vijay 
	Gama, Antonio Lopes 
	Morikawa, Sérgio Ricardo Kokai 
	Braga, Arthur Martins Barbosa 
	Correia, Rafael Ribeiro 
	de Araujo, Carlos Jose 
	Rocha, Edgard Augusto Silva 
	Souto, Cícero da Rocha 
	Gonzalez, Cezar Henrique 
	Hunold, Marcos Costa 
	Cabral, Eduardo Lobo Lustosa 
	Abreu, Gustavo Luiz Chagas Manhães 
	Cardoso, Patrick Magalhães 
	Trindade, Marcelo A. 
	Riul, José Antônio 
	Silva, José Felício 
	Cavalcanti, José Homero Feitosa 
	Meggiolaro, Marco Antonio 
	Dubowsky, Steven 
	Valer, Carlos Ingar 
	Sampaio, Rubens 
	Schneider, Fernando Buendgens 
	Cunha, Mauro André Barbosa 
	De Negri, Victor Juliano 
	Aires, Kelson Rômulo Teixeira 
	Alsina, Pablo Javier 
	Medeiros, Adelardo Adelino Dantas De 
	Pizziolo, Tarcísio de Assunção 
	Resende, Peterson de 
	Silvino, José Luis 
	Martins-Filho, Luiz De Siqueira 
	Faria, Bruno Guedes 
	Maeta, Silvio Mano 
	Ramos, Josué Jr. Guimarães 
	Bergerman, Marcel 
	Bueno, Samuel Siqueira 
	Gomes, Sebastião Cícero Pinheiro 
	Gervini, Vitor Irigon 
	Machado, Celiane Costa 
	Martins, Daniel 
	Guenther, Raul 
	Simas, Henrique 
	Gervini, Vitor Irigon 
	Gomes, Sebastião Cícero Pinheiro 
	Shimada, Marcelo 
	Tsuzuki, Marcos de Sales Guerra 
	Ibrahim, Ricardo Cury 
	Rodrigues, Hugo Leonardo Paiva 
	De Almeida Neto, Areolino 
	Góes, Luiz C. S. 
	Nascimento Jr., Cairo L. 
	Nuñez, Israel Jorge Cárdenas 
	Ribeiro, José Francisco 
	Vidal, Walter de Britto 
	Lima, Raul Gonzales 
	Moscato, Lucas A. 
	Carvalho, José Reginaldo H. 
	Silveira, Geraldo F. 
	Rives, Patrick 
	Shiroma, Pedro 
	Bueno, Samuel Siqueira 
	Madani, Fernando Silveira 
	Adade Filho, Alberto 
	Cassemiro, Edna Rodrigues 
	Hermini, Helder Anibal 
	Rosário, Joao Mauricio 
	Nader, Gilder 
	Shirahige, Alessandro 
	Adamowski, Julio Cezar 
	Silva, Emilio Carlos Nelli 
	Ferreira, Claudio Violante 
	Romano, Vitor Ferreira 
	Dutra, Max Suell 
	Netto, Salvador M. C. 
	Oliveira, Benedito Santana 
	Araújo, Clivaldo/Silva 
	Silva, Simplício Arnaud 
	Riul, José Antônio 
	Guenther, Raul 
	Perondi, Eduardo André 
	Segenreich, Solly A. 
	Fontanella, Jorge Luiz 
	Barreto, Gilmar 
	Bottura, Celso Pascoli 
	Bordon, Mauricio  Jose 
	Tamariz, Annabell Del Real 
	Soares, João Borsoi 
	Inamasu, Ricardo Yassushi 
	Silva, Andrea Ribari Yoshizawa 
	Ferraz, Patricia 
	Porto, Arthur Jose Vieira 
	Moscato, Lucas A. 
	Cunha, Vinicius L. C. 
	Torrico, Angel Fernando Cáceres 
	Bottura, Celso Pascoli 
	Barreto, Gilmar 
	Bottura, Celso Pascoli 
	Tamariz, Annabell Del Real 
	Fonseca Neto, Joao Viana Da 
	Teixeira, Rafael Luís 
	Ribeiro, José Francisco 
	Valdiero, Antonio Carlos 
	Campos, Alexandre 
	Guenther, Raul 
	Martins, Daniel 
	Junqueira, Fabrício 
	Miyagi, Paulo Eigi 
	Oliveira, Frederico Ricardo Ferreira de 
	Fleury, Agenor de Toledo 
	Nakamoto, Francisco Yastami 
	Maruyama, Newton 
	Miyagi, Paulo Eigi 
	Santos Filho, Diolino José dos 
	Galvez, Jose Maria 
	Silva, Agostinho Gomes 
	SantosFilho, Diolino José dos 
	Matsusaki, Cristina Toshie Motohashi 
	Maruyama, Newton 
	Miyagi, Paulo Eigi 
	Alsina, Pablo Javier 
	Vieira, Frederico Carvalho 
	Medeiros, Adelardo Adelino Dantas de 
	Oprisan, Cezar 
	Leohchi, Dumitru 
	Nunes, Luiz Eduardo Nicolini do Patrocinio 
	Prado, Pedro Paulo Leite do 
	Bento Filho, Antônio 
	Amaral, Paulo Faria Santos 
	Pinto, Benedito Geraldo Miglio 



