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ABSTRACT

A reliable and cost effective two-phase methodology
is proposed to predict crack propagation life in generic two-
dimensional structural components under complex fatigue
loading. First, the usually curved fatigue crack path and its
stress intensity factors are calculated at small crack incre-
ments in a specialized finite element software, using auto-
matic remeshing algorithms, special crack tip elements and
appropriate crack increment criteria. Then, the calculated
stress intensity factors are transferred to a powerful general
purpose fatigue design software based in the local approach,
which has been designed to predict both initiation and
propagation fatigue lives by all classical design methods. In
particular, its crack propagation module accepts any KI ex-
pression and any da/dN rule, considering sequence effects
such as overload-induced crack retardation to deal with one
and two-dimensional crack propagation under complex
loading. Non-trivial application examples compare the nu-
merical simulation results with those measured in physical
experiments.

INTRODUCTION

The prediction of the fatigue crack propagation life
under complex loading in intricate two-dimensional (2D)
structural components is a challenging problem, that can be
optimally solved by mixing the so-called global and local
design approaches.

The crack path (that is generally curved in compli-
cated structures) and its associated stress intensity factors
KI and KII can be conveniently calculated by a finite ele-
ment (FE) global discretization of the component, using ap-

propriate crack tip elements, mesh regeneration schemes
and crack increment criteria. However, this approach is not
computationally efficient when the load is complex, since it
requires remeshing procedures and FE recalculations of the
stress/strain field of the whole structure at each load event.
Both tasks demand intensive and time-consuming numerical
calculations. Moreover, the modeling of crack retardation
effects increase the numerical burden and compromise even
more the global approach efficiency.

On the other hand, the local approach can be effi-
ciently used to calculate the crack increment at each load
cycle, considering crack retardation effects if necessary.
This method is based on the direct integration of the mate-
rial crack propagation rule, using the stress intensity expres-
sion for the crack. However, KI solutions are simply not
available for most real components, and the errors involved
in using handbook expressions as an approximation increase
as the real crack deviates from the tabulated one, making
the local approach accuracy questionable and its predictions
unreliable in those cases.

Since the advantages of the global and the local ap-
proaches are complementary, the crack propagation prob-
lem can be successfully divided in two steps. First, the crack
path and its associated mode I stress intensity factor KI(a)
along the crack length a are calculated, under simple load-
ing, at small discrete steps using an appropriate FE soft-
ware. Then, an analytical expression is adjusted to the dis-
crete KI(a) calculated values, and exported to a local ap-
proach software. Finally, the actual complex loading is effi-
ciently treated by the integration of the crack propagation
rule, considering retardation effects if required.
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The purpose of this paper is to describe the funda-
mentals of such an integrated system composed of two
complementary programs, designed and tested to implement
this two-step hybrid method. This system demonstrates that
satisfactory fatigue life predictions under complex load for
arbitrary 2D structural components can now be obtained
even in PC environments. The next section describes the
numerical procedures to compute stress intensity factors in
2D geometries.

NUMERICAL COMPUTATION OF STRESS-
INTENSITY FACTORS

In 2D finite element models, three methods can be
chosen to compute the stress-intensity factors along the
(generally curved) crack path:

(i) the Displacement Correlation Technique (DCT)
[1];

(ii) the potential energy release rate computed by
means of a Modified Crack-Closure (MCC) inte-
gral technique [2,3]; and

(iii) the J-integral computed by means of the Equiva-
lent Domain Integral (EDI) together with a mode
decomposition scheme [4,5].

Since Bittencourt et al. [6] showed that for sufficiently
refined FE meshes all three methods predict essentially the
same results, only the DCT method is presented here. The
other two methods provide good results even for relatively
coarse meshes and should be used preferentialy. Further
details can be found in Miranda et al. [7].

In the DCT method, the displacements obtained from
the finite element analysis at specific locations are corre-
lated with the analytic solutions expressed in terms of the
stress-intensity factors. For quarter-point singular elements
[1], the crack opening displacement δδδδ is given by:
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where vj-1 and vj-2 are the relative displacements in the y
direction at the j-1 and j-2 nodes (see Figure 1), L is the
element size, κ = 3 - 4ν in plane strain, κ = (3 - ν)/(1 + ν) in
plane stress, ν is the Poisson ratio, and µ is the shear
modulus. From Eq. (1), the Mode I (and analogously the
Mode II) stress-intensity factor can be evaluated by:
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where uj-1 and uj-2 are the relative displacements in the x
direction at the j-1 and j-2 nodes near the crack tip, see
Figure 1.
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Figure 1. Quarter-point elements at the crack tip.

NUMERICAL COMPUTATION OF THE CRACK
INCREMENT DIRECTION

Fatigue cracks almost always propagate in mode I,
curving their paths if necessary to avoid rubbing their faces.
To simulate this behavior in 2D finite element analysis, the
three most used criteria for numerical computation of crack
growth in the linear-elastic regime are: (i) the Maximum
Circumferential Stress (σσσσθθθθmax); (ii) the Maximum Potential
Energy Release Rate (Gθθθθmax); and (iii) the Minimum Strain
Energy Density (Sθθθθmin).

In the first criterion, Erdogan and Sih [8] considered
that the crack extension should occur in the direction that
maximizes the circumferential stress in the region close to
the crack tip. In the second, Hussain et al. [9] have sug-
gested that the crack extension occurs in the direction that
causes the maximum fracturing energy release rate. And in
the last criterion, Sih [10] assumed that the crack growth
direction is determined by the minimum strain energy den-
sity value near the crack tip. Bittencourt et al. [6] have
shown that if the crack orientation is allowed to change in
automatic fracture simulation, the three criteria furnish basi-
cally the same numerical results. Since the Maximum Cir-
cumferential Stress criterion is the simplest, even presenting
a closed form solution, it is the criterion described below.

The stresses at the crack tip for Modes I and II are
given by summing up the stress fields generated by each
mode:
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where σσσσr is the normal stress component in the radial direc-
tion, σσσσθθθθ is the normal stress component in the tangential di-
rection, and ττττrθθθθ is the shear stress component.These expres-
sions are valid both for plane stress and plane strain. The
Maximum Circumferential Stress criterion assumes that
crack extension begins on a plane perpendicular to the di-
rection in which σσσσθθθθ is maximum (and thus ττττrθθθθ = 0). Mono-
tonic extension shall occur when σσσσθθθθmax reaches a critical
value corresponding to a property of the material (KIC for
Mode I). Using ττττrθθθθ = 0, Eqs. (4-5) have a trivial solution θθθθ =

ππππ±±±±  for cos(θθθθ/2) = 0, and a non-trivial solution otherwise:

KI sinθθθθ + KII (3cosθ−θ−θ−θ−1) = 0 (6)

Analyzing Eq. (6) for pure Mode I, it is found that KII
= 0, KIsinθθθθ = 0 and θθθθ = 0o, and for pure Mode II that KI =
0, KII (3cosθ−θ−θ−θ−1) = 0 and θθθθ = ±±±±70.5o. These are the extreme
θθθθ values of the crack propagation angles. The mixed mode
intermediary values are found by solving Eq. (6) for θθθθ, re-
sulting in:
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where the sign of θθθθ is the opposite of the sign of KII.

The computational models described above have been
implemented in a software called Quebra2DQuebra2DQuebra2DQuebra2D (meaning 2D
fracture in Portuguese) [10, 11], an interactive graphics
software for simulating two-dimensional fracture processes.
This software use a finite element automatic mesh genera-
tion algorithm devised specifically for this software [12].

The mesh generation algorithm may be optionally
used in an adaptive mesh generation scheme that is based on
an a priori boundary refinement, such as the scheme de-
vised by Paulino et al. [13]. In this case, the adaptive proc-
ess first requires the analysis results from an initial finite
element mesh, usually rough, with the geometric descrip-
tions, boundary conditions, and their attributes. Then a dis-
cretization of the domain’s region boundary is performed,
based on the geometric properties and on the characteristic
sizes of the boundary elements (adjacent to the boundary
curves), determined from the error estimate from the previ-
ous step of the finite element analysis. From this discretiza-
tion, a new mesh is generated using the algorithm described

above with one minor improvement: as the quadtree struc-
ture is used to guide the size of the generated elements, an
additional quadtree refinement is performed after the initial
quadtree is generated. This additional refinement takes into
account the characteristic element sizes that are determined
by the error estimation analysis.

THE MODELING OF FATIGUE CRACK GROWTH
UNDER COMPLEX LOADING BY THE LOCAL AP-
PROACH

The modeling and calculation automation of the
LEFM mode I fatigue crack propagation under complex
loading by the local approach are discussed below. The
loading complexity, whose amplitude can randomly vary in
time, is unlimited. Sequence effects, such as overload-
induced crack retardation or arrest are also considered.
Only mode I is discussed, since fatigue cracks almost al-
ways propagate perpendicular to the maximum tensile
stress.

The local approach is so called because it does not re-
quire the global solution of the whole  structure’s stress
field. It is based on the direct integration of the fatigue
crack propagation rule of the material, da/dN = F(∆∆∆∆K, R,
∆∆∆∆Kth, KC, ...), where ∆∆∆∆K is the stress intensity range of the
propagating crack, R = Kmin/Kmax is a measure of the mean
load, ∆∆∆∆Kth is the fatigue crack propagation threshold, and
KC is the fracture toughness. Therefore, neither the ∆∆∆∆K ex-
pression nor the crack propagation rule should have their
accuracy compromised in name of mathematical simplicity
when using this approach.

Most environmental effects can be dealt with an ap-
propriate da/dN rule. However, multiple origins loading
which induce stresses whose principal directions vary sig-
nificantly in time are considered beyond the scope of this
discussion.

In the sequence, first the main features of the software
 (which means life in Portuguese, but also stands

for Visual Damagemeter) are concisely described. This
software has been developed to automate all the traditional
local approach methods used in fatigue design [14, 15], in-
cluding the SN, the IIW (for welded structures) and the εεεεN
for crack initiation, and the da/dN for crack propagation.
Then the cycle-by-cycle method and the modeling of load
sequence effects are discussed.

THE  SOFTWARE - The objective of this
software is to automate in a friendly environment all the
calculations required to predict fatigue life under complex
loading by the local approach. It runs on PCs under Win-
dows 95/NT or better operating system, including all the
necessary tools to perform the predictions, such as: intuitive
and friendly graphical interfaces in six idioms; intelligent
databases for stress concentration and intensity factors,
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crack propagation rules, material properties and the like;
traditional and sequential rain-flow counters; graphic output
for all calculated results, including elastic-plastic hysteresis
loops and of 2D crack fronts; automatic adjustment of crack
initiation and propagation experimental data; an equation
interpreter, etc. The crack growth can be calculated consid-
ering any propagation rule and any ∆∆∆∆K expression that can
be typed in (making it an ideal companion to the QuQuQuQueeee----
bra2Dbra2Dbra2Dbra2D software, which can be used to generate the ∆∆∆∆K(a)
expression if it is not available in its database).

The software has safety features for automatically
stopping the calculations if during any loading event it de-
tects that: (i) Kmax = KC; (ii) the crack reaches its maximum
specified size; (iii) the stress in the residual ligament
reaches the rupture strength of the material SU; (iv) da/dN
reaches 0.1mm/cycle (above this rate the problem is frac-
turing, not fatigue cracking); or else if (v) one of the borders
of the piece is reached by the crack front, in the 2D crack
propagation case (however, for some geometries the soft-
ware is able to model the transition from 2D part-through to
1D through cracks). Moreover, it informs when there is
yielding in the residual ligament before the maximum speci-
fied crack size or number of load cycles is reached. In this
way, the calculated values can be used with the guarantee
that the limit of validity of the mathematical models is never
exceeded.

CYCLE-BY-CYCLE INTEGRATION METHOD -
The basic idea of this method is to associate to each load
reversion the growth that the crack would have if that 1/2
cycle was the only one to load the piece. Using this as-
sumption, it is easy to write a general expression for the cy-
cle-by-cycle crack growth, by any crack propagation rule: if
da/dN = F(∆∆∆∆K, R, ∆∆∆∆Kth, KC,...), and if in the i-th 1/2 cycle
of the loading the length of the crack is ai, the stress range is
∆∆∆∆σσσσi and the mean load causes Ri, then the crack grows by a
δδδδai given by:

...)K,K),,(R),a,(K(F
2
1a cthmaxiiii i

∆∆∆∆σσσσσσσσ∆∆∆∆σσσσ∆∆∆∆∆∆∆∆⋅⋅⋅⋅====δδδδ (8)

The total growth of the crack is quantified by ΣΣΣΣ(δδδδai).
Therefore, the cycle-by-cycle rule is similar in concept to
the linear damage accumulation used in the SN and εεεεN fa-
tigue design methods. As in Miner’s rule, it requests that all
the events that cause fatigue damage be recognized before
the calculation, e.g. by rain-flow counting the loading. But
since it must be applied sequentially, it can be used recog-
nize load interaction effects.

The traditional rain-flow counting algorithm alters the
loading order, as shown in Figure 2. This can cause serious
problems in the predictions, since the loading order effects
in crack propagation are of two different natures: (i) delayed
effects, that can retard or stop the subsequent growth of the

crack due, e.g., to plasticity-induced Elber-type crack clo-
sure [16] or to crack tip bifurcation (these interaction effects
among the loading cycles normally increase the crack life
and, if neglected, may induce excessively conservative pre-
dictions); and (ii) instantaneous fracture, that occurs in the
first load peak where Kmax ≥≥≥≥ KC, an event which must, of
course, be precisely predicted.
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Figure 2. Traditional rain-flow counting (anticipating the

large load events).
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Figure 3. Sequential rain-flow counting (preserving most of
the loading order).

Since the  loading input can preserve the
time order information, a sequential rain-flow counting op-
tion was introduced in that software. With this technique,
the effect of each large loading event is counted when it
happens (and not before its occurrence, as in the traditional
rain-flow method), see Figure 3.

The main advantage of the sequential rain-flow
counting algorithm is to avoid the premature calculation of
the overload effects, which can cause non-conservative
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crack propagation life predictions: as K(σσσσ, a) in general
grows with the crack, a given overload applied when the
crack is large can be much more harmful than applied when
the crack is small. The sequential rain-flow avoids most se-
quencing problems caused by the traditional method, and it
is certainly an advisable option since it presents advantages
over the original algorithm, maintaining its main features
without increasing its difficulty.

The computational implementation of Eq. (8) is not
numerically efficient, even if the compressive peaks and
valleys are pre-zeroed and/or the loading is range filtered to
eliminate the small events which do not cause fatigue dam-
age. For this reason, an additional feature was introduced to
reduce the computational time: an option for maintaining
the geometrical part of ∆∆∆∆K constant during small variations
in crack size.

As ∆∆∆∆K = ∆∆∆∆σσσσ⋅⋅⋅⋅[√√√√(ππππa).f(a/W)], where f(a/W) is a non-
dimensional function (usually quite complex) that depends
only on the piece and crack geometry and not on the load-
ing, it can be said that the range of the stress intensity factor
∆∆∆∆Ki at each load reversion depends on two variables of dif-
ferent nature: (i) on the stress range ∆∆∆∆σσσσi in that event, and
(ii) on the length of the crack ai in that instant.

∆∆∆∆σσσσi, of course, can vary significantly at each event
when the loading is complex, but fatigue cracks always
grow very slowly. In fact, at least in structural metals, the
largest rates of stable crack growth observed in practice are
on the order of µm/cycle, and during most of their life the
fatigue crack growth rates are better measured in nm/cycle.

Therefore, advantage was taken of the small changes
in f(a/W) during small increments in crack length. Instead
of calculating ∆∆∆∆Ki = ∆∆∆∆σσσσi⋅⋅⋅⋅[√√√√(ππππai)⋅⋅⋅⋅f(ai/W)] at each load cycle,
a task that demands great computational effort, a feature
was introduced to hold  f(ai/W) constant during a (small)
percentage of crack increment δδδδa% (specifiable by the
software user depending on the desired precision), an inte-
gration method that is numerically much more efficient.

LOAD INTERACTION MODELS - It is well known
that load cycle interactions effects can be very important
when predicting fatigue crack growth. There is a vast lit-
erature proving that tensile overloads can cause retardation
or arrest of the subsequent crack growth, and that even
compressive underloads can sometimes affect the rate of
crack propagation [16, 17, 18].

Neglecting load interaction effects in fatigue life cal-
culations can completely invalidate the predictions. In fact,
only after considering overload induced retardation effects
can the life reached by real structural components be justi-
fied when modeling many practical problems. However, the
generation of an universal algorithm to quantify these ef-

fects is particularly difficult, due to the number and to the
complexity of the mechanisms involved, such as plasticity-
induced crack closure, blunting and/or bifurcation of the
crack tip, residual stress and/or strain fields, strain-
hardening and/or strain-induced fase transformation, crack
face roughness, and oxidation of the crack faces, e.g. Be-
sides, depending on the case, several of these mechanisms
may act concomitantly or competitively, as a function of
factors such as crack size, material microstructure, domi-
nant stress state, and environment.

On the other hand, the principal characteristic of fa-
tigue cracks is to propagate cutting a material that has al-
ready been deformed by the plastic zone that always ac-
companies their tips. The fatigue crack faces are embedded
in an envelope of (plastic) residual strains and, consequently
they compress their faces when completely discharged, and
open alleviating in a progressive way the (compressive)
load transmitted through their faces.

According to Elber [19], only after completely open-
ing the crack at a load Kop, would the crack tip be stressed.
Therefore, the bigger the Kop, the less would be the effec-
tive stress intensity range ∆∆∆∆Keff = Kmax − Kop, and this ∆∆∆∆Keff
instead of ∆∆∆∆K would be the fatigue crack propagation rate
controlling parameter. Most load interaction models are,
although indirectly, based in this idea. This implicates in the
supposition that the principal retardation mechanism is
caused by plasticity induced crack closure: in these cases,
the opening load should increase when the crack penetrates
into the plastic zone inflated by the overload, reducing the
∆∆∆∆Keff and stopping or delaying the crack, while the plastic
zones associated with the loading are contained in the
overload induced plastic zone.

Several mathematical models have been developed to
account for load interaction in crack propagation based on
Elber’s crack closure idea. In these methods, the retardation
mechanism is only considered within the plastic zone situ-
ated in front of the crack tip. According to these procedures,
a larger plastic zone Zol is created by means of an overload,
see Figure 4. When the overload is removed, an increased
compressive stress state is set up in the volume of its plastic
zone, reducing crack propagation under a smaller succeed-
ing load cycle.

The detailed discussion of this complex phenomenol-
ogy is considered beyond the scope of this work, but a revi-
sion of the phenomenological problem can be found in [16].
A taxonomy of the load interaction models has been intro-
duced by Meggiolaro and Castro [18], including proposed
modifications to better model such effects as crack arrest,
crack acceleration due to compressive underloads, and the
effect of small cracks. They classified these models in 4
categories: (i) da/dN models, such as the Wheeler model,
which use retardation functions to directly reduce the cal-
culated crack propagation rate da/dN; (ii) ∆∆∆∆K models, such
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as the Modified Wheeler model, which use retardation
functions to reduce the value of the stress intensity factor
range ∆∆∆∆K; (iii) Reff models, such as the Willenborg model,
which introduce an effective stress ratio Reff, calculated by
reducing the maximum and minimum stress intensity factors
acting on the crack tip, however not necessarily changing
the value of ∆∆∆∆K; and (iv) Kop models, such as the strip yield
model, which use estimates of the opening stress intensity
factor Kop to directly account for Elber-type crack closure.

overload instant: crack length aov 
aov ZPov 

aov 

aov 

ZPov 

ZPov 

ai 
ZPi

ai 
ZPi 

retardation zone: ai + ZPi < aov + ZPov 

retardation end: aj + ZPj = aov + ZPov 
Figure 4. Yield zone crack growth retardation region used
by the Wheeler and Willenborg load interaction models.

There are other retardation models, but none of those
that can be implemented in a local approach code has de-
finitive advantages over the models discussed above. This is
no surprise, since single equations are too simplistic to
model all the several mechanisms that can induce retarda-
tion effects. Therefore, in the same way that a curve da/dN
vs. ∆∆∆∆K is experimentally measured, a propagation model
should be adjusted to experimental data to calibrate the re-
tardation models, as recommended by Broek [17].

The numerical implementation of these retardation
models in a cycle-by-cycle algorithm is not conceptually
difficult, but it requires a considerable programming effort
[18]. All load interaction models presented in that paper
have been implemented in the  software.

EXPERIMENTAL VERIFICATION OF THE CRACK
PROPAGATION MODELING PROCEDURES IN
ARBITRARY 2D GEOMETRIES

This section describes the modeling and testing pro-
cedures used for studying the fatigue crack propagation
problem in modified four point bending single edge notch
(SEN) and compact tension (CT) test specimens, in which
holes were machined to curve the crack propagation path,
see Figures 5 and 6.

Figure 5 – Details of the modified SEN specimen.

The tested material was a cold rolled SAE 1020 steel,
with the analyzed weight per cent composition: C 0.19, Mn
0.46, Si 0.14, Ni 0.052, Cr 0.045, Mo 0.007, Cu 0.11, Nb
0.002, Ti 0.002, Fe balance. E = 205GPa was the Young’s
modulus, SY = 285MPa the yield strength, SU = 491MPa
the ultimate strength, and RA = 53.7% the area reduction.
These properties were measured according to the ASTM E
8M-99 standard. The da/dN vs. ∆∆∆∆K data, obtained under a
stress ratio R = 0.1 and measured following ASTM E 647-
99 procedures, was fitted by the modified Elber equation
da/dN = 4.5⋅⋅⋅⋅10-10⋅⋅⋅⋅(∆∆∆∆K −−−−  

  

 ∆∆∆∆Kth)2.05, where the threshold stress
intensity range was 

  

 ∆∆∆∆Kth = 11.6MPa√√√√m.

Figure 6 – Details of the modified CT specimens.

Before the tests, the hole-modified SEN and CT
specimens were FE modeled following the procedures de-
scribed above. Then the hole position was varied in the
models to obtain the most interesting curved crack path, by
a simple trial-and-error process. The chosen specimen
geometries were machined, measured and FE remodeled, to
account for small deviations in the manufacture. In this way,
it could be assured that the numeric models used in the pre-
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dictions reproduced the real geometry of the tested speci-
mens.

The FE models generated KI values computed by the
MCC technique at short but discrete intervals along the pre-
dicted crack paths, which were calculated by the σσσσθθθθmax
method. The PC used for the numeric procedures was a
Pentium 650MHz with 128 Mb of RAM, running under
Windows 98 operating system. The FE models were easily
created with the friendly interactive graphic facilities of the
Quebra2DQuebra2DQuebra2DQuebra2D software, where the incremental crack growth
simulation is automatic, after specifying its initial size and
desired growth step.

 Shortly, the automatic calculation procedure was: (i)
the FE model of the holed specimen with the specified ini-
tial crack was solved to obtain its KI and KII stress-intensity
factors and the corresponding propagation direction; (ii) the
crack was incremented in the growth direction by the
(small) required step; (iii) the model was remeshed to ac-
count for the new crack size; and (iv) the process was iter-
ated until the required final crack size was reached.

Each calculation step, including the automatic
remeshing and the FE solution for KI, KII and the incre-
mental growth direction lasted about four seconds in the
used PC. With an average of thirty increments to simulate
the whole crack growth, the total calculation process con-
sumed about two minutes. Therefore, it was indeed practical
to implement the trial-and-error procedure to optimize the
test specimens.

Although the crack path geometry is 2D, once it is
known the crack itself can be described by its (one dimen-
sional) length a measured along the crack path. Hence, its
KI can be written as a function of a, )w/a(fa)a(K I ⋅⋅⋅⋅ππππσσσσ==== .
The discretely calculated values of the geometry factor
f(a/w) were exported to the  software, where they
were automatically adjusted by an appropriate continuous
analytical function.

Then the load programs that would be applied during
the tests were calculated to maintain a quasi-constant stress
intensity range around ∆∆∆∆KI ≈≈≈≈ 20MPa√√√√m, with R =
Kmin/Kmax = 0.1. These loading values induce a stage II
(Paris regime) fatigue crack growth in the 1020 steel da/dN
vs. ∆∆∆∆K curve. The fatigue lives associated with the load
programs were predicted in about 3 seconds.

The experimental procedures used during the tests
were very similar to those used in the standard measurement
of da/dN vs. ∆∆∆∆K curves. All the tests were run at a 20 Hz
frequency in a 250kN computer controlled servo-hydraulic
testing machine. The loads were regularly adjusted to
maintain the specified quasi-constant ∆∆∆∆KI. The only differ-
ence was the use of a digital camera and an image analysis

program to measure the crack size and path. This is a pre-
cise and know also quite economical option to automate
those measurements, but its details are considered beyond
the scope of this paper.

Following the tests, the real crack path was measured
and the lives at each load step were compared with the pre-
dicted ones. These results are discussed below.

SEN SPECIMEN - A crack was fatigue propagated in
a SEN specimen with a hole slightly to the left of the start-
ing notch (created using a 0.3mm jeweler’s saw), as shown
in Figure 5. The final FE mesh automatically generated for
predicting the propagation path is illustrated in Figure 7.
Note the density of the mesh around the crack path and,
particularly, around its tip. The initial mesh had 1995 ele-
ments and 4185 nodes, and the final one 2585 elements and
5467 nodes.

 Figure 8 compares the f(a/w) expression calculated
for this holed test specimen with the standard SEN expres-
sion obtained from the literature[17]. It can be observed that
the hole has a significant influence in the f(a/w) value.

Figure 9 shows a picture of the real crack path after
the test and the FE crack path prediction made before the
test. This modeling has been indeed quite satisfactory.
Therefore, the calculated KI values could also be used to
check the predicted fatigue life.

Figure 7 – FE mesh automatically generated for the modi-
fied SEN specimen.

However, a significant deviation was observed when
comparing the experimental data with the predicted life.
They only agreed during part of test, as shown in Figure 10.
But after about 440,000 load cycles, a clear deviation was
present in the a vs. N graph. The initial agreement indicated
that the predicted KI were reproducing the expected crack
growth rate, a renewed indication that the modeling was
obtaining satisfactory results. As the modeling was constant,
it was concluded that an unplanned accident occurred dur-
ing the test.
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Figure 8 – f(a/w) expression for the modified SEN speci-
men.
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Figure 9 – The real and the predicted crack paths for the

modified SEN specimen.
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Figure 10 – Predicted and measured fatigue crack
propagation behavior for the modified SEN specimen.

Indeed, a review of the loading history identified that
an accidental 60% overload had occurred at around 440k

cycles during a load adjustment procedure, and this was
confirmed by a larger plastic zone observed on the crack
path at that point. This single overload was then simulated
on the  software, using its retardation modeling
facilities. The Modified Wheeler model, which has quite
interesting features as discussed by Meggiolaro & Castro
[18], was used with an exponent γγγγ = 1.43 to simulate this
crack growth retardation problem. The simulation satisfac-
torily reproduced the whole crack growth behavior ob-
served during the test of the holed SEN, as also shown in
Figure 10.

CT SPECIMEN - Four modified CT specimens were
tested. Each one had a 7mm diameter hole positioned at a
horizontal A and a vertical B distance from the notch root,
as shown in Figure 6. This odd configuration was chosen
because two different crack growth behaviors were pre-
dicted by the FE modeling the holed specimen, depending
on the hole position. The fatigue crack was always attracted
by the hole, but it could grow toward it or just be deflected,
missing the hole and continuing to propagate after passing
it. Figure 11 illustrates these predicted crack paths. The ini-
tial meshes in the FE models had about 1300 elements and
2300 nodes, and the final ones after the simulated crack
propagation had about 2200 elements and 5500 nodes. The
calculated KI values are presented and compared to the
standard CTS values in Figure 12.

To test the accuracy of the FE modeling, the transition
point between the “sink in the hole” and the “miss the hole”
crack growth behaviors was identified. Then, two borderline
specimens were dimensioned: one with the hole just half a
millimeter below that point and the other with the hole half
a millimeter above it. Due to machining tolerances, the ac-
tual difference between the holes vertical position in speci-
mens CT1 and CT2 turn out to be 1.2mm instead. These
specimens were remodeled to predict the actual crack path.
The measured and the predicted crack paths are compared
in Fig. 13.

This result was so encouraging that two other speci-
mens, CT3 and CT4, were built to check it. This time, the
vertical distance between their holes was 1.4mm, and they
were also FE remodeled to account for this deviation. How-
ever, the crack path in these specimens were not as well
predicted as they were in CT1 and CT2, as shown in Figure
13. The predicted paths in fact were in between the meas-
ured ones in the two faces of the specimens, and this was an
indication that an unwanted transversal moment had also
loaded them. Indeed, after the latter tests frictional problems
were found in the universal joint of the load train, which
had to be substituted. But these not so good results are pre-
sented here to illustrate the mean path FE prediction. The
predicted and measured fatigue lives are shown in Figures
14 to 17.
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Figure 11 – FE mesh automatically generated for the modi-
fied CT specimens.

CONCLUSIONS

A two-phase methodology was presented to predict
fatigue crack propagation in generic 2D structures under
complex loading. First, self-adaptive finite elements were
used to calculate, by three different methods, the fatigue
crack path and the stress intensity factors along the crack
length KI(a) and KII(a), at each propagation step. The cal-
culated KI(a) was then used to predict the propagation fa-
tigue life by the local approach, using the cycle-by-cycle
integration methods considering overload-induced crack
retardation effects. Two complementary software were de-

veloped to implement this methodology. The first one is an
interactive graphical program for simulating two-
dimensional fracture processes based on a finite element
adaptive mesh generation strategy. The second is a general
purpose fatigue design software developed to predict both
initiation and propagation fatigue lives under complex
loading by all classical design methods. In particular, its
crack propagation module accepts any stress intensity factor
expression, including the ones generated by the finite ele-
ment software. Experimental results showed that the pre-
sented methodology and its software implementation could
effectively predict the crack propagation paths and the fa-
tigue lives of arbitrary two-dimensional structural compo-
nents.
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Figure 12 – f(a/w) curves for the standard and for the modi-
fied CT specimens.
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Figure 13 – Predicted and measured crack paths for the
modified CT specimens.
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Figure 14 – Predicted and measured fatigue life for CT2.
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Figure 15 – Predicted and measured fatigue life for CT2.
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Figure 16 – Predicted and measured fatigue life for CT3.
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