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ABSTRACT

In this work, a review of plasticity induced crack clo-
sure is presented, along with models proposed to quantify
its effect on the subsequent crack growth rate. The stress
state dependence of crack closure is discussed. Overload-
induced retardation effects on the crack growth rate are
considered, based on the crack closure idea, and improve-
ments to the traditional models are proposed to account for
crack arrest and crack acceleration after compressive un-
derloads. Using a general-purpose fatigue design program,
the models and the proposed modifications are compared
with experimental results from various load spectra, and
with simulated histories illustrating their main features.

Keywords: Fatigue, Crack Propagation, Sequence Effects,
Retardation Models, Complex Loading.

INTRODUCTION

Load interaction models must be accounted for to ac-
curately predict fatigue crack propagation life under com-
plex loading. Tensile overloads, when applied over a con-
stant amplitude loading, can retard or even arrest the subse-
quent crack growth, and compressive underloads can also
affect the rate of crack propagation [1-3], see Figure 1.

Neglecting these effects in fatigue life calculations
under complex loading can completely invalidate the pre-
dictions. However, the generation of a universal algorithm
to quantify these effects for design purposes is particularly
difficult, due to the number and to the complexity of the
mechanisms involved in crack retardation, among them

• plasticity-induced crack closure;
• blunting and/or bifurcation of the crack tip;
• residual stresses and/or strains;
• strain-hardening or strain induced phase transformation;
• crack face roughness; and
• oxidation of the crack faces.

Figure 1. Fatigue crack growth retardation induced by ten-
sile overloads [3].

The detailed discussion of this complex phenomenol-
ogy is considered beyond the scope of this work (a revision
of the phenomenological problem can be found in [1]).
Moreover, the relative importance of the several mecha-
nisms can vary from case to case.

On the other hand, the principal characteristic of fa-
tigue cracks is to propagate cutting a material that has al-
ready been deformed by the plastic zone that always ac-
companies their tips. Therefore, fatigue crack faces are al-
ways embedded in an envelope of (plastic) residual strains
and, consequently, they compress their faces when com-
pletely discharged, and open alleviating in a progressive
way the (compressive) load transmitted through them.

In the early seventies, Elber [4] discovered that fa-
tigue cracks opened gradually, remaining partially closed
for loads substantially higher than zero. This was attributed
to the compressive loads transmitted through the faces of an
unloaded fatigue crack, caused by the plastic strains that
surround it, a phenomenon termed plasticity-induced fa-
tigue crack closure.
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CRACK CLOSURE – Elber was one of the first to
attempt to describe, with the aid of a physical model, the
connection between load sequence, plastic deformation (by
way of crack closure) and crack growth rate. He assumed
that crack growth cannot take place under cyclic loads until
the fatigue crack is fully opened. According to him, only
after the load completely opened the crack at a stress inten-
sity factor Kop > 0, would the crack tip be stressed. There-
fore, the bigger the Kop, the less would be the effective
stress intensity range ∆∆∆∆Keff = Kmax −−−− Kop, and this ∆∆∆∆Keff
instead of the range ∆∆∆∆K = Kmax – Kmin would be the fatigue
crack propagation rate controlling parameter. Based on ex-
periments on 2024-T3 aluminum, Elber proposed a modifi-
cation to the Paris growth rule by using this effective stress
intensity range to calculate the crack propagation under
constant amplitude loads
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where da/dN is the fatigue crack growth rate, R=Kmin/Kmax

is the stress ratio, ∆∆∆∆Kth is the propagation threshold, and A
and m are material properties, which should be experimen-
tally measured. The threshold stress intensity factor range
used in this model can be determined for any positive stress
ratio R > 0 by, for instance

∆∆∆∆Kth = (1 −−−− ααααt R) ∆∆∆∆K0     (2)

where ∆∆∆∆K0 is the crack propagation threshold value of the
stress intensity factor range obtained from R = 0 constant
amplitude tests, and ααααt is a material constant determined
from constant-amplitude test data for various stress ratios.

Newman [5] found that crack closure does not only
depend on R, as proposed by Elber, but is also dependent
on the maximum stress level σσσσmax. According to Newman,
the crack opening stress intensity factor can be calculated
from the closure function f
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where the polynomial coefficients are given by













−−−−++++====
−−−−−−−−−−−−====

σσσσ⋅⋅⋅⋅αααα−−−−====
πσπσπσπσ⋅⋅⋅⋅αααα++++αααα−−−−==== αααα

1AA2A
AAA1A

S/)071.0415.0(A
)]S2/[cos()05.034.0825.0(A

103

3102

flmax1

/1
flmax

2
0

(4)

where σσσσmax is the maximum applied stress, Sfl is the mate-
rial flow strength (for convenience defined as the average
between the material yielding and ultimate strengths,
Sfl = (SY + SU)/2), and αααα is a plane stress/strain constraint

factor, with values ranging from αααα    = 1 for plane stress to up
to αααα    = 3 for plane strain.

From the definition of Newman’s closure function f,
the effective stress intensity range ∆∆∆∆Keff = Kmax −−−− Kop can
be rewritten as

K
R1
f1K)f1(K maxeff ∆∆∆∆
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Based on the above expression for the effective stress
intensity range, Forman et al. [6] proposed the following
fatigue crack propagation rule to model all three crack
growth regimes [1-3], including the effect of the stress state
through Newman’s closure function

(((( ))))
(((( ))))qCmax

p
th

m

K/K1

K/K1
K

R1
f1A

dN
da

−−−−

∆∆∆∆∆∆∆∆−−−−







 ∆∆∆∆
−−−−
−−−−⋅⋅⋅⋅==== (6)

where KC is the critical (rupture) stress intensity factor, A,
m, p, and q are experimentally adjustable constants, and
∆∆∆∆Kth can be calculated using equation (2).

Assuming that the fatigue crack growth rate is con-
trolled by ∆∆∆∆Keff instead of by ∆∆∆∆K (and, therefore, that plas-
ticity induced closure is the sole mechanism which affects
the propagation process), the need for taking into account
the stress state in fatigue crack propagation tests must be
emphasized. Consider, for instance, the effective stress in-
tensity range ∆∆∆∆Keff predicted by Newman for the plane
stress case (αααα    = 1) when R = 0. From equations (3-5), ∆∆∆∆Keff
is approximately equal to half the value of ∆∆∆∆K. This means
that da/dN curves experimentally fitted to ∆∆∆∆K values with-
out considering the crack closure effect would be actually
correlating the measured da/dN rates with twice the actual
(effective) stress intensity range acting on the crack tip. On
the other hand, da/dN curves obtained in the same way (R
= 0) under plane strain conditions (αααα    = 3) would be actu-
ally correlating da/dN with approximately 4/3 of (and not
twice) the effective stress intensity range. Therefore, one
could not indiscriminately use crack growth equation con-
stants obtained under a certain stress condition (e.g. plane
stress) to predict crack growth under a different state (e.g.
plane strain), even under the same stress ratio R.

E.g., if a Paris da/dN vs. ∆∆∆∆K equation with exponent
m = 3.0, measured under plane stress conditions and R = 0,
is used to predict crack propagation under plane strain, the
predicted crack growth rate would be [(4/3)/2]m ≈≈≈≈ 0.3 times
the actual rate, a non-conservative error of 70%. There-
fore, to avoid this (unacceptable) error, it would be neces-
sary to convert the measured crack growth constants associ-
ated with one stress condition to the other using appropriate
crack closure functions. Another approach would be to use
in the predictions only da/dN vs. ∆∆∆∆K rules such as equation
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(6), that already have embedded the stress state dependent
closure functions.

This alarming prediction implies that the usual prac-
tice of plotting da/dN vs. ∆∆∆∆K instead of da/dN vs. ∆∆∆∆Keff to
describe fatigue crack growth tests would be highly inap-
propriate, because da/dN would also be a strong function of
the specimen thickness t, which controls the dominant
stress state at the crack tip (assuming that the classical
ASTM E399 requirements for validating a KIC toughness
test could also be used in fatigue crack growth, plane strain
conditions would apply if t > 2.5[Kmax/SY]2). In other
words, one could expect to measure quite different da/dN
fatigue crack growth rates when testing thin or thick speci-
mens of a given material under the same ∆∆∆∆K and R condi-
tions. Moreover, the concept of a “thin” or “thick” speci-
men would also depend on the load, since Kmax increases
with the applied stress. However, this thickness effect on
da/dN is not recognized by the ASTM E645 standard on
the measurement of fatigue crack propagation, which, in
spite of mentioning the importance of crack closure, only
requires specimens sufficiently thick to avoid buckling
during the tests.

The errors associated with plotting da/dN vs. ∆∆∆∆K in-
stead of ∆∆∆∆Keff to predict crack growth under different stress
states can be illustrated e.g. using m = 3.25 for the expo-
nent of the Paris equation of an aluminum alloy. If data is
measured under plane stress conditions without considering
crack closure, then the prediction under plane strain would
be (∆∆∆∆Keff, σσσσ/∆∆∆∆Keff, εεεε)m times the actual rate, a non-
conservative error of [1 −−−−    ((((∆∆∆∆Keff, σσσσ/∆∆∆∆Keff, εεεε)3.25]. Using the
ratio ∆∆∆∆Keff, σσσσ/∆∆∆∆Keff, εεεε calculated from Newman's closure
function, this prediction error is plotted in Figure 2 as a
function of σσσσmax and R.
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Figure 2. Non-conservative da/dN prediction errors for
plane strain calculations based on plane stress data, ac-

cording to Newman's closure function.

Therefore, since it is the thickness t the parameter that
controls the stress state, one could expect the fatigue life of
thin (plane stress dominated) structures to be much higher
than the life of thick (plane strain dominated) ones, when
both work under the same (initial) ∆∆∆∆K and R. One could
also expect intermediate thickness structures, where the
stress state is not plane stress nor plane strain dominated, to
have 1 < αααα < 1/(1 −−−− 2νννν) and a transitional behavior. Moreo-
ver, this transition can occur in the same piece, if the crack
starts under plane strain and progressively grows toward a
plane stress dominated state. However, unlike the thickness
effect on fracture toughness, the dominant stress state usu-
ally is not object of much concern in fatigue design, but it
certainly deserves a closer experimental verification.

Some other results are worth mentioning. When ex-
amining Ti6Al4V by the electropotential method, Shih and
Wei [7] also discovered that crack closure depends on R
and on Kmax too, which is in agreement with Dugdale's the-
ory [8]. In addition, in that titanium alloy no crack closure
was found for R > 0.3. According to Shih and Wei, neither
the influence of R on the crack propagation nor the retarda-
tion effects can be completely explained by crack closure.

Bachmann and Munz [9] also conducted crack closure
measurements on Ti6Al4V, using an extensometer. How-
ever, unlike Shih and Wei, they were not able to discover
any influence of Kmax on crack closure behavior, which in
turn would seem to confirm Elber's results.

In summary, the equations presented in this section
are derived from experimental data or finite-element pre-
dictions for constant-amplitude fatigue tests. As such they
can account for closure effects in constant amplitude fa-
tigue data (by collapsing da/dN vs. ∆∆∆∆K curves for multiple
R values), but they cannot account for stress interaction
effects such as growth rate retardation or acceleration after
overloads or underloads. To recognize load interaction ef-
fects, it is in general necessary to compute the overload-
induced plastic zone size and compare it with the (embed-
ded) current plastic zone. The next section presents analyti-
cal models to account for such load interaction effects.

LOAD INTERACTION MODELS

The above-mentioned results show the importance of
the crack closure concept, and most load interaction mod-
els are, directly or indirectly, based on Elber's original crack
closure idea. This implicates in the supposition that the
main fatigue crack growth retardation mechanism after an
overload is caused by plasticity induced crack closure. This
mechanism would cause the opening load Kop to increase
due to the overload inflated plastic zone ahead of the crack
tip, reducing ∆∆∆∆Keff and delaying subsequent crack growth.

In fact, most models that have been developed to ac-
count for load interaction effects in fatigue crack propaga-
tion are based on Elber’s crack closure idea. In these mod-
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els, the retardation mechanism is considered to act only
within the overload-induced plastic zone situated in front of
the crack tip. The size of this overload plastic zone being
(considerably) greater than the size of the plastic zone in-
duced by subsequent load cycles, an increased compressive
stress state would be set up inside that region. This state
would be then the main contributing factor for reducing the
crack propagation rate under smaller succeeding loads.

For calculation purposes, one way of estimating the
overload-induced plastic zone size Zol is using Irwin’s ex-
pressions for plane stress and plane strain
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where Kol is the maximum stress intensity factor at the
overload and SY is the material tensile yield strength. A
more general expression for the plastic zone size proposed
by Newman [10] is given by
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where the constraint factor ααααp is defined as a function of the
specimen (plate) thickness t,
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However, based on the maximum size of the plastic
zone predicted by the HRR field, which is approximately
the same both in plane stress and in plane strain (being
however in the crack plane direction ahead of the crack tip
in plane stress but not in plane strain [11]), some prefer to
use equation (7) for both stress states.

Topper et al. [12], when performing experiments on
SAE 1045 steel, recently discovered that high overload
stress levels cause drastic reductions in the crack closure
level and a large increase in subsequent crack growth rate
and damage, confirming Newman’s prediction. Their re-
sults implied that Elber's original crack closure concept is
only applicable for nominal stress levels below half the
material's tensile yielding strength SY. For overloads be-
yond SY/2 (especially for those close to SY), it was found
that the crack opening stress σσσσop is significantly reduced,
resulting in reduction in retardation of the crack growth
after the overload. They proposed an equation for σσσσop that
depends not only on R, but also on the maximum overload
stress σσσσol and SY
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where αααα1 and αααα2 are empirical constants. They also found
that compressive underloads near the material's compres-
sive yielding strength can cause crack acceleration due to
flattening of the fracture surface asperity. Such flattening
reduces the roughness-induced closure effect, decreasing as
well the crack opening stress.

Perhaps the best-known fatigue crack growth retarda-
tion models are those developed by Wheeler [13] and by
Willenborg [14]. Both use the same idea to decide whether
the crack is retarded or not: under variable loading, fatigue
crack growth retardation is predicted when the plastic zone
of the i-th load event Zi is embedded within the plastic zone
Zol induced by a previous overload, and it is assumed de-
pendent on the distance from the border of Zol to the tip of
the i-th crack plastic zone Zi, see Figure 3.

Figure 3. Yield zone crack growth retardation region used
by Wheeler and by Willenborg.

In that figure, aol is the size of the crack when the
overload occurs, and ai is the (larger) crack size at the i-th
load event, which occurs after the overload. According to
both the Wheeler and the Willenborg models, load interac-
tion effects would end when aol + Zol = ai + Zi. Moreover,
the magnitude of the retardation effect would be maximum
at the very first cycle after the overload, and it would stead-
ily decrease as the crack progressively grew through the
overload plastic zone.
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This assumption may be mathematically convenient,
but it is hard to physically justify. If the crack must enter
the overload inflated plastic zone to be retarded, it does not
seem reasonable to assume that the maximum retardation
effect occurs in the very first cycle after it, when the crack
barely crossed the Zol frontier. In fact, von Euw et al. [15]
obtained experimental results under plane stress conditions
that support this view.

The main difference between the Wheeler and Wil-
lenborg models is that the latter quantifies the retardation
effect by reducing Kmax and Kmin acting on the crack tip,
while Wheeler accounts it by direct reduction of the crack
propagation rate da/dN. Based on this and other differ-
ences, the load interaction models presented in this work
are divided into 4 categories, as follows.

da/dN INTERACTION MODELS – The da/dN in-
teraction models use retardation functions to directly reduce
the calculated crack propagation rate da/dN. Wheeler is the
most popular of such models [13]. He introduced a crack-
growth reduction factor, Cr, bounded by zero and unity,
which is calculated for each cycle to predict retardation as
long as the current plastic zone is contained within a previ-
ously overload-induced plastic zone (this is the fundamental
assumption of the yield zone models). The retardation is
maximum just after the overload, and stops when the border
of Zi touches the border of Zol, see Figure 3.

Therefore, if aol and ai are the crack sizes at the in-
stant of the overload and at the (later) i-th cycle, and
(da/dN)ret,i and (da/dN)i are the retarded and the corre-
sponding non-retarded crack growth rate (at which the
crack would be growing in the i-th cycle if the overload had
not occurred), then, according to Wheeler
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where ai + Zi < aol + Zol, and ββββ is an experimentally adjust-
able constant, obtained by selecting the closest match
among predicted crack growth curves (using several ββββ-
values) with an experimental curve measured under spec-
trum loading.

Wheeler found experimentally that the shaping expo-
nent, ββββ, was material dependent, having values of 1.43 for a
steel and 3.4 for the titanium alloy Ti-6Al-4V. Broek [2]
suggests that other typical values for ββββ are between 0 and 2.
However, flight-by-flight crack propagation tests performed
by Sippel et al. [16] have shown that the exponent ββββ is de-
pendent not only on the material, but also on the crack
shape, on the stress level, as well as on the type of load
spectrum. Therefore, the designer should be aware that life
predictions based on limited amounts of supporting test
data, or for load spectra radically different from those for

which the exponent ββββ was derived, can lead to inaccurate
and non-conservative results.

Finney [17] found experimentally that the calibration
ββββ-value depends on the maximum overload stress σσσσol in the
spectrum and on the crack shape parameter Q (Q = 1 for
through cracks and Q = 1+1.464⋅⋅⋅⋅[a/c]1.65 for surface cracks
with depth a and width 2c). The ββββ-value tends to vary with
these parameters in the same way as does the stress inten-
sity factor K, i.e., it increases with the maximum overload
stress σσσσol and decreases with the crack shape parameter Q.

According to Finney, increasing σσσσol stress levels
would result in increased retardation, contradicting New-
man’s results for constant amplitude closure. Finney pro-
posed that the exponent ββββ can be represented as a function
of the parameter σσσσol/√Q. A typical relation, based on Fin-
ney's experimental results, is proposed as

2
ol

1 B
Q

B −−−−
σσσσ====ββββ (13)

where B1 and B2 are experimentally adjustable positive
constants. The penalty of this approach is the need for ad-
ditional testing to adjust these constants.

In summary, the selection of proper values for the
Wheeler exponent ββββ can yield reasonable crack-growth
predictions when the (complex) loads have spectra similar
to the tests used to obtain ββββ. However, the classical Wheeler
model cannot predict the phenomenon of crack arrest. As
Zi ≈≈≈≈ (Kmax/SY)2, the lowest value of the predicted retarda-
tion factor happens immediately after the overload, and it is
equal to (Kmax/Kol)2ββββ, where Kmax is the maximum stress
intensity factor in the cycle just after the overload, and Kol
is the maximum stress intensity factor at the overload.
Therefore, the phenomenology of the load interaction
problem is not completely reproducible by the Wheeler
model, since its retardation factor is always different than
zero. To consider crack arrest, a modification of the
Wheeler original model is presented next.

∆∆∆∆K INTERACTION MODELS – The ∆∆∆∆K interaction
models use retardation functions to directly reduce the
value of the stress intensity range ∆∆∆∆K. Meggiolaro and
Castro [18] proposed a simple but effective modification to
the original Wheeler model in order to predict both crack
retardation and arrest. This approach, called the Modified
Wheeler model, uses a Wheeler-like parameter to multiply
∆∆∆∆K instead of da/dN after the overload
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where ∆∆∆∆Kret(ai) and ∆∆∆∆K(ai) are the values of the stress in-
tensity ranges that would be acting at ai with and without
retardation due to the overload, ai + Zi is smaller than aol +
Zol, and γγγγ is an experimentally adjustable constant, in gen-
eral different from the original Wheeler model exponent ββββ.

This simple modification can be used with any of the
propagation rules that recognize ∆∆∆∆Kth to predict both retar-
dation and arrest of fatigue cracks after an overload, the
arrest occurring if ∆∆∆∆Kret(ai) ≤≤≤≤ ∆∆∆∆Kth (there are more than
thirty such da/dN vs. ∆∆∆∆K rules in the ViDa software
database [3], but using its equation interpreter any other
rule can be typed in by the user). In addition to the retarded
stress intensity range ∆∆∆∆Kret, the retarded stress ratio Rret can
also be calculated as

Rret(ai) = 1 −−−− ∆∆∆∆Kret(ai) / Kmax(ai)    (15)

where Kmax(ai) is the maximum load at the i-th cycle.

However, the Modified Wheeler model cannot predict
the reduction of the retardation effects due to underloads
subsequent to overload cycles, a phenomenon also referred
to as fatigue crack acceleration [1]. An underload cycle
occurs when its minimum value Kmin is significantly
smaller than the corresponding values of the previous or the
subsequent cycles.

Chang et al. [19] proposed the concept of an effective
overload plastic zone to model crack acceleration. In
Chang's crack acceleration concept, the overload plastic
zone Zol is reduced to (Zol)ul after a compressive underload,
reducing the crack retardation effects by increasing the re-
tardation parameter from equations (12) and (14). Chang’s
acceleration concept was originally developed for the Wil-
lenborg model, considering that the compressive underload
immediately follows the overload, but it may be adapted to
the Wheeler and Modified Wheeler models using

olululol Z)R1()Z( ⋅⋅⋅⋅++++==== ,  where
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where Rul is the underload stress ratio σσσσul/σσσσol, σσσσul being the
lowest underload stress after the most recent overload σσσσol,
and R−−−− is a cutoff value for negative stress ratios (typically
R−−−− = −−−−0.5, where  −−−−1 < R−−−− < 0).

Using this idea to calculate the (increased) value of
∆∆∆∆Kret, replacing the overload plastic zone Zol by its reduced
value (Zol)ul in the retardation model, an extension of the
Modified Wheeler model, called Generalized Wheeler, is
proposed here

γγγγ















−−−−++++αααα++++
⋅⋅⋅⋅∆∆∆∆====∆∆∆∆

iololulul

i
ret aaZ)R1(

ZKK      (17)

where ∆∆∆∆Kret is the retarded stress intensity range, ulR  is
defined in equation (16), γγγγ is the Modified Wheeler expo-
nent, and the adjustable parameter ααααul can be used to multi-
ply ulR  to better model the influence of underload stresses
on crack acceleration.

This proposed model recognizes crack retardation and
arrest due to overloads, and also crack acceleration (reduc-
tion in retardation) due to underloads. Another advantage of
the Generalized Wheeler model is that it can be applied to
any da/dN equation (preferably to one that recognizes ∆∆∆∆Kth
to also model crack arrest), in contrast with the Willenborg
model, which can only be applied to da/dN equations that
explicitly model the stress ratio R, as explained below.

Before leaving this section, it is worth mentioning that
these retardation functions can also be based on Newman’s
closure function f in equations (3-4) to consider the stress
state effect, through ∆∆∆∆Keff = [(1– f)/(1–R)] ∆∆∆∆Kret. However,
one should be careful not to use Newman's approach with
da/dN fatigue crack propagation rules that already include
the effects of f or R.

Reff INTERACTION MODELS – The Reff load inter-
action models account for retardation effects by reducing
both the maximum and the minimum stress intensity factors
acting on the crack tip. The best-known effective stress
ratio Reff model is the Willenborg model [14]. As in the
Wheeler model, the retardation for a given applied cycle
depends on the loading and on the extent of crack growth
into the overload plastic zone. Willenborg et al. assumed
that the maximum stress intensity factor Kmax occurring at
the current crack length ai is reduced by a residual stress
intensity KRW calculated, more or less arbitrarily, from the
difference between the stress intensity required to produce a
plastic zone that would reach the overload zone border
(distant Zol + aol −−−− ai from the current crack tip) and the cur-
rent maximum applied stress intensity Kmax

maxoliolololRW KZ)aaZ(KK −−−−−−−−++++====    (18)

where Kol is the maximum stress intensity of the overload,
Zol is the overload plastic zone size, and aol is the crack size
at the occurrence of the overload (see Figure 3).

Willenborg et al. assumed that both stress intensity
factors Kmax and Kmin at the current i-th cycle are reduced
by KRW. Thus, since the stress intensity range ∆∆∆∆K is un-
changed by this uniform reduction, the retardation effect is
only caused by the change in the effective stress ratio Reff
calculated by
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As a result, all crack propagation rules that do not
model explicitly the effects of the stress ratio R cannot be
used with the Willenborg retardation model. For instance, if
the Paris law is used to describe crack propagation, the
Willenborg model will not predict crack retardation after
overloads, since the value of ∆∆∆∆K remains unchanged (and
thus the value of da/dN as well). This is a limitation of the
Willenborg formulation, not present in the Wheeler model.

In early calculations with the Willenborg model, if the
calculated Reff was negative, then it was considered equal to
zero in the da/dN equation, making ∆∆∆∆K = Keff,max. Recent
evidence, however, supports the use of negative values of
Reff, as long as a da/dN equation with a negative stress ratio
cut-off is used.

Another problem in the original Willenborg model is
the prediction that Keff,max = 0 (and therefore crack arrest)
immediately after an overload if Kol ≥≥≥≥ 2 Kmax. That is, if the
overload is at least twice as large as the following loads,
Willenborg implies that the crack arrests, independently of
the material properties, stress level, or load spectrum.

To account for the observations of continuing crack
propagation after overloads larger than a factor of two or
more, several modifications to the original Willenborg
model have been proposed. Some examples of such modifi-
cations are the Generalized Willenborg (GW) model [20],
the Modified Generalized Willenborg (MGW) model [21],
and the Walker-Chang Willenborg (WCW) model [19].
The latter two have the advantage of accounting for reduc-
tion in retardation after a compressive underload.

However, even with all proposed modifications to
improve the original Willenborg model, the assumption
regarding the residual compressive stresses through the
residual stress intensity KRW is still at least very doubtful.
To better model the closure effects on crack retardation,
some methods directly estimate the value of the opening
stress intensity factor Kop, instead of indirectly accounting
for its effects through arbitrary parameters such as KRW.
These Kop load interaction models are presented next.

Kop INTERACTION MODELS – In the Kop models,
the opening stress intensity factor Kop caused by an over-
load is directly computed and applied to the subsequent
crack growth to account for Elber-type crack closure. Per-
haps the simplest Kop model is the Constant Closure
model, originally developed at Northrop for use on their
classified programs [22]. This load interaction model is
based on the observation that for some load spectra the clo-
sure stress does not deviate significantly from a certain sta-
bilized value. This value is determined by assuming that the
spectrum has a "controlling overload" and a "controlling

underload" that occur often enough to keep the residual
stresses constant, and thus the closure level constant.

In the constant closure model, the opening stress in-
tensity factor Kop is the only empirical parameter, with
typical values estimated between 30% and 50% of the
maximum overload stress intensity factor. The crack open-
ing stress Kop can also be calculated, for instance, from
Newman's closure function given in equations (3-4), using
the stress ratio R between the controlling underload and
overload stresses. The value of Kop, calculated for the con-
trolling overload event, is then applied to the following
(smaller) loads to compute crack growth, recognizing crack
retardation and even crack arrest (if Kmax ≤≤≤≤ Kop).

The main limitation of the Constant Closure model is
that it can only be applied to loading histories with "fre-
quent controlling overloads," because it does not model the
decreasing retardation effects as the crack tip cuts through
the overload plastic zone. In this model, it is assumed that a
new overload zone, with primary plasticity, is formed often
enough before the crack can significantly propagate through
the previous plastic zone, thus not modeling secondary
plasticity effects by keeping Kop constant.

To account for crack retardation due to both primary
and secondary plasticity (Figure 3), the European Space
Agency and the National Aerospace Laboratory, in coop-
eration with NASA, developed the DeKoning-Newman
Strip Yield (SY) load interaction model [23]. In this model,
a crack growth law is described in an incremental way,
modeling crack growth attributed to increments δδδδK in the
stress intensity factor as the crack changes from closed to
fully open configurations. This incremental law is then in-
tegrated at each cycle from the minimum to the maximum
applied stress intensity factors Kmin and Kmax to find the
crack growth rate da/dN. A detailed discussion of this
model is found in [23].

There are several other load interaction models in the
literature [24], but none of them has definitive advantages
over the models discussed above. This is no surprise, since
single equations are too simplistic to model all the several
mechanisms that can induce retardation effects. Therefore,
in the same way that a curve da/dN vs. ∆∆∆∆K must be ex-
perimentally measured, a load interaction model must still
be adjusted to experimental data to calibrate its parameters,
as recommended by Broek [2].

EVALUATION OF LOAD INTERACTION MODELS

In this section, the presented load interaction models
and the proposed modifications are compared with some
experimental results from various load spectra. Only the
DeKoning-Newman Strip Yield model is not included in
this comparison, because it depends on several experimen-
tal constants not available for the considered material.
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All load interaction models presented in this work
have been implemented in a general-purpose fatigue design
program named ViDa, developed to predict both ini-
tiation and propagation fatigue lives under complex loading
by all classical design methods. Using the efficient numeri-
cal integration facilities available in this software, the crack
propagation life of an 8-mm-thick center-cracked tensile
specimen, made of a 7475-T7351 aluminum alloy, is cal-
culated using several block loading histories (see Table 1).
The calculated lives are compared to experimental tests
performed by Zhang [25], who measured crack growth rates
through scanning electron microscopy. These predictions
have also been successfully validated through a comparison
with similar calculations performed by NASGRO, the
crack growth program developed by NASA [26]. However,
the latter software only considers the Reff and the Kop retar-
dation models, and it restricts the choice of the da/dN ex-
pression to Forman-Newman's equation (6).

On the other hand, ViDa's database includes
over thirty da/dN equations, and accepts any other through
its equation interpreter, reflecting its open philosophy in
fatigue design. In this way, the user can choose for instance
whether or not to use Newman's closure function f in crack
growth. Furthermore, it includes all the load interaction
models presented in this work, granting flexibility to the
end-user.

For consistency purposes, the calculations presented
in this section were performed selecting Forman-Newman's
equation (6), computing crack growth using A = 6.9⋅⋅⋅⋅10−−−−7,
m = 2.212,  p = 0.5, q = 1.0, the same parameters used by
NASGRO. The propagation threshold for R = 0 is ∆∆∆∆K0 =
3MPa√√√√m, used to compute the threshold stress intensity
range through equation (2).

Also, the plane-strain fracture toughness of the con-
sidered alloy is KIc = 38MPa√√√√m. A modified version of the
KC-versus-thickness behavior proposed by Vroman [27] is
used to compute the fracture toughness under the stress
condition of the t = 8mm plate thickness,
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resulting in KC = 73MPa√√√√m. Newman's closure function f
was used for σσσσmax/Sfl = 0.3 and a constant plane stress/strain
constraint factor αααα    = 1.9. All models had their adjustable
parameters calibrated using the first loading history (except
for the Willenborg model, without parameters to be ad-
justed), and their comparison is made from the remaining
loadings. Table 1 shows Zhang's test results and the per-
centage error of the predicted lives using several load inter-
action models.

Table 1. Percentage errors in the test lives predicted by the
load interaction models.

Loading history (MPa)

50

10
0

60 20

10
0

10
0

60 20
5

40

10
0

60 2014
0

Zhang's test (cycles) 474,240 409,620 149,890

No Interaction −17% −13% −2.3%

Wheeler 0% +2.3% +6.6%

Generalized Wheeler 0% +2.3% +6.4%

Willenborg +293% +185% +44%

Generalized Willenborg 0% +2.2% +4.0%

Modif. Gen. Willenborg 0% +2.6% +42%

Constant Closure 0% +2.4% −60%

As expected, the Willenborg model resulted in poor
predictions, since this model cannot be calibrated. The re-
maining models performed similarly for the second load
history. However, as the maximum load increased from 100
to 140 MPa in the last history, the Modified Generalized
Willenborg and the Constant Closure models showed in-
creased errors. All Wheeler-type models and the General-
ized Willenborg model resulted in the best predictions for
Zhang's histories.

It should be noted that the Modified Wheeler and
Generalized Wheeler models resulted in the same predic-
tions, because the considered histories didn't include com-
pressive underloads. Also, the (traditional) Wheeler and the
Modified and Generalized Wheeler results were very simi-
lar, because Zhang’s tests were performed under the second
crack growth regime, which is not much influenced by the
threshold ∆∆∆∆Kth nor by the toughness KC (in fact, under pure
Paris controlled crack growth, da/dN = A∆∆∆∆Km, these rules
become identical if γγγγ = ββββ/m). Therefore, the advantages of
the Modified and the Generalized Wheeler models in pre-
dicting crack arrest could not be exemplified above.

To compare the predictions of the models in the pres-
ence of underloads, a simulated underload event σσσσul was
considered after each overload event, see Table 2. These
simulated tests make sense since all models assume that
crack closure is the sole mechanism which causes load in-
teraction effects, and the overall behavior of the predictions
illustrate their sensibility to the differences in load spectra.
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Table 2. Comparison of life predictions in cycles for differ-
ent underload stresses.

Loading history
(MPa) 100

100
60
20

σul

Underload stress
σσσσul (MPa) 20.0 0.0 -20.0 -50.0

Wheeler 497100 493700 491600 488200
Modified Wheeler 496900 493600 491350 487950

Gener. Wheeler 496900 493600 470850 427750
Gener. Willenborg 497650 494500 492350 488950

Mod.Gen.Willenb. 499350 457850 444300 433000
Constant Closure 497100 495700 494600 492350

As expected, the Generalized Wheeler and the Modi-
fied Generalized Willenborg were the only load interaction
models that predicted reduction in retardation (and thus
reduced life) after compressive underloads. The other mod-
els showed a slight reduction in the calculated lives in the
presence of underloads, however this small change was
caused only by the increased ∆∆∆∆K at (and not after) the
overload/underload event.

However, as it was shown in Table 1, the Modified
Generalized Willenborg model only resulted in good pre-
dictions when the 100MPa overload level (used in its cali-
bration) was maintained. Thus, the Generalized Wheeler
was the only model that performed well at all overload lev-
els, while considering crack acceleration due to underloads
and crack arrest.

Finally, the Generalized Wheeler model is used to
study the overload frequency dependence of fatigue crack
growth (which cannot be captured by the Constant Closure
model, because it does not consider secondary plasticity).
Figure 4 shows the predicted fatigue lives associated with
simulated loading histories with different numbers of cy-
cles between overloads.
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Figure 4. Generalized Wheeler life predictions for several
simulated overload frequencies.

As seen in Figure 4, the maximum predicted life in
this case is obtained when the overloads are separated by
approximately 500 cycles (the "optimal" overload fre-
quency). Any overload frequency other than this will lead
to increasing crack growth (and thus decreased life), even if
the overload is removed. In fact, if the overloads are too
frequent, they become the rule instead of the exception in
the loading history, decreasing the fatigue life due to their
increased ∆∆∆∆K. On the other hand, if the overloads are
scarce, the crack is able to completely cut through the plas-
tic zone generated by the previous overload before the next
event, reducing the retardation effects and the fatigue life.
Therefore, fatigue life can be significantly increased in the
presence of overloads if they're applied at an optimal fre-
quency, which can be calculated e.g. using the ViDa
software [3].

CONCLUSIONS

In this work, load interaction effects on fatigue crack
propagation were discussed, based on the crack closure
idea. Overload-induced retardation effects on the crack
growth rate were evaluated using several different models,
and improvements to the traditional equations were pro-
posed to recognize crack arrest and acceleration due to
compressive underloads. The models were evaluated using
a general-purpose fatigue design program named
ViDa, developed to predict both initiation and propa-
gation fatigue lives under complex loading by all classical
design methods. Using this software, the presented load
interaction models and the proposed modifications were
compared with experimental results on center-cracked ten-
sile specimens for various load spectra. In particular, the
proposed modifications to the Wheeler model showed a
good agreement with the experimental data and a better
response to varying characteristics of the loading spectra. In
addition, assuming that crack closure is the only retardation
mechanism, it was found that the propagation rate da/dN
should be a strong function of the specimen thickness t,
which controls the dominant stress-state at the crack tip.
However, this thickness effect on da/dN has not been ob-
ject of much concern in fatigue design, but it certainly de-
serves a closer experimental verification.
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