
ACHIEVING FINE POSITIONING ACCURACY IN LARGE MANIPULATORS WITH
APPLICATION IN CANCER PROTON THERAPY

MARCO A. MEGGIOLARO

Pontifical Catholic University of Rio de Janeiro, Department of Mechanical Engineering
Rua Marquês de São Vicente, 225 - Gávea, Rio de Janeiro, RJ, BRASIL, +55-21-3114-1638

E-mail: meggi@mec.puc-rio.br

STEVEN DUBOWSKY

Massachusetts Institute of Technology, Department of Mechanical Engineering
77 Massachusetts Ave, Cambridge, MA 02139, USA, +1-617-253-2144

E-mail: dubowsky@mit.edu

CONSTANTINOS MAVROIDIS

Rutgers University, Dept. of Mechanical and Aerospace Engineering
98 Brett Road, Piscataway, NJ 08854, USA, +1-732-445-0732

E-mail: mavro@jove.rutgers.edu

Abstract Important robotic tasks could be effectively performed by powerful and accurate manipulators. However, high accu-
racy is generally difficult to obtain in large manipulators capable of producing high forces due to system elastic and geometric
distortions. A method is presented to identify the sources of end-effector positioning errors in large manipulators using experi-
mentally measured data. The method does not require explicit structural modeling of the system. Both geometric and elastic de-
formation positioning errors are identified. These error sources are used to predict, and compensate for, end-point errors as a
function of configuration and measured forces, improving the system absolute accuracy. The method is applied to a large high-
accuracy medical robot. Experimental results show that the method is able to effectively correct for the system errors.
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1    Introduction

Large robot manipulators are needed in field, service
and medical applications to perform high accuracy
tasks. Examples are manipulators that perform de-
contamination tasks in nuclear sites, space manipu-
lators such as the Special Purpose Dexterous Ma-
nipulator (SPDM) and manipulators for medical
treatment (Vaillancourt et al. 1994; Flanz 1996;
Hamel et al. 1997). In these applications, a large
robotic system is often needed to have very fine pre-
cision. Its accuracy specifications may be very small
fractions of its size. Achieving such high accuracy is
difficult because of the manipulator’s size and its
need to carry heavy payloads. Further, many tasks,
such as space applications, require systems to be
lightweight, and thus structural deformation errors
can be large.

In such systems, two principal error sources cre-
ate significant end-effector errors. The first is kine-
matic errors due to the non-ideal geometry of the
links and joints of manipulators, such as errors due to
machining tolerances. These errors are often called
geometric errors. Task constraints often make it im-
possible to use direct end-point sensing in a closed-
loop control scheme to compensate for these errors.
Therefore, there is a need for model-based robot
calibration.

The second error source that can limit the abso-
lute accuracy of a large manipulator is the elastic

errors due to the distortion of a manipulator’s me-
chanical components under large task loads or even
its own weight. Classical error compensation methods
cannot correct the errors in large systems with sig-
nificant elastic deformations, because they do not
explicitly consider the effects of task forces and
structural compliance. Methods have been developed
to deal with this problem (Drouet et al. 1998; Drouet
1999), however they depend upon lenghty analytical
models of the manipulator structural properties.

In this work a method that compensates for the
position and orientation errors caused by geometric
and elastic errors in large manipulators is discussed.
The method, called here Geometric and Elastic Error
Compensation (GEC), explicitly considers the task
load dependency of the errors, modeling both defor-
mation and more classical geometric errors in a uni-
fied and simplified manner. A set of experimentally
measured positions and orientations of the robot end-
effector and measurements of the payload wrench are
used to calculate the robot “generalized” errors with-
out using an explicit manipulator elastic model.
Without the need of an explicit elastic model, it is
feasible to completely automate the analytical deri-
vation of the required identification matrices. Gener-
alized are called the errors that characterize the rela-
tive position and orientation of frames defined at the
manipulator links. They are determined from meas-
ured data as a function of the system configuration
and the task wrench. Knowing these generalized



errors the manipulator end-effector errors are used to
compensate for robot errors at any configuration. In
the GEC method each generalized error parameter
can be represented as a function of only a few of the
system variables. As a result, the number of meas-
urements required to characterize the system is sig-
nificantly smaller than expected.

The method is applied to an important medical
application of large manipulator systems. The ma-
nipulator is used as a high accuracy robotic patient
positioning system in a radiation therapy research
facility constructed at the Massachusetts General
Hospital (MGH), the Northeast Proton Therapy
Center (NPTC) (Flanz et al. 1995; Flanz et al. 1996).
The robotic patient positioning system (PPS) places a
patient in a high energy proton beam delivered from a
proton nozzle carried by a rotating gantry structure
(see Fig. 1). The PPS is a six degree of freedom ma-
nipulator that covers a large workspace of more than
4m in radius while carrying patients weighing as
much as 300 lbs (see Fig. 2). Patients are immobi-
lized on a “couch” attached to the PPS end-effector.
The PPS, combined with the rotating gantry that
carries the proton beam, enables the beam to enter the
patient from any direction, while avoiding the gantry
structure. Hence flexibility offered by robotic tech-
nology is needed.

Figure 1. The PPS and the Gantry

Figure 2. The Patient Positioning System

The required absolute positioning accuracy of
the PPS is 0.5 mm. This accuracy is critical as larger
errors may be dangerous to the patient (Rabinowitz
1985). The required accuracy is roughly 10−4 of the
nominal dimension of system workspace. This is a
greater relative accuracy than most industrial ma-
nipulators. In addition, FEM studies and experimen-
tal results show that with a changing payload (be-
tween 1 and 300 pounds) and changing configuration
the end-effector errors due to elastic deformations
and geometric errors are of the order of 6-8 mm.
Hence the accuracy is 12 to 16 times the system
specification (Mavroidis et al. 1997). However, since
the repeatability error of the PPS, defined here as
how well the system returns to certain arbitrary con-
figurations, is less than 0.15mm, it is a good candi-
date for a model based error correction method.

The GEC calibration method was applied to the
PPS with a force/torque sensor built into the system
to measure the wrench applied by the patient’s
weight. It is found that using only 450 calibration
measurements the end-point errors could be reduced
to well within the required specification. In fact,
experimental results show that the maximum error
was reduced by a factor of 18.

2    Analytical Background

Physical errors cause the geometric parameters of a
manipulator to be different from their ideal values.
As a result, the frames defined at the manipulator
joints are slightly displaced from their expected, ideal
locations, creating significant end-effector errors.
The position and orientation of a frame Fi

real with
respect to its ideal location Fi

ideal is represented by a
4x4 homogeneous matrix Ei. The translational part of
matrix Ei is composed of the 3 coordinates εx,i, εy,i

and εz,i (along the X, Y and Z axes respectively, de-
fined using the Denavit-Hartenberg representation),
see Fig. 3. The rotational part of matrix Ei is the
result of the product of three consecutive rotations
εs,i, εr,i, εp,i around the Y, Z and X axes respectively
(also shown in Fig. 3). These are the Euler angles of
Fi

real with respect to Fi
ideal. The subscripts s, r, and p

represent spin (yaw), roll, and pitch, respectively.
The 6 parameters εx,i, εy,i, εz,i, εs,i, εr,i and εp,i are
called generalized error parameters, which can be a
function of the system geometry and joint variables.
For an n degree of freedom manipulator, there are
6(n+1) generalized errors which can be written in the
form of a 6(n+1) x 1 vector ε = [εx,0,..., εx,i, εy,i, εz,i,
εs,i, εr,i, εp,i,…, εp,n], with i ranging from 0 to n, as-
suming that both the manipulator and the location of
its base are being calibrated. The generalized errors
that depend on the system geometry, the system task
loads and the system joint variables can be calculated
from the physical errors link by link. Note that actual
system weight effects can be included in the model as
a simple function of joint variables.
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Figure 3. Definition of the Translational and Rotational General-
ized Errors for ith Link

Since the generalized errors are small, the end-
effector position and orientation error ∆∆X can be
defined as the 6x1 vector that represents the differ-
ence between the real position and orientation of the
end-effector and the ideal one:

∆∆X = Xreal − Xideal   (1)

where Xreal and Xideal are the 6x1 vectors composed
of the three positions and three orientations of the
end-effector reference frame in the inertial reference
system for the real and ideal cases, respectively. After
linearization, the end-effector error can be repre-
sented by the following linear equation:

∆∆X = Je εε            (2)

where Je is the 6x6(n+1) Jacobian matrix of the end-
effector error ∆∆X with respect to the elements of the
generalized error vector εε, also known as Identifica-
tion Jacobian matrix (Zhuang et al. 1999). As with
the generalized errors, Je depends on the system
configuration, geometry and task loads.

If the generalized errors, εε, can be found from
calibration measurements, then the correct end-
effector position and orientation error can be calcu-
lated using Eq. (2) and be compensated. To calculate
the generalized errors εε it is assumed that some com-
ponents of vector ∆∆X can be measured at a finite
number of different manipulator configurations.

Assuming that all 6 components of ∆∆X can be
measured, for an n degree of freedom manipulator,
6(n+1) generalized errors εε can be calculated by
measuring ∆∆X at m different configurations, defined
as q1, q2,…, qm, then writing Eq. (2) m times:

∆

∆
∆

∆

X

X

X

X

J

J

J

J

1

2

m

t

e 1

e 2

e m

t

q

q

q

=



















=



















⋅ = ⋅
...

( )

( )

...

( )

    
εε εε            (3)

where ∆∆Xt is the m x 1 vector formed by all measured
vectors ∆∆X at m different configurations and Jt is the

6m x 6(n+1) matrix formed by the m Identification
Jacobian matrices Je at m configurations, called here
Total Identification Jacobian. To compensate for the
effects of measurement noise, the number of meas-
urements m is, in general, much larger than n.

If the generalized errors εε are constant, then a
unique least-squares estimate $εε  can be calculated:
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However, if the Identification Jacobian matrix
Je(qi) contains linearly dependent columns, Eq. (4)
will produce estimates with poor accuracy (Holler-
bach et al. 1996). This occurs when there is redun-
dancy in the error model, in which case it is not pos-
sible to distinguish the error contributed by each
generalized error component, even if specific meas-
urement configurations are considered. Orthogonal
matrix decomposition can be used in these cases to
improve the numerical accuracy of this approach.
Conventional calibration methods also cannot be
successfully applied when some of the generalized
errors depend on the manipulator configuration q or
the end-effector wrench w, namely εε(q,w), such as
when elastic deflections that depend on the configu-
ration and applied forces at the end-effector are sig-
nificant. Below, a method is presented for finding the
generalized errors (εε) in the presence of significant
elastic deformations combined with geometric errors.

3    Geometric and Elastic Error Compensation

In the GEC method (Geometric and Elastic Error
Compensation), elastic deformation and classical
geometric errors are considered in a unified manner.
The method can identify and compensate for both
types of error, without an elastic model of the system.
To apply the GEC method, the error model is ex-
tended to explicitly consider the task loading wrench
and configuration dependency of the errors.

For a system with significant geometric and
elastic errors, the generalized errors εε are a function
of the manipulator configuration q and the end-
effector wrench w, or εε(q,w). To predict the endpoint
position of the manipulator for a given configuration
and task wrench, it is necessary to calculate the gen-
eralized errors from a set of offline measurements.
The complexity of these calculations can be substan-
tially reduced if the generalized errors are param-
eterized using polynomial functions. The ith element
of vector εε is approximated by a polynomial series
expansion of the form:
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where ni is the number of terms used in each expan-
sion, ci,j are the polynomial coefficients, wmj is an
element of the task wrench w, and q1, q2, ..., qn are
the manipulator joint parameters. It has been found
that good accuracy can be obtained using only a few
terms ni in the above expansion (Meggiolaro et al.
1998). From the definition of the generalized errors,
the errors associated with the ith link depend only on
the parameters of the ith joint. If elastic deflections of
link i are considered, then the generalized errors
created by these deflections would depend on the
weight wrench wi applied at the ith link. For a serial
manipulator, this wrench is due to the wrench at the
end-effector and to the configuration of the links after
the ith. Hence, the wrench wi depends only on the
joint parameters qi+1,...,qn. Thus, the number of terms
in the products of Eq. (5) is substantially reduced.
Each generalized error parameter is then represented
as a function of only a few of the system variables,
greatly reducing the number of measurements re-
quired to characterize the system using the GEC
method.

The constant coefficients ci,j are grouped into
one vector c, becoming the unknowns of the problem.
The total number of unknown coefficients, called nc,
is the sum of the number of terms used in Eq. (5) to
approximate each generalized error, i.e. nc = Σni. The
nc functions fi,j(q,w) are then incorporated into the
Identification Jacobian matrix Je from Eq. (2):

 ∆∆X = Je(q) ⋅ εε(q,w) ≡ He(q,w) ⋅ c   (6)

where He is the (6 x nc) Jacobian matrix of the end-
effector error ∆∆X with respect to the polynomial
coefficients ci,j. The matrix He, called here Extended
Identification Jacobian matrix, can be obtained from
Eqs. (5) and (6):

He(q,w) ≡ [J1⋅f1,1, … ,J1⋅f1,n1, …,

Ji⋅fi,1, Ji⋅fi,2, … , Ji⋅fi,ni, …]           (7)

where Ji is the column of matrix Je associated to the
generalized error component εi.

An estimate of the coefficient vector c is then
calculated by replacing Je with the matrix He in Eq.
(3) and applying Eq. (4), completing the identifica-
tion process. Once the polynomial coefficients, c, are
identified, the end-effector position and orientation
error ∆∆X can be calculated and compensated using
Eq. (6).

Finally, it must be emphasized that the GEC
model has the advantage of modeling non-linear
elasticity, due to its polynomial nature. The polyno-
mial approximation would only be a model of linear
elasticity if the order of the polynomial was limited to
three (relating the joint parameters, or order one
relating the payload wrench), and if these polynomial
coefficients were related among themselves in the
same way as in the analytical results for simple beam

bending. However, the polynomial expansion can
include additional terms, being able to model general
non-linear (or linear) elasticity, combined with a
general formulation for geometric errors that may
vary in their own frames (and thus not limited to
constant geometric errors).

4    Application to the Patient Positioning System

The PPS is a six degree of freedom robot manipulator
(see Fig. 2) built by General Atomics (Flanz et al.
1996). The first three joints are prismatic, with
maximum travel of 225cm, 56cm and 147cm for the
lateral (X), vertical (Y) and longitudinal (Z) axes,
respectively. The last three joints are revolute joints.
The first joint rotates parallel to the vertical (Y) axis
and can rotate ±90°. The last two joints are used for
small corrections around an axis of rotation parallel
to the Z (roll) and X (pitch) axes, and have a maxi-
mum rotation angle of ±3°. The manipulator "end-
effector" is a couch, supporting the patient in a su-
pine position, accommodating patients up to 188cm
in height and 300lbs in weight in normal operation.

The intersection point of the proton beam with
the gantry axis of rotation is called the system iso-
center. The treatment volume is defined by a treat-
ment area on the couch of 50cm x 50cm and a height
of 40cm (see Figure 2). This area covers all possible
locations of treatment points (i.e. tumor locations at a
patient). The objective is that the PPS makes any
point in this volume be coincident with the isocenter
at any orientation.

The joint parameters of the PPS are the dis-
placements d1, d2, d3 of the three prismatic joints and
the rotations θ, α, β of the three rotational joints. A 6
axis force/torque sensor is placed between the couch
and the last joint. By measuring the forces and mo-
ment at this point, it is possible to calculate the pa-
tient weight and the coordinates of the patient center
of gravity. The system motions are very slow and
smooth due to safety requirements. Hence, the system
is quasi-static, and its dynamics do not influence the
system accuracy and are neglected.

The accuracy of the PPS was measured with a
position accuracy of approximately 0.04mm using a
Leica 3D Laser Tracking System. These measure-
ments were to evaluate the PPS repeatability, the
nonlinearity of its weight-dependent deflections, the
inherent uncompensated PPS accuracy, and the
method developed above.

Three targets were placed about 10mm above the
couch. For more than 700 different configurations of
the PPS and different weights the location of the
three targets is measured. From the system kinematic
model with no errors, the ideal coordinates of the
Nominal Treatment Point (NTP), defined as the lo-
cation of a tumor on a patient, were calculated and
subtracted from the experimentally measured values
to yield the vector ∆∆X(q,w). Then, 450 measure-



ments were used to evaluate the basic uncompensated
accuracy of the PPS and the accuracy of the compen-
sation method described above. Two different pay-
loads were used: one with no weight and another with
a 70 kg weight at the center of the treatment area.
The PPS configurations used were grouped into two
sets:

Set a) Treatment Volume. The 8 vertices of the
treatment volume (see Figure 2) are reached with the
NTP with angle θ taking values from -90° to 90° with
a step of 30°, for a total of 112 configurations.

Set b) Independent Motion of Each Axis. Each
axis is moved independently while all other axes are
held at the home (zero) values. The step of motion
for d1 is 50 mm, for d2 20 mm, for d3 25mm and for θ
5°, resulting in 338 configurations.

The PPS uncompensated accuracy combining the
two sets is shown in Figure 4. The data points repre-
sent the positioning errors of NTP. It is clearly seen
that in spite of the high quality of the PPS physical
system, its uncompensated accuracy is on the order of
10mm. This is approximately 20 times higher than
the specification of ±0.50mm.

Figure 4. Measured and Residual Errors After Compensation

Part of the uncompensated error is the repeat-
ability errors. These errors are due to the random
system errors, and they cannot be compensated by the
GEC method. They represent the accuracy limit of
any error compensation algorithm and it also shows
how well an error compensation technique performs.
Here the system repeatability is based on how well
the system would return the NTP to certain arbitrary
configurations. A total of 270 measurements were
taken with zero payload weight. The repeatability
error of the PPS is less than 0.15mm (3σ). Thus this
system is a good candidate for model based error
correction methods, since the repeatability errors are
relatively small compared to the ±0.50mm.

In implementing the computation method a gen-
eral nonlinear function of the wrench w can be used.
To help establish this function, the behavior of the
PPS positioning errors for different payload weights
was examined with measurements made at the home
(zero) configuration. The weights ranged from 0 to
300 lbs in steps of approximately 25 lbs. The results
showed that the positioning errors of the PPS are

nearly linear with the payload weight. The least
square error is less than 0.1mm for the linear fit.
Hence the generalized errors were taken as linear
functions of the system wrench in Eq. (5).

The generalized errors are then calculated with
Eq. (4) using the configurations of set (b) (independ-
ent motion of its axes) and half of the treatment vol-
ume data (set a). For a Pentium PC 300MHz, the
computing time was less than one minute. The PPS is
then commanded to go to compensated points for the
remaining configurations of set (a). The residual
positioning errors of the PPS after compensation for
these points are shown in Fig. 4. The residual errors
are enclosed in a sphere of 0.38 mm radius which is
smaller than the accuracy specification. The required
number of data points for this calculation was less
than 400. Hence the compensation method used in
this paper enables the system to meet its specifica-
tion. It is now a key element in MGH's operational
software. Since the remaining errors after calibration
using 400 points were comfortably under 0.5mm, a
significantly smaller number of poses could have
been used in the calibration. In fact, applying the
presented calibration method to a subset of only 125
measurement poses of the Patient Positioning System
resulted in a maximum residual error of 0.49mm.
This absolute accuracy meets the specification, while
significantly less than 400 measurement points were
necessary. This number is indeed much smaller than
it might be expected, considering that not only elastic
deformations, but also geometric errors that vary in
their own frames (such as a quasi-sinusoidal shape
for the rail errors on the prismatic base, as discussed
below), are present in the system. However, the cali-
bration error dependence on the number of measure-
ment poses has not been addressed in this work.

One of the main advantages of the GEC method-
ology is the ability to model non-linearities or any
other repeatable error source that can be represented
as a function of the system parameters and of the
payload wrenches. Since any differentiable analytical
expression can be represented as a polynomial series,
the method is able to identify errors that other cali-
bration methods (which only model elastic deforma-
tions and geometric errors constant in their frames)
can't. In particular, the errors along the Patient Posi-
tioner's lateral rail had an approximately sinusoidal
shape (as it was expected from the respective manu-
facturing process, due to eccentricities in its machin-
ing), which turned out to be an important error source
in this system. These errors were identified through
the presented methodology using polynomial expan-
sions with relatively few terms (about 8th order).

In addition, the GEC method has an advantage of
automatically accounting for the elastic deformations
due to link masses. The polynomial terms that are a
function of the system configuration (but not of the
task wrench w) are the ones that account for the con-
tribution of the link masses to the varying end-
effector elastic errors. Since the link masses are con-

uncorrected errors
corrected errors



stant (only the associated moments are variable), the
constant polynomial coefficients associated with
these terms will automatically account for these
masses. These errors are clearly configuration-
dependent, as expected, since the polynomial terms
that multiply these constant mass coefficients are a
function of the system configuration. Therefore, all
link masses are implicitly identified, and their associ-
ated elastic errors are automatically compensated for.

5    Conclusions

In this work, a method is discussed to compen-
sate the positioning end-effector errors of large ma-
nipulators with significant task loads. Both geometric
and elastic errors are considered without requiring an
explicit elastic model of the system. The method has
been applied experimentally to a high-accuracy large
medical manipulator. The results showed that the
basic accuracy of the manipulator exceeded its speci-
fications, but after applying the method to compen-
sate for end-effector errors the accuracy specifica-
tions are met. The method is now a key element of
the software used to treat cancer patients.
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