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Abstract
Crack closure is the most used mechanism to model thickness and load interaction effects on fa-
tigue crack propagation. Based on it, the expected fatigue life of “thin” (plane-stress dominated)
structures can be much higher than the life of “thick” (plane-strain dominated) ones, when both
work under the same stress intensity range and load ratio. Therefore, if da/dN curves are meas-
ured under plane-stress conditions without considering crack closure, their use to predict the fa-
tigue life of components working under plane-strain could lead to highly non-conservative errors.
To avoid this error, it would be necessary to convert the measured crack growth constants associ-
ated with a given stress condition to the other using appropriate crack closure functions. How-
ever, crack closure cannot be used to explain some retardation effects after overloads on plane-
strain fatigue crack growth. In this work, experimental evidence show that ∆∆∆∆Keff does not control
the crack growth rate of some representative fatigue tests. These results indicate that the domi-
nant role of crack closure in the modeling of the fatigue crack growth problem should be re-
viewed.
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1. Introduction
It is a well-known fact that load cycle interactions can have a very significant effect in fatigue

crack growth under variable amplitude loading. There is a vast literature proving that tensile
overloads (OL), when applied over a baseline constant amplitude loading, can retard or even ar-
rest the subsequent crack growth, and that compressive underloads can also affect the rate of
crack propagation [1-7].

Neglecting these effects in fatigue life calculations can completely invalidate the predictions.
In fact, when modeling many important fatigue problems, only after considering overload-
induced retardation effects can the actual life reached by real structural components be justified.
However, the generation of a universal algorithm to quantify these effects for design purposes is
particularly difficult, due to the number and to the complexity of the mechanisms involved in fa-
tigue crack retardation, among them plasticity-induced crack closure, blunting and/or bifurcation
of the crack tip, residual stresses and/or strains, strain-hardening and/or strain-induced phase
transformation, crack face roughness, and oxidation of the crack faces.

Besides, depending on the case, several of these mechanisms may act concomitantly or com-
petitively, as a function of factors such as crack size, material microstructure, dominant stress-
state, and environment. Moreover, the relative importance of the several mechanisms can vary
from case to case, and there is so far no universally accepted single equation capable of describ-
ing the whole problem. Therefore, from the fatigue designer’s point of view, load interaction ef-
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fects must be treated in the most reasonably simplified way or, in Paris’ wisdom words [1], its
modeling must be kept simple.

But a simplified model must not be unrealistic, and so it is worthwhile mentioning that some
simplistic models are unacceptable. For instance, it is not reasonable to justify the retardation ef-
fects by attributing to the overloads a significant variation in the residual stress-state at the crack
tip. This is mechanically impossible: as the material near the crack tip yields in tension during the
loading and in compression during the unloading of any propagating fatigue crack, there can be
no significant variation in the residual stress state at the crack tip after an overload.

On the other hand, the main characteristic of fatigue cracks is to propagate cutting a material
that has already been deformed by the plastic zone that always accompanies their tips. As discov-
ered by Elber [8], fatigue crack faces are always embedded in an envelope of (plastic) residual
strains and, consequently, they compress their faces when completely discharged, and open alle-
viating in a progressive way the (compressive) load transmitted through them, until reaching a
load Pop > 0, after which the crack is completely opened.

Elber’s plasticity-induced crack closure is the most popular load interaction mechanism. It has
long been proved to satisfactorily explain plane-stress load interaction effects [9]. In fact, ne-
glecting crack closure in many fatigue life calculations can result in overly conservative predic-
tions, increasing maintenance costs by unnecessarily reducing the period between inspections.

Even more important, according to some closure models, non-conservative predictions may
arise from neglecting such effects. For instance, Newman [10-11] proposed that crack closure is
not only a function of the load ratio R, but it is also dependent on the stress-state and on the
maximum stress level. In this case, if plasticity-induced closure is the only mechanism affecting
fatigue crack growth (FCG), the life of “thin” structures (in which FCG is plane-stress domi-
nated) can be expected to be much higher than the life of “thick” ones (where FCG occurs under
plane-strain dominant conditions), when both work under the same stress intensity range and load
ratio. Therefore, if fatigue crack propagation curves are measured under plane-stress conditions
without considering crack closure, then life predictions on components under plane-strain could
lead to non-conservative errors as high as 75% according to Newman’s model, see Fig. 1.

Fig. 1. Effect of the maximum stress σσσσmax and load ratio R on da/dN prediction errors for plane-strain cal-
culations based on plane-stress data, according to Newman's closure function (Paris exponent 3.25).
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To avoid this error, it would be necessary to convert the measured crack growth constants as-
sociated with a given stress condition to the other using appropriate crack closure functions. On
the other hand, this thickness effect is not recognized by the ASTM E645 standard on the meas-
urement of FCG rates (da/dN). In spite of mentioning the importance of crack closure, this stan-
dard only requires specimens sufficiently thick to avoid buckling during the tests.

This work presents experimental results on retardation effects after overloads on plane-strain
FCG that cannot be explained by crack closure. These results indicate that the dominant role of
crack closure on the modeling of fatigue crack growth should be reviewed.

2. Plasticity-induced crack closure
Elber [8] discovered that fatigue cracks only opened at a load Pop > 0, because the plastic

strains that surround them are compressed by the (elastic) residual ligament when it is unloaded,
a phenomenon termed plasticity-induced fatigue crack closure. Experimentally, the compliance
C(a0) of a (plane) cracked body of thickness t and crack size a0 loaded by a force P can be cal-
culated from its strain energy release rate GGGG ==== (P2/2t)⋅(dC/da) = (KI)2/E’ [7]:

2 2 2I
2 2

2tKdC 2t [a f (a/w)]
da P E' P E'

σ πσ πσ πσ π ⋅ ∴⋅ ∴⋅ ∴⋅ ∴= = ⋅= = ⋅= = ⋅= = ⋅
0a2 2

0 2 0
2tC(a ) [a f (a/w)]da C(0)
P E'

σ πσ πσ πσ π= ⋅ += ⋅ += ⋅ += ⋅ +∫∫∫∫     (1)

where C(0) = C(a0 = 0) is the uncracked body compliance, KI = σσσσ√√√√(ππππa)⋅⋅⋅⋅f(a/w) is the stress inten-
sity factor applied to the (cracked) body, σσσσ is the applied stress, a is the crack size, w is the body
width (or other characteristic dimension), and E’ is Young’s Modulus, with E’= E under plane-
stress conditions or E’= E/(1−−−−νννν2) under plane-strain, νννν being Poisson’s ratio.

Figure 2 shows an example of a crack opening load Pop measurement during a fatigue crack
propagation test. The opening load Pop is measured as the starting point of the linear part of the
curve P versus x, where x is the displacement at the load application point (under linear elastic
fracture mechanics conditions, x can be replaced by any proportional parameter, e.g. the crack
mouth opening displacement δδδδ or the back-face strain εεεε). It is worth mentioning that it is nor-
mally almost impossible to directly measure x, and that εεεε usually gives a cleaner signal than δδδδ.
Also, a circuit called the linearity subtractor [12] can be very helpful to improve the accuracy of
Pop measurements. It is also important to point out that, in the authors’ opinion, closure meas-
urements based on global parameters like δδδδ or εεεε are much more representative of the whole
cracked body behavior than the local (or near crack tip) ones. These, being made on the body’s
surface, reflect its plane-stress behavior, which is not the dominant stress-state when FCG occurs
in thick bodies.

In fact, the different behaviors caused by these surface effects have been verified from con-
stant amplitude tests on center-cracked 10.2mm thick 2024-T3 aluminum plate specimens [13].
In these tests, a crack opening stress of 28% of the maximum stress σσσσmax was found under a stress
ratio R = 0.1. The specimens were then made thinner by removing surface layers at both sides of
the plate specimens. After a thickness reduction to 7.7mm, the crack opening stress dropped to
13% of σσσσmax, and after a further thickness reduction to 3.75mm the result was 11% of σσσσmax. Be-
cause the major change in the opening stress was caused by the first thickness reduction, it is
suggested that crack closure occurs predominantly near the material surface, under plane-stress
conditions. Similar tests were performed by McEvily [14], using 6061-T6 aluminum compact
specimens. In these tests, a typical crack growth retardation behavior was found after a 100%
overload due to the developed crack closure, however when both specimen surfaces were ma-
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chined away (reducing its thickness to half its original value) the retardation effect was largely
eliminated.

Fig. 2. Typical opening load measurement, including a linearity subtractor to enhance the non-
   linear part of the load P versus crack mouth δδδδ or back face strain εεεε.

More crack closure near the surface agrees with the expected larger plastic zone sizes for
plane-stress than for plane-strain. Paris and Hermann [15] suggested that fatigue cracks open first
at mid-thickness and later at the material surface, therefore crack closure would be in fact a 3D
phenomenon. As a result of more crack closure at the material surface, the crack front lags behind
where it intersects the material surface, leading to curved crack fronts for through cracks in very
thick specimens. Experiments on a 75 mm thick steel specimen under constant amplitude loading
showed a crack front curvature with a lagging of 6.8 mm at the surface if compared to its mid-
thickness plane-strain front [16]. However, such lagging is hardly observed in thinner specimens.

It might be stated that crack closure is predominantly a surface phenomenon occurring under
plane-stress conditions. Since plastic deformations do not result in volume change, any plastic
elongation in the loading direction must be compensated by a negative plastic strain in the thick-
ness direction, which indeed occurs at the material surface. However, under pure plane-strain
conditions, the strain in the thickness direction is zero, making it impossible to develop residual
tensile strains at the crack faces, unless compressive plastic strains were to be found in the crack
growth direction, which is not observed in practice [17].

To quantify the effects of crack closure, Elber [8] attempted to describe, with the aid of a
physical model, the connection between load sequence, plastic deformation (by way of crack clo-
sure), and crack growth rate. He assumed that crack extension could not take place under cyclic
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loads until it was fully opened, because only when Pop > 0 would the crack tip be stressed. There-
fore, the bigger Pop and the corresponding Kop, the less would be the effective stress intensity
range ∆∆∆∆Keff = Kmax −−−− Kop, and this ∆∆∆∆Keff instead of ∆∆∆∆K = Kmax – Kmin would be the fatigue crack
propagation controlling parameter. Based on experiments on 2024-T3 aluminum, Elber proposed
a modification to the Paris growth equation taking into account the crack closure concept:

m m
max op eff

da A (K K ) A ( K )dN = ⋅ − = ⋅ ∆= ⋅ − = ⋅ ∆= ⋅ − = ⋅ ∆= ⋅ − = ⋅ ∆                      (2)

where A and m are material constants, which should be experimentally measured.
The stress ratio R is defined as Kmin/Kmax, leading to ∆∆∆∆K = (1 – R) ⋅⋅⋅⋅Kmax. As the crack stops

(da/dN tends to 0) when ∆∆∆∆K tends to ∆∆∆∆Kth, the propagation threshold, then if Elber’s closure is
the only crack arrest mechanism, it would be expected that ∆∆∆∆Keff is dependent on R and also that
∆∆∆∆Kth = (1 – R) ⋅⋅⋅⋅Kop:

m m
max opm th

eff
(K K ) (1 R) K Kda A ( K ) A A

dN 1 R 1 R
− ⋅ −− ⋅ −− ⋅ −− ⋅ −     ∆ − ∆∆ − ∆∆ − ∆∆ − ∆    = ⋅ ∆ = ⋅ = ⋅= ⋅ ∆ = ⋅ = ⋅= ⋅ ∆ = ⋅ = ⋅= ⋅ ∆ = ⋅ = ⋅             − −− −− −− −        

    (3)

However, the above equation has been developed for positive stress ratios only. Walker and
Chang [18] considered the effects of compressive loads (R < 0), but their original formulation did
not include explicitly the effect of ∆∆∆∆Kth, so in this paper a modified version is proposed:

For ∆∆∆∆K > ∆∆∆∆Kth and R ≥≥≥≥ 0,

p

m
th

)R1(
)KK(A

dN
da

−−−−

∆∆∆∆−−−−∆∆∆∆⋅⋅⋅⋅====  , where 
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for ∆∆∆∆K > ∆∆∆∆Kth and R < 0,

q2m
thmax )R1()KK(A

dN
da ++++∆∆∆∆−−−−⋅⋅⋅⋅====  , where 
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and for ∆K ≤≤≤≤ ∆∆∆∆Kth,
0dNda ====     (6)

where A, m, p and q are experimentally measured constants, and R+ and R−−−− are the cutoff values
for positive and negative stress ratios. Walker and Chang used R+ = 0.75 and R−−−− = –0.5 for the
above equations. Note that the constant q must be determined from test data generated for spe-
cific negative stress ratios (R < 0). The threshold stress intensity factor range used in these mod-
els can be determined for any positive stress ratio R > 0 by an empirical equation:

∆∆∆∆Kth = (1−−−−ααααtR) ∆∆∆∆K0    (7)
where ∆∆∆∆K0 is the crack propagation threshold value of the stress intensity factor range obtained
from R = 0 constant amplitude tests, and ααααt is a material constant determined from test data with
various stress ratios. Another expression for the variation of ∆∆∆∆Kth as a function of R (R > 0) was
proposed by Forman and Mettu [19]:

∆∆∆∆Kth = (4/ππππ) ⋅⋅⋅⋅ ∆∆∆∆K0 ⋅⋅⋅⋅ arctan(1−−−−R)                                                  (8)
However, Newman et al. [10, 11] concluded from Finite Element calculations that crack clo-

sure does not only depend on R, as proposed by Elber, but it is also dependent on the maximum
stress level σσσσmax. They proposed a crack opening function f, defined as the ratio Kop/Kmax be-
tween the crack opening and the maximum stress intensity factors at each cycle. This function
depends not only on R, but also on the ratio between the maximum stress σσσσmax and the material
flow strength Sfl (for convenience defined as the average between the material yielding and ulti-
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mate strengths, Sfl = (SY + SU)/2), and on a plane stress/strain constraint factor αααα, ranging from
αααα    = 1 for pure plane-stress to αααα    = 3 for pure plane-strain:





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where the polynomial coefficients are given by:
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From the definition of Newman’s closure function f, the effective stress intensity range ∆∆∆∆Keff
can be rewritten as

K
R1
f1K)f1(K maxeff ∆∆∆∆

−−−−
−−−−====⋅⋅⋅⋅−−−−====∆∆∆∆  (11)

Substituting Eqs. (9-10) into (11), correlations between ∆∆∆∆Keff and the stress ratio R can be
obtained for the plane-stress (αααα    = 1) and plane-strain (αααα    = 3) conditions, assuming νννν = 0.33 and
σσσσmax/Sfl = 0.3 which, according to [11], would be a mean value for typical specimens used in
FCG tests:
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≥≥≥≥++++++++

====
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strain) (plane 0R2- ,)R1/()R06.075.0(
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stress) (plane 0R2- ,)R1/()R1.052.0(
stress) (plane 0R ,R06.0R42.052.0

K
K

2

2

eff   (12)

Another correlation between ∆∆∆∆Keff and R was obtained by Schijve [20],
∆∆∆∆Keff = ∆∆∆∆K (0.55 + 0.35R + 0.1R2)   (13)
Equation (13) is also based on the concept of fatigue crack closure, agreeing within 7% with

Newman’s predictions for the plane-stress case. If αααα is interpreted as a curve-fitting parameter,
then a value αααα = 1.15 would have a better agreement with Schijve’s correlation, instead of as-
suming αααα = 1. Also, in practice many specimens under pure plane-strain conditions according to
ASTM E399 (which validates KIC toughness tests) have in fact constraint factors αααα between 1.9
and 2.7, instead of the theoretical value αααα = 3 [11].

Figure 3 compares Eqs. (12) and (13) as a function of R. Note that the predicted closure ef-
fects are much smaller under plane-strain than under plane-stress conditions, and that Newman's
closure function predicts no crack closure (and therefore ∆∆∆∆Keff/∆∆∆∆K = 1) under dominantly plane-
strain conditions for stress ratios R roughly above 0.5.

In addition, increasing σσσσmax reduces Newman’s closure function, resulting in predictions of
higher da/dN rates. Figures 4 and 5 compare effective stress intensity ranges predicted by New-
man for plane-stress, ∆∆∆∆Keff, σσσσ, and for plane-strain, ∆∆∆∆Keff, εεεε, under different stress levels σσσσmax/Sfl.
Figure 6 shows that Newman's effective stress intensity ranges can assume very different values
for plane-stress and for plane-strain, especially when σσσσmax/Sfl is low.

Based on the above expressions for the effective stress intensity range, Forman and Newman
proposed the following fatigue crack propagation rule to model all three crack growth regimens,
including the effect of the stress state through Newman’s closure function [19]:
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Fig. 3. Effective stress intensity ∆∆∆∆Keff ranges as a function of the stress ratio R.

Fig. 4. Effect of σσσσmax on Newman’s effective stress intensity range ∆∆∆∆Keff, σσσσ    for plane stress.
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Fig. 5. Effect of σσσσmax on Newman’s effective stress intensity range ∆∆∆∆Keff, εεεε     for plane strain.

qpm
th max

C

K Kda 1 fA K 1 1
K KdN 1 R

    ∆∆∆∆−−−−         = ⋅ ∆ ⋅ − −= ⋅ ∆ ⋅ − −= ⋅ ∆ ⋅ − −= ⋅ ∆ ⋅ − −             ∆∆∆∆−−−−              
 (14)

where KC is the critical (rupture) stress intensity factor, A, m, p, and q are experimentally adjust-
able constants.

Assuming that the fatigue crack growth rate is controlled by ∆∆∆∆Keff instead of by ∆∆∆∆K (and,
therefore, that plasticity induced closure is the sole mechanism which affects the propagation
process), then the need for taking into account the stress-state in fatigue crack propagation tests
must be emphasized. Consider, for instance, the effective stress intensity range ∆∆∆∆Keff predicted by
Newman for the plane-stress case when R = 0. In this case, according to Fig. 3, ∆∆∆∆Keff is approxi-
mately equal to half the value of ∆∆∆∆K. This means that da/dN curves experimentally fitted to ∆∆∆∆K
values without considering the crack closure effect would be actually correlating the measured
da/dN rates with twice the actual (effective) stress intensity range acting on the crack tip. On the
other hand, da/dN curves obtained in the same way (R = 0) under plane-strain conditions would
be actually correlating da/dN with 4/3 of (and not twice) the effective stress intensity range.
Therefore, one could not indiscriminately use crack growth equation constants obtained under a
certain stress condition (e.g. plane-stress) to predict crack growth under a different state (e.g.
plane-strain), even under the same stress ratio R.

Also, if a Paris da/dN vs. ∆∆∆∆K equation with exponent m = 3.0 (measured under plane-stress
conditions and R = 0) is used to predict crack propagation under plane-strain, the predicted crack
growth rate would be [(4/3)/2]m ≈≈≈≈ 0.3 times the actual rate, a non-conservative error of 70%.
Therefore, to avoid this (unacceptable) error, it would be necessary to convert the measured crack
growth constants associated with one stress condition to the other using appropriate crack closure
functions. Another approach would be to use in the predictions only da/dN vs. ∆∆∆∆K equations
such as Eq. (14), which has already embedded the stress-state dependent closure functions.
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This alarming prediction implies that the usual practice of plotting da/dN vs. ∆∆∆∆K instead of
da/dN vs. ∆∆∆∆Keff to describe fatigue crack growth tests would be highly inappropriate, because
da/dN would also be a strong function of the specimen thickness t, which controls the dominant
stress-state at the crack tip. Also, assuming that the classical ASTM E399 requirements for vali-
dating a KIC toughness test could also be used in fatigue crack growth, plane-strain conditions
would only apply if t > 2.5(Kmax/SY)2. In other words, one could expect to measure quite differ-
ent da/dN fatigue crack growth rates when testing thin or thick specimens of a given material un-
der the same ∆∆∆∆K and R conditions. Moreover, the concept of a “thin” or “thick” specimen would
also depend on the load, since Kmax increases with the applied stress. However, this thickness ef-
fect on da/dN is not recognized by the ASTM E645 standard on the measurement of fatigue
crack propagation, which, in spite of mentioning the importance of crack closure, only requires
specimens sufficiently thick to avoid buckling during the tests.

The errors associated with plotting da/dN vs. ∆∆∆∆K instead of ∆∆∆∆Keff to predict crack growth un-
der different stress states can be illustrated, e.g., using m = 3.25 for the exponent of the Paris
equation of an aluminum alloy. If data is measured under plane-stress conditions without consid-
ering crack closure, then the prediction under plane strain would be (∆∆∆∆Keff, σσσσ/∆∆∆∆Keff, εεεε)m times the
actual rate, a non-conservative error of [1 −−−−    ((((∆∆∆∆Keff, σσσσ/∆∆∆∆Keff, εεεε)3.25]. Using the ratio ∆∆∆∆Keff, σσσσ/∆∆∆∆Keff, εεεε
calculated from Newman's closure function (Fig. 6), this prediction error is plotted in Fig. 1 as a
function of σσσσmax and R.

Fig. 6. Effect of σσσσmax and R on the ratio between Newman’s effective stress intensity ranges
for plane stress and plane strain, ∆∆∆∆Keff, σσσσ/∆∆∆∆Keff, εεεε.

In summary, since it is the thickness t the parameter that controls the dominant stress-state in
FCG, one could expect the fatigue life of thin sheets (associated with larger plastic zones) to be
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much higher than the life of thick plates (with smaller plastic zones), when both work under the
same (initial) ∆∆∆∆K and R. One could also expect intermediate thickness structures, where the
stress-state is not plane-stress nor plane-strain dominated, to have 1 < αααα < 1/(1 −−−− 2νννν) and a tran-
sitional behavior. Moreover, this transition can occur in the same specimen, if the crack starts un-
der plane-strain and progressively grows toward a plane-stress dominated state. However, unlike
the thickness effect on fracture toughness, the dominant stress-state usually is not object of much
concern in fatigue design, but it certainly deserves a closer experimental verification.

On the other hand, it must be pointed out that many of the above results were derived from
Finite Element calculations, and not from experimental measurements [10-11, 21]. It is a known
fact that elastic-plastic FE calculations may offer significant problems due to non-linear aspects
including material plasticity as well as changing contacts between the fracture surfaces during
crack closure and opening [17]. In addition, the question whether plane-strain or plane-stress is
applicable in the FE calculations is another problematic issue, essential to calculate the plastic
zone sizes and therefore the plastic wake field of a crack.

Also, the FE models presented above assume that crack closure occurs everywhere near (and
behind) the crack tip, including at the crack tip itself. However, Paris et al. [1] suggested that
crack closure only occurs beyond a small distance d behind the crack tip, a phenomenon termed
partial closure. Therefore, in an unloaded cracked body, the plastic strain wake around the crack
faces would work as a wedge of thickness 2h that would cause a non-zero stress intensity of

mineff
,E hK 2 d= π= π= π= π         (15)

To completely open the crack, releasing all compressive loads over the wedge, the crack
opening displacement COD at a distance d of the crack tip must be equal to 2h, therefore

min
op op

eff op
,4K 2K 2dE2d 2COD 2h K K, ,E E2 d

= == == == = ⇒⇒⇒⇒ = == == == = ππππππππ ππππππππ
  (16)

It is interesting to point out that mineffK does not depend on d or on 2h. Therefore, from Eq.

(16) it can be concluded that
eff max opK K (2/ )K∆ = − π∆ = − π∆ = − π∆ = − π   (17)

would be the actual effective stress range under plasticity-induced crack closure conditions. This
equation assumes that Kmin ≤≤≤≤ 0, but if 0 < Kmin ≤≤≤≤ Kop, then

Kmax −−−− (2/ππππ)Kop −−−− (1−−−−2/ππππ)Kmin ≤≤≤≤ ∆∆∆∆Keff ≤≤≤≤ Kmax −−−− (2/ππππ)Kop   (18)
This ∆∆∆∆Keff fitted well phase I of the da/dN curve of aluminum alloys, but its performance on

phase II was a little bit disperse [1]. A better fitting was obtained substituting the constant 2/ππππ by
an adjustable parameter p, which varies from p = 2/ππππ close to ∆∆∆∆Kth until p = 1 in the Paris regime
[22].

The partial closure model presented above shows the original crack closure concept in a
somewhat different light. In addition, a closer survey of the literature reveals a series of test re-
sults that might even contradict some of the basic crack closure assumptions. When examining
Ti6Al4V by the electropotential method, Shih and Wei [23] confirmed that crack closure depends
on R and on Kmax, which is in agreement with Dugdale's theory [24]. However, in that titanium
alloy no crack closure was found for R > 0.3. According to Shih and Wei, neither the influence of
R on the crack propagation nor the retardation effects can be completely explained by crack clo-
sure.
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Bachmann and Munz [25] also conducted crack closure measurements on Ti6A14V, using an
extensometer. However, unlike Shih and Wei, they were not able to discover any influence of
Kmax on crack closure behavior, which in turn would seem to confirm Elber's results.

Kim and Shim [11] found that the variance of da/dN is increased in thin specimens of 7075-
T6 aluminum alloy, but no significant thickness dependence of the average da/dN rates was re-
ported.

Other conflicting results have been found in the literature for tests under constant amplitude
loading. Constant amplitude tests performed on compact tension (CT) specimens of 304 stainless
steel with thicknesses varying between 3 and 25mm showed a relatively small thickness depend-
ence [27]. It was found that the crack propagation rate on the 3mm specimen was 30% smaller
than on the 25mm one, which is not much beyond the regular scatter of the experimental data.
Costa and Ferreira [28] measured the growth rates on CT specimens of CK45 steel, with thick-
nesses varying between 6 and 24mm. It was found that the thickness dependence was only sig-
nificant for low R ratios (R < 0.2) and low ∆∆∆∆K levels, while at R = 0.4 constant amplitude load-
ing no thickness effect could be observed. Such results might be explained either by different
production techniques used to obtain the considered thicknesses (which could lead to different
microstructures and therefore affect the growth rates), or simply by the fact that plasticity-
induced closure may not be the main retardation mechanism in many cases, especially for higher
R ratios.

On the other hand, tests under variable amplitude loading show a more systematic trend of in-
creased retardation in thinner specimens. Crack growth retardation following an overload is usu-
ally dependent on the plastic zone size, which can be explained considering either crack closure
or residual stress mechanisms. Thus, it should be expected that retardation effects are more in-
tense in thinner specimens, which present larger plastic zones, as confirmed by tests performed
by Mills and Hertzberg [29] on 2024-T3 aluminum specimens. It is also found that higher over-
load stress intensity levels result in increased retardation, which can be explained by a larger
overload plastic zone.

A marked thickness effect under variable amplitude loading has also been found in tests per-
formed by Saff and Holloway [30] on center-cracked specimens under a load spectrum based on
F-4 aircraft loads. In these tests, the fatigue life of thick plates was found to be about 10 times
shorter than for thin sheets. Results from Schijve [31] and Bernard et al. [16] showed the same
trend. Shuter and Geary [32-33] performed single overload tests on CT specimens made of BS
4360 Gr.50D carbon-manganese steels, with thicknesses in the range 5-25mm. They suggested
that there is a linear relationship between specimen thickness and the logarithm of the delay cy-
cles. Also, crack retardation was found at baseline R-ratios as high as 0.5, even though no crack
closure was detected at this R value. It has been suggested [3] that the plasticity induced crack
closure mechanisms do operate at such high R ratios, however closure cannot be measured be-
cause the dimensional changes at the crack tip are too small to be detected by the mechanical
compliance method. In opposition, Lang and Marci [5] claim that crack closure following an
overload does not occur at high R values such as 0.5, and therefore crack closure can only play a
secondary role. They attribute the retardation phenomenon primarily to the residual compressive
stresses ahead of the crack tip after an overload. Another possible explanation could be due to
crack path deflections and bifurcations [34-35], which can cause retardation even under high R-
ratios due to the reduction in the stress intensity factor values caused by crack kinking. However,
crack bifurcation has not been subject of much work in the literature. An extensive research pro-
gram on crack bifurcation is now being conducted with the aid of a specialized Finite Element
program called Quebra2D and a general purpose fatigue software named ViDa [36].
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3. Experimental results
A comprehensive study on single overload effects in plane-strain fatigue crack growth was

made in a tempered martensitic ASTM A-542/2 (2.25Cr1Mo) steel with yield and ultimate tensile
strengths respectively SY = 769 and SU = 838MPa, reduction in area RA = 70%, and hardness
23HRc, using 50×12.8mm CTS. Plane-strain conditions were enforced trying to maintain the OL
plastic zone size much smaller than the specimen thickness t, or zpOL << t = 12.8mm, where the
symbol “<<” was arbitrarily chosen in the ASTM E-399 standard sense, and in most experiments
t >> 2.5(Kmax/SY)2, Kmax being the stress intensity factor associated to the OL peak.

The FCG tests were performed at two R ratios, R = 0.05 and R = 0.7. The crack length was
measured using a precise DC potential drop system, which had an uncertainty of 20µm [37]. The
measured FCG curves of the A-542/2 steel at these two R ratios are shown in Fig. 7. Both ∆∆∆∆K in-
creasing and ∆∆∆∆K decreasing data are shown in that figure. The 50Hz sinusoidal loads were ap-
plied under load control in a servo-hydraulic testing machine.

Fig. 7. A-542/2 steel da/dN××××∆∆∆∆K FCG curves at R = 0.05 and R = 0.7.

All R = 0.05 OL tests were made at a baseline (BL) stress intensity factor ∆∆∆∆KBL = 10MPa√√√√m,
a point a little above the transition from phase I to phase II FCG. OL tests at R = 0.7 were made
at ∆∆∆∆KBL = 8 or ∆∆∆∆KBL = 10MPa√√√√m, to obtain a BL FCG rate similar to the R = 0.05 tests.

The (single) OL were slowly applied after stopping the test machine at the minimum baseline
load, in order to be kept under close control. Special care was taken to avoid overshooting when
restarting ∆∆∆∆KBL after completing the overload routine. Several OL could be applied in a same
specimen, but always only after the effect of the previous one was completely overcome. This
was assured by letting the BL FCG rate be regained and maintained for a crack increment several
times larger than zpOL, the (maximum) OL plastic zone size.

As the maximum OL applied in the R = 0.05 tests were 200%, it is found that in all these
cases zpOL < 270µµµµm (assuming that zpOL = (1/2ππππ)(Kmax/SY)2), which indeed was much smaller
than the specimen thickness, justifying the plane-strain controlled FCG claim. In the R = 0.7
tests, the maximum OL were 100%, and the corresponding zpOL = 1.2mm, a little larger than the
E-399 requirement but still an order of magnitude below the CTS thickness.
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An OL could have no detectable effect on the subsequent FCG rate, could delay the crack or
even stop it, depending on its magnitude. Typical retardation results at R = 0.05 and R = 0.7 are
shown in Figs. 8 through 11. Note that some curves in Fig. 11 are associated with negative cycles
because the overload cycle was offset and defined as cycle zero. Overloads of 25% (or a 1.25 ra-
tio between the OL and the BL peaks) have no detectable effects in both R ratios, while 100%
OL at R = 0.7 or 150% OL at R = 0.05 always stopped the cracks. Also, increasing retardation
was observed between these 100% and 150% values (crack arrest after a 134% OL at R = 0.05 is
shown in Fig. 10). The overall crack behavior in the OL affected zone was similar but not identi-
cal to the classical plane-stress one, since no delayed retardation was ever observed, and the size
of the OL affected zone was generally smaller than zpOL.

Fig. 8. No detectable crack retardation after a 25% overload, R = 0.05.

Fig. 9. Fatigue crack growth retardation after a 100% overload, R = 0.05.
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Fig. 10. Fatigue crack arrest after a 134% overload, R = 0.05.

Fig. 11. Fatigue crack growth retardation after a 50% overload, R = 0.7.
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Careful crack closure measurements were made before and after the overloads, in order to
study its influence on the subsequent FCG behavior. These measurements were particularly pre-
cise, since their scatter in consecutive cycles was negligible, as illustrated in Fig. 12. This figure
shows several P ×××× εεεε and (P −−−− kεεεε) ×××× εεεε curves measured in subsequent load cycles. This last type of
curve is the linearity subtractor output, were k is the slope of the linear part of the P ×××× εεεε curve,
which was fitted by means of an analog differentiator, as described in [12]. The crack opening
load Pop could then be easily identified, and a two-digit resolution on Pop/Pmax measurements
could be guaranteed. It must be pointed out that the various curves in Fig. 12 had to be displaced
to enhance their individuality, otherwise they would be coincident. In all these measurements,
Pop/Pmax = 0.28.

Figure 13 shows the closure measurements made just after the 100% OL was applied. Two
very important features are evident from this figure. First, as in Fig. 12, the measurements are
again very repeatable. Second, and much more important, the crack opening load decreased after
the OL, since Pop/Pmax = 0.23 in this case. However, associated to this increase in ∆∆∆∆Keff, no crack
growth could be detected, and all Pop measurements in this period gave the same Pop/Pmax = 0.23
result, as shown in Fig. 14. Only after 7.5⋅104 cycles could the potential drop system sense a
small increase in the crack size, associated to an increase in Pop, which rose to Pop/Pmax = 0.25.
Moreover, when the OL effect completely ceased, Pop returned to the value it had before the OL,
see Fig. 15. This result, of course, is exactly the opposite of what would be expected if the over-
load-induced retardation was caused by a crack closure mechanism.

Fig. 12. Crack closure measurement before a 100% overload, R = 0.05.
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Fig. 13. Crack closure measurements just after the 100% OL reported in Fig. 12.

Fig. 14. Crack closure measurements with no detectable crack growth, despite the 22% in-
crease in ∆∆∆∆Keff after the 100% OL.
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Fig. 15. Crack closure measurements after the overload, when Pop/Pmax increased until reaching
its previous value Pop/Pmax = 0.28, when the OL effect ceased completely.

Exactly the same type of behavior has been reported a long time ago by Castro and Parks
[35], in a more striking situation. As presented in Fig. 16, after a 200% OL the fatigue crack was
arrested, despite the 31% increase in ∆∆∆∆Keff. Again, an incompatible behavior was found with re-
spect to ∆∆∆∆Keff-controlled FCG.

Fig. 16. Crack arrest associated with a 31% increase in ∆∆∆∆Keff.

A final set of experimental results on crack retardation and/or arrest must be discussed. As
expected from many of the crack closure models discussed above, no crack closure was detected
in the R = 0.7 FCG tests. Figure 17 presents some P××××εεεε measurements before and after a 100%
OL that arrested the crack, when it was growing at a baseline range ∆∆∆∆KBL = 10MPa√√√√m. Exactly
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the same behavior was observed in another specimen, this time with a ∆∆∆∆KBL = 8MPa√√√√m, as
shown in Fig. 18. Also, Fig. 19 presents similar results after a 50% OL which delayed the crack.
Since no closure was observed neither before nor after any of these overloads (and, therefore,
∆∆∆∆Keff = ∆∆∆∆K during the entire tests), it can be concluded that at these high R ratios crack closure
was not a suitable mechanism to explain load cycle interactions in FCG.

Fig. 17. P××××εεεε measurements before and after a 100% OL that arrested the crack when it was
growing at a ∆∆∆∆KBL = 10MPa√√√√m.

Fig. 18. P××××εεεε measurements before and after a 100% OL that arrested the crack when it was
growing at a ∆∆∆∆KBL = 8MPa√√√√m.

Fig. 19. P××××εεεε measurements before and after a 50% OL that delayed the crack when it was grow-
ing at a ∆∆∆∆KBL = 10MPa√√√√m. Note the change in the slope of the curve after the crack restarted to

grow.
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4. Conclusion
Fatigue crack closure is the most used mechanism to explain load cycle interactions such as

delays in or arrests of the crack growth after overloads. Much work has been done in this field,
and many researchers defend the idea that fatigue crack growth should be controlled by ∆∆∆∆Keff and
not by ∆∆∆∆K. However, closure concepts cannot be used to explain some interaction effects meas-
ured in plane-strain controlled fatigue crack growth. Therefore, the obtained experimental results
indicate that the dominant role of crack closure in the modeling of fatigue crack growth should be
reviewed.
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