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Finite element modeling of fatigue crack bifurcation
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Abstract

The influence of overload-induced crack deflections and bifurcations on the propagation behavior of mode I fatigue
cracks is studied using specialized finite element (FE) software. The FE program is validated through comparisons between
FE-calculated and analytical stress intensity factors (SIF) for a crack with a small kink at its tip. The SIF of bifurcated
cracks are then obtained using the software. It is observed that such deviations of the crack path can cause significant

growth retardation and even crack arrest.
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1. Introduction

Fatigue crack branching is a well-known phenomenon
especially in brittle or semi-brittle materials. Much effort
has been given to the case of symmetrically bifurcated
(forked) cracks [1]. Although many branches can be de-
veloped along the main crack path, it is experimentally
observed that only the fastest branch continues to grow,
while all others are brought to a stop due to the shield-
ing caused by this fastest branch. However, symmetrical
models available in the literature cannot account for such
effects. In addition, very few results are available for the
real case of bifurcated cracks with different branch lengths.
In this work, a specialized FE program called Quebra2D is
used to calculate the SIF of bifurcated and kinked cracks,
allowing for a better understanding of the influence of crack
deflection in the propagation life of structural components.

2. Finite element software description

The Quebra2D program simulates two-dimensional frac-
ture processes based on a finite-element (FE) self-adaptive
mesh-generation strategy, using appropriate crack tip ele-
ments and crack increment criteria [2]. The adaptive FE
analyses are coupled with modern and efficient automatic
remeshing schemes. The meshing algorithm especially de-
veloped for Quebra2D works both for regions without
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cracks and for regions with one or multiple cracks, which
may be either embedded or surface breaking. The 2D algo-
rithm has been designed to meet four specific requirements,
as follows. First, the algorithm should produce well-shaped
elements, avoiding elements with poor aspect ratio. Sec-
ond, the generated mesh should conform to an existing
discretization on the region boundary. Third, the algorithm
should shift smoothly between regions with elements of
highly varying size, because in crack analysis it is not
uncommon for the elements near the crack tip to be two
orders of magnitude smaller than the other elements. And
fourth, the algorithm should have specific capabilities for
modeling cracks, which are usually idealized without vol-
ume, i.e. the surfaces representing the two sides of a crack
face are distinct, but geometrically coincident. This means
that nodes on opposite sides of crack faces may have
identical coordinates, and the algorithm must be able to
discriminate between the nodes and to select the one on the
proper crack side.

In the Quebra2D program, three methods can be chosen
to compute the stress intensity factors along the (generally
curved) crack path: the displacement correlation technique,
the potential energy release rate computed by means of
a modified crack-closure integral technique, and the J-
integral computed by means of the equivalent domain in-
tegral (EDI) together with a mode decomposition scheme
[2]. The EDI method replaces the J-integral along a con-
tour by another one over a finite size domain, using the
divergence theorem, which is more convenient for FE anal-
ysis. Since Bittencourt et al. [3] showed that for sufficiently
refined FE meshes all three methods predict essentially the
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same results, only the EDI method is considered in the
calculations.

3. Finite element software validation

To validate the Quebra2D program, the modes I and II
SIF k; and k, of an infinitesimally kinked crack (b/a — 0
in Fig. la) are obtained and compared to the analytical
solutions [4]:

k= L (3005 % 4oos 22 ). k (1)
1= 7 (3cos 5 +cos I
ko= (sin % 4sin22) K )
2= 7 | sinz +sin— I

where K, is the mode I SIF of the straight crack without
the kink. For calculation purposes, a standard CT specimen
is FE modeled with width w = 32.0 mm, crack length
a =14.9 mm, and a very small kink with length b =10 pm.
Egs. (1) and (2) are independent of b/a for very small
ratios such as 10 pm/14.9 mm = 0.00067, therefore the
chosen lengths should be appropriate for this validation.
Fig. 2 shows a comparison between the analytical and the

FE-predicted k; and k, (normalized by K;) for several kink
angles «, showing a very good agreement.

Note that an efficient meshing algorithm is fundamental
to avoid elements with poor aspect ratio, since the ratio
between the size scale of the larger and smaller elements
is above 1,000 in this case. To accomplish that, Quebra2D
uses an innovative algorithm incorporating a quadtree pro-
cedure to develop local guidelines to generate elements
with the best possible shape. The internal nodes are gener-
ated simultaneously with the elements, using the quadtree
procedure only as a node-spacing function. This approach
tends to give a better control over the generated mesh
quality and to decrease the amount of heuristic cleaning-up
procedures. Moreover, it specifically handles discontinu-
ities in the domain or boundary of the model. Finally, to
enhance the quality of the shape of the mesh element, an a
posteriori local mesh improvement procedure is used.

4. Crack bifurcation predictions
Having validated the FE software, the same CT speci-

men is then used to model bifurcated cracks with lengths
¢ =10 wm (for the shorter branch) and » = 10 or 20 um
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Fig. 2. Validation of the Quebra2D software for a kinked crack.
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(for the longer one), with bifurcation angles 2« between
30° and 180° (see Fig. 1b). Note that typical overload-
induced bifurcated cracks can have initial branch lengths
between 10 and 100 pwm, with 2« varying between 30°
(for very brittle materials such as glass) and 180° (in the
vicinity of the interface of a bi-material composite, when a
crack propagates from the weak to the strong material [5]).

Fig. 3 shows the FE results for the SIF k; and &,
(normalized by K;) of symmetrically and asymmetrically
bifurcated cracks. There is a marked increase in the k;
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and k, SIF for the larger branch (and decrease for the
shorter one), if compared to the symmetrically branched
solutions. As the length difference between both branches
increases, it is expected that the propagation rate of the
shorter one is reduced until it arrests, after which the larger
branch will dominate. This shielding effect of the longer
branch over the shorter one is larger for small bifurcation
angles, typically below 120°, see Fig. 3. For large values
of 2w, the shielding effect is much smaller, as it would be
expected since the branch tips are further apart in this case.
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Fig. 3. Stress intensity factors for symmetrically and asymmetrically bifurcated cracks.
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Fig. 4. Finite element results for a CT specimen with a bifurcated crack with angle 20 = 150° (left) and close-up of the 10 pm branches

(right).
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Therefore, for larger bifurcation angles the shorter branch
is expected to take a longer time to arrest, prolonging the
retardation effect.

Fig. 4 shows the contour plots of the stress in the
load direction axis, obtained from the FE analysis on a
symmetrically bifurcated crack with 2o = 150°.

Finally, it must be pointed out that the obtained FE
results might have some limitations, because such small bi-
furcations can be of a size comparable to the scale of local
plasticity (e.g. the plastic zone size) or the microstructural
features (e.g. grain size). Also, closure and environmental
effects must be subtracted before comparing the bifurcation
model predictions with measured crack growth rates [6].

5. Conclusions

In this work, planar FE calculations have been per-
formed to estimate the changes in the propagation rates
due to overload-induced crack bifurcation. It is found that
crack deflection processes alone can significantly reduce
the stress intensity factors (SIF) and therefore the prop-
agation rates, leading to crack retardation or even arrest.
In particular, the ratio between the bifurcated and the pre-
overload mode I SIF can be as low as 0.4. Also, very small
differences between the lengths of the bifurcated branches

are sufficient to induce a much larger SIF and thus crack
propagation of the longer branch.
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