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ABSTRACT

The εN method has been widely used to design against fatigue crack initiation, especially
under low cycle conditions. However, its practical implementation in fatigue design software
under variable amplitude (VA) loading requires a careful and detailed approach to avoid
completely wrong life predictions. Particularly when dealing with variable amplitude loads, it
is not possible to predict physically admissible strain ranges at the critical point (generally a
notch root) without recognizing load order. Since plasticity generates memory, sequence
effects must be accounted for when accurately modeling elastic-plastic hysteresis loops (HL).
These calculations must be performed even if the piece is virgin, if the residual stress and
strain state is zero, and if the cyclical hardening or softening transient can be neglected. In
this work, several procedures are discussed to calculate physically admissible HL that
reproduce experimental observations, verified through VA experiments on 4340 and API S-
135 steel specimens.
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INTRODUCTION

The εN is a modern design method, corroborated by traditional institutions such as the SAE
[1-4]. A brief review of the main equations used in this methodology is presented next.
Ramberg-Osgood is one of many empirical relations that can be used to model the cyclic
response of the materials. Its main limitation is not to recognize a purely elastic behavior, and
its main advantage is its mathematical simplicity. It is used to describe the stresses and
strains at the notch root by
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where E is the Young’s modulus, K’ is the hardening coefficient and n’ is the hardening
exponent of the cyclically stabilized ∆∆∆∆σσσσ∆∆∆∆εεεε curve.

Neuber is the most used equation to correlate the nominal stress ∆∆∆∆σσσσn and strain ∆∆∆∆εεεεn ranges
with the stress ∆∆∆∆σσσσ and strain ∆∆∆∆εεεε ranges they induce at a notch root. The Neuber equation
states that the product between the stress concentration factor Kσσσσ (defined as ∆∆∆∆σσσσ/∆∆∆∆σσσσn) and



the strain concentration factor Kεεεε (defined as ∆∆∆∆εεεε/∆∆∆∆εεεεn) is constant and equal to the square of
the geometric stress concentration factor Kt, thus
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When the nominal stresses are lower than SYc, the cyclic yielding strength, it is common
practice to model them as Hookean and, therefore, to assume elastic nominal loads through
a simplified form of Neuber’s equation.

Given ∆∆∆∆σσσσn, the material properties E, K’ and n’, and the elastic stress concentration factor Kt,
the notch root stress and strain ranges ∆∆∆∆σσσσ and ∆∆∆∆εεεε are then calculated by an appropriate
numerical algorithm. The relationship between the critical point stress range ∆∆∆∆εεεε and its
fatigue initiation life N is usually given by the classical Coffin-Manson rule
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where σσσσf’, εεεεf’, b and c are material constants, which are normally measured in fully alternated
tension-compression fatigue tests. The effect of a mean stress σσσσm at the critical point is
usually calculated by other equations, such as Morrow’s and Smith-Watson-Topper’s.

There is vast experimental support to justify the use of these εN equations to predict fatigue
crack initiation under simple loads. However, when using this method under variable
amplitude loading, it is common to neglect loading order effects and to simply calculate the
damage caused by the i-th load event as if it was independent of all others. Hence, the
classical idea is to rain-flow count the nominal loads ∆∆∆∆σσσσni, to calculate the corresponding
notch root strain range ∆∆∆∆σσσσi by
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and to obtain the respective strain range ∆∆∆∆εεεεi and damage di using
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Despite its many shortcomings, most fatigue designers use the linear damage accumulation
(or the Palmgren-Miner’s) rule, d = ΣΣΣΣdi, and predict failure when ΣΣΣΣdi = ββββ, with ββββ = 1 being the
most used value. However, the traditional εN procedure based on rain-flow counting of the
loading followed by Neuber, Ramberg-Osgood, Coffin-Manson and Miner rules does not
guarantee the prediction of physically admissible hysteresis loops at notches under VA
loading, as discussed next.

APPLICATION OF THE εεεεN METHOD UNDER VARIABLE AMPLITUDE LOADING

When dealing with variable amplitude loads, it is not possible to predict physically acceptable
strain ranges at the critical point without recognizing the load order. Since plasticity



generates memory, sequence effects must be accounted for when accurately modeling
elastic-plastic hysteresis loops. Some of these issues are discussed next.

Hysteresis Loop Calculation under VA Loading

To guarantee the quality of the predictions, it is indispensable to first assure that the
calculation model reproduces the hysteresis loops at the critical point, for only then
calculating the damage caused by the loops. Even if the piece is virgin, if the residual stress
and strain state is zero, and if the cyclical hardening or softening transient can be neglected,
the increments of plastic strain are dependent on the load history. Therefore, it is necessary
to distinguish the first 1/2 cycle from the subsequent load events. In the idealized case, the
first 1/2 cycle departs from the origin of the σε plane following the (cyclic) σε curve, giving
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But distinguishing the first elastic-plastic event is still not enough to guarantee correct
hysteresis loop predictions. It is also necessary to guarantee that all subsequent loops are
bounded by the cyclic σε curve and by the wrapper of the hysteresis loops. Hence, the
automation software should verify if and when the predicted hysteresis loops cross the cyclic
σε curve or previously induced loops. At the crossing point, the hysteresis loop equation
must be switched to follow the cyclic σε curve or the curve of a previously induced loop.

Figure 1 shows hysteresis loops associated with the strain history {0 → 5 → 3.5 → 8 → 5 →
6.5 → −1.5 → 2 → 0.5 → 8}×103µm/m, following the events 0 through 9. Three types of loop
corrections can be noticed: (i) in the first half-cycle, the cyclic σε curve must be followed as
the material is assumed to be virgin; (ii) between events 2 and 3 the HL must switch to the
cyclic σε curve; and (iii) the HL starting from events 5 and 8 must switch to the outer wrapper
of the loops to reach points 6 and 9, respectively. These corrections must be performed
otherwise physically inadmissible loops are generated, resulting in potentially non-
conservative predictions.

 

Figure 1: Variable amplitude deformation history and associated hysteresis loops.



Note that if Coffin-Manson’s equation was considered in the above example, it would not be
necessary to draw the hysteresis loops, because the damage would be completely defined
by the strain ranges ∆ε∆ε∆ε∆εi from the original history. However, when the mean stress effect is
modeled through other strain-life curves (e.g. Morrow or Smith-Watson-Topper), then the
actual stresses associated with each load reversal must be calculated, which can only be
done by calculating the associated loops. Moreover, if the original history is given as a load
or stress history (instead of a strain one), then the actual strains must be obtained drawing
the corrected hysteresis loops. Therefore, strain-controlled εN results cannot be used to
predict the behavior of stress-controlled components under variable amplitude loading,
unless the hysteresis loops are calculated.

The numerical procedures to obtain the corrected hysteresis loops are, at least in theory,
relatively easy to implement. They involve keeping track of the hierarchy of each hysteresis
loop to correctly draw loops within others. The starting point of every new HL must be
accounted for in a table. Then, every time a smaller loop is closed (such as the ones formed
by events 1-2, 4-5 or 7-8 in Figure 1), its entry is removed from the table, switching curves to
the previous HL in the list. The algorithm continues until the end of the history.

To reduce the computational complexity of the above algorithm, it has been recommended in
the literature to reorder the loading history, placing the largest event in the beginning. In this
simplification, all subsequent events would lie within the large loop associated with the first
one, eliminating the need for many of the discussed corrections. However, this procedure is
not adequate, because it alters the loading order, ignoring the memory effects associated to
plasticity. This anticipation is only admissible when the largest event occurs relatively in the
beginning of the global history, such as in the case of periodic loading. Otherwise, if there’s
any transient characteristic in the original history, this simplification should not be used.

Rain-flow Counting of Elastic-Plastic Events

Another issue in the classical εN approach is cycle counting. The usual practice is to apply
the rain-flow method to the original loading history. This is perfectly admissible under linear
elastic conditions, such as in the SN methodology. However, in the elastic-plastic case this
procedure is not recommended since the rain-flow method changes the loading order. Even
sequential rain-flow algorithms [5], which may be appropriate for crack growth calculations,
cannot be used in the εN method prior to drawing the hysteresis loops. Only the original
loading (without any cycle counting) can generate the experimentally observed hysteresis
loops.

On the other hand, rain-flow counting is fundamental to account for the large amplitude
events hidden in variable amplitude loading histories. The correct approach in these cases is
to rain-flow count the calculated strains, which must be done only after having drawn the
hysteresis loops. This is the only cycle counting procedure that results in the experimentally
observed hysteresis loops, while preserving the load order. The other approaches tend to
result in significantly non-conservative predictions, unless the variable amplitude history is
well behaved, with frequent controlling overloads.

Elastic-Plastic Nominal Stresses

When dealing with stress concentration, it is common practice to model the nominal stresses
as purely elastic, while using an elastic-plastic model such as Ramberg-Osgood to represent
the behavior at the critical point. However, this approach is inconsistent since the material is
the same at both regions. When the nominal stresses are not substantially smaller than the



cyclic yielding strength SY’, the predicted hysteresis loops at the notch root can be
significantly non-conservative. In fact, when the nominal stresses are in the order of SY, the
Hookean model can predict stresses and strains at the notch root that are smaller than the
nominal ones, a clear non-sense. A detailed study performed on measured properties of 517
different structural steels reveals that the Hookean modeling can lead to non-conservative
life prediction errors above 100% even for nominal stress amplitudes as low as 0.3⋅⋅⋅⋅SY’ [6].

To avoid these type of errors induced by the simplified Neuber approach, it is necessary to
use the Ramberg-Osgood model to describe not only the stresses at the notch root, but also
to describe the nominal stresses. In this case, given the nominal stress range ∆∆∆∆σσσσn, the stress
range at the notch root ∆∆∆∆σσσσ can be calculated from
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An interesting result is that both Kσσσσ and Kεεεε tend to constant values as the nominal stress
amplitude is increased, resulting in lower and upper bounds for Kσσσσ and Kεεεε
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It is worth emphasizing that these corrections are indispensable under penalty of generating
predictions that are (i) physically inadmissible, and (ii) probably non-conservative. Only after
applying all the required corrections it is possible to predict decent loops and, hence, the
correct fatigue damage if the load amplitude is variable.

An algorithm to computationally implement these routines has been implemented and its
efficiency verified through VA experiments on 4340 and API S-135 steel specimens [7], as
shown in Figures (2) and (3).

Figure 2: Measured and predicted hysteresis loops under increasing/decreasing amplitude
loading in 4340 steel.



Figure 3: Measured and predicted loops under variable amplitude loading in API S-135 steel.

CONCLUSIONS

From this work it can be concluded that precise fatigue life predictions require an accurate
description of the stress-strain history at the critical point. Therefore, the practical
implementation of the εN methodology requires, in that order: (i) calculating the hysteresis
loops ∆σ∆σ∆σ∆σi∆ε∆ε∆ε∆εi at the notch root; (ii) following the σεσεσεσε cyclic curve at the first event; (iii) including
all hysteresis loop corrections under variable amplitude loading; (iv) applying the linear strain
concentration rule or Neuber’s rule considering elastic-plastic nominal stresses; (v) rain-flow
counting the resulting ∆ε∆ε∆ε∆εi; and finally (vi) calculating damage according to Miner, using
measured strain-life data and efficient numerical methods. Such predictions can only be
made with the aid of appropriate automation software, since the numerical effort to
sequentially solve the εN equations is quite heavy.
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