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ABSTRACT 

Several estimates of Coffin-Manson’s parameters 
have been proposed in the literature. However, most of the 
existing methods for estimating εN parameters are based 
on a limited amount of experimental data. In addition, 
statistical evaluation of the popular rules of thumb used in 
practice to estimate fatigue properties are scarce, if 
available. In this work, an extensive statistical evaluation 
of the existing Coffin-Manson parameter estimates is 
presented based on monotonic tensile and uniaxial fatigue 
properties of  845 different metals, including 724 steels, 81 
aluminum alloys, and 15 titanium alloys. From the 
collected data, a new estimation method which uses the 
medians of the individual parameters of the 845 materials 
is proposed. 

Keywords: Low-cycle fatigue; Estimation methods; Strain-
life estimates; Statistical evaluation 

INTRODUCTION 

The εN fatigue design method correlates the number 
of cycles N to initiate a fatigue crack in any structure with 
the life of small specimens made of the same material and 
submitted to the same strain history that loads the critical 
point in service. This method models macroscopic elastic-
plastic events at the notch roots and uses the local strain 
range (a more robust parameter to describe plastic effects) 
instead of the stress range to quantify them. Therefore, the 
εN method must be used to model low cycle fatigue 
problems, when the plastic strain range ∆εp at the critical 
point is of the same order or larger than the elastic range 
∆εe, but it can be applied to predict any crack initiation 
life. 

The classical εN method works with real 
(logarithmic) stresses and strains, uses a Ramberg-Osgood 
description for the ∆σ ∆ε elastic-plastic hysteresis loops, 
and considers the cyclic softening or hardening of the 
material, but not its transient behavior from the monotonic 
σε curve [1-5]. Hence, a single equation is used to describe 
all loops  
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where E is the Young’s modulus, K’  is the hardening 
coefficient and n’ is the hardening exponent of the 
cyclically stabilized ∆σ∆ε curve. 

The relationship between the stress range ∆ε at the 
critical point and its fatigue crack initiation life N is 
usually given by the classical Coffin-Manson equation  
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where σ’ f, ε’ f, b and c are the fatigue strength and ductility 
coefficients and exponents measured in fully alternated 
tension-compression fatigue tests. 

Assuming that Ramberg-Osgood’s elastic and plastic 
strain ranges perfectly correlate with the correspondent 
Coffin-Manson’s ranges, then only four of the six material 
parameters {n’, K’ , σ’ f, ε’ f, b, c} would be independent. 
Thus, from Eqs. (1-2), 
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Note however that the Ramberg-Osgood and Coffin-
Manson equations are not physical laws. Instead, Eq. (3) 
must be regarded as a measure of the coherence between 
those equations. Therefore, such estimates should not be 
used to replace experiments. Whenever possible, all six 
material parameters should be independently obtained from 
actual measurements.  

However, for initial design studies it is desirable to 
estimate these six εN parameters based only on readily 
available monotonic tensile test data. The main estimation 
methods proposed in the literature are discussed next. 

CLASSICAL ESTIMATION METHODS 

Several estimates of Coffin-Manson’s parameters 
have been proposed in the literature since Morrow [6], who 
in 1964 correlated the b and c exponents of Coffin-
Manson’s equation with the cyclic hardening exponent n’: 
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Manson [7] proposed two different methods based on 
experimental data on 69 metals to estimate their Coffin-
Manson curve: the Universal Slopes method (5), in which 
b and c are assumed constant for all metals, and the Four-
Point Correlation method (6), defined through estimates of 
the elastic or the plastic strain ranges ∆εe/2 or ∆εp/2 at four 
different lives (N = 1/4, 10, 104 and 105 cycles). Both 
Manson’s estimates make use of the ultimate strength SU 
and the reduction in area RA: 

σ’ f  = 1.9⋅SU,  
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Raske and Morrow [8] proposed an estimate for the 
fatigue ductility coefficient ε’ f from σ’ f, n’, and the cyclic 
yielding strength S’Y: 

ε’ f = 0.002⋅(σ’ f /S’Y)
1/n’        (7) 

Mitchell [9] stated that the exponent b is also a 
function of SU, estimated ε’ f directly from the true fracture 
ductility ε f, and assumed proposed two universal slopes for 
“ductile” or “strong” alloys: 

σ’ f  = SU + 345MPa,   ε ’ f  = ε f,   
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c = −0.6 (“ductile”) or −0.5 (“strong”)     (8) 

Muralidharan and Manson [10] revised the Universal 
Slopes idea, increasing both Coffin-Manson’s exponents to 
b = −0.09 and c = −0.56, and introducing the parameter 
SU/E to estimate both coefficients σ’ f and ε’ f: 
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b = −0.09,  c = −0.56          (9) 

Bäumel and Seeger [11] recognized the importance 
of separating the εN estimates by alloy family, proposing 
different methods for low-alloy steels and for aluminum 
(Al) and titanium (Ti) alloys in their Uniform Material 
laws. They also ignored any monotonic measure of the 
material ductility (such as the reduction in area RA) when 
estimating the fatigue ductility coefficient ε’ f : 

σ’ f  = 1.5⋅SU,  ε ’ f  = 0.59 if SU /E ≤ 0.003 or 0.812−74⋅SU /E, 

b = −0.087,  c = −0.58   (steels)      (10) 

σ’ f = 1.67⋅SU, ε ’ f = 0.35, b =−0.095, c =−0.69 (Al & Ti) 
(11) 

Ong [12] proposed a few modifications in Manson’s 
Four-Point Correlation method to better fit the 
experimental data of 49 steels from the SAE J1099 
Technical Report on Fatigue Properties [13], estimating ε’ f 
in the same way as Mitchell proposed: 

σ’ f  = SU⋅(1+ε f),   ε ’ f  = ε f,   
E/.

)E/S(
logb

f

.
U

σ⋅
=

2566
1

810
, 

f

b'f

.

E/)(.
logc ε

σ
⋅

−
=

0742

1000740

4

1
4

     (12) 

Roessle and Fatemi [14], assuming the same constant 
slopes as Muralidharan and Manson did, while estimating 
both Coffin-Manson’s coefficients as a function of the 
Brinnell hardness HB: 

σ’ f = 4.25⋅HB + 225MPa, 

ε’ f = [0.32⋅HB2 − 487⋅HB + 191000MPa] / E, 

b = −0.09, c = −0.56         (13) 
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It is no surprise that σ’ f can be estimated from the 
hardness HB, since SU and HB present a very good 
correlation for steels: if SU is given in MPa and HB in 
kg/mm2, SU is approximately 3.4⋅HB with a (small) 
coefficient of variation V = 3.8%, from a study on 1924 
steels from the ViDa software database [15-16]. 

Several works have been published since 1993 
evaluating the life prediction errors associated with each of 
the estimation methods discussed above [14, 17-20]. Ong 
[17] evaluated Manson’s and Mitchell’s original methods 
based on properties of 49 steels. He concluded that 
Mitchell’s method resulted in overly non-conservative 
predictions. 

Brennan [18] compared all of Manson’s methods and 
concluded that Muralidharan-Manson’s revised Universal 
Slopes [10] resulted in good predictions, however his 
analysis was based on only six steels. 

Park and Song [19] evaluated several methods using 
published data on 138 materials. They found that both 
Manson’s original methods are excessively conservative for 
long life predictions, but slightly non-conservative for short 
lives. In contrast, Muralidharan-Manson’s method is 
slightly conservative at shorter lives, but is non-
conservative at long lives, being selected as the best overall 
estimation method together with Bäumel-Seeger’s uniform 
material laws. Park and Song also confirmed that 
Mitchell’s method leads to non-conservative predictions 
over the entire life range. 

Roessle and Fatemi [14] studied measured properties 
of 20 steels plus the 49 steels from the SAE J1099 
Technical Report [13], arriving at basically the same 
conclusions as Park and Song did. In addition, no strong 
correlation was found between σ’ f and the true fracture 
strength. They also found that using the true fracture 
ductility εf to estimate ε’ f can result in significant error. 

Kim et al. [20] presented an evaluation of all 
available estimation methods, based on measured 
properties of 8 steels. It was found that the best life 
predictions were obtained using Bäumel-Seeger’s, Roessle-
Fatemi’s and Muralidharan-Manson’s methods. 

From the evaluations in the literature, it is possible to 
conclude that the best estimation methods are all based on 
constant values of the exponents b and c, while in general 
σ’ f is well estimated (directly or indirectly) as a linear 
function of the ultimate strength SU. It is also suggested 
that ε’ f does not correlate well with any monotonic measure 
of the material ductility, such as RA or εf. Comparing to 
the existing estimates for ε’ f, from a statistical point of 
view assuming it is a constant would result in better 
predictions. Based on these conclusions, a new εN estimate 

called the Medians method is proposed in this work. A 
statistical evaluation of this method and all others 
discussed above is presented in the following sections. 

MATERIALS DATA 

The tensile and εN properties of 845 materials have 
been collected from the literature, totaling 724 different 
steels, 81 aluminum, 15 titanium, 9 nickel alloys, and 16 
cast irons. These materials were tested under several 
conditions or heat treatments, at temperatures varying from 
21 to 800oC, according to the ASTM standards E606 and 
E8 [21-22]. This sample included only the metals which 
reportedly had fully measured Coffin-Manson, cyclic 
Ramberg-Osgood, and monotonic tensile properties among 
the more than 13,000 different materials listed on the ViDa 
software database [15-16], a powerful PC-based academic 
program developed to automate all traditional local 
approach methods used in fatigue design, including the 
SN, the IIW (for welded structures) and the εN for crack 
initiation, and the da/dN for crack propagation. Its 
comprehensive materials database has been compiled from 
several sources in the literature and carefully filtered to 
avoid suspicious data. In particular, all materials 
considered in this study can be found in [11, 13-14, 18, 20, 
23-25], and their experimental Coffin-Manson curves are 
shown in Figures 1 and 2. 

 
Figure 1. Coffin-Manson curves of 724 steels under 

temperatures between 21oC and 800oC. 
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Figure 2. Coffin-Manson curves of 81 aluminum and 15 

titanium alloys. 

From the large size and diversity of the steel and 
aluminum samples, they may be considered representative 
of the behavior of these alloy families. Among the 724 
steels, 540 were tested at room temperature, while the 
other 184 were tested under temperatures between 400 and 
800oC. As suggested in Figure 1, temperature does not 
influence decisively on the scatter of the Coffin-Manson 
curves of the analyzed steels, therefore the low and high 
temperature data are evaluated together. However, the 
high-cycle fatigue resistance is significantly lowered under 
high temperatures (Figure 1). Part of this temperature 
effect can be accounted for by all discussed estimation 
methods, because the lower values of the ultimate strength 
SU or the Brinnell hardness HB found at high temperatures 
always result in lower estimates of the fatigue resistance 
coefficient σ’ f . In the next section, the Coffin-Manson and 
Ramberg-Osgood parameter estimates are statistically 
evaluated. 

STATISTICAL EVALUATION OF εεεεN PARAMETER 
ESTIMATES 

The Coffin-Manson and Ramberg-Osgood 
parameters and their estimates are individually studied in 
this section based on the data of the 845 metals described 
above. For the statistical study, each data set is sorted in 
ascending order, and then each data point is associated to 
its mean rank. Then, each data set is fitted using 12 
continuous probability distributions: Beta, Birnbaum-
Saunders, Gamma, Inverse Gauss, Logistic, Log-Logistic, 
Normal, Log-Normal, Pearson, Gümbel (extreme value), 
and Weibull [26-27]. The chi-square and Anderson-
Darling tests [28-29] are used to evaluate the goodness-of-
fit of each of the considered distributions for each set. In 
particular, both tests show that the Log-Logistic 
distribution [27] is the one that best fits the Coffin-Manson 
parameters b, c, and ε’ f, the cyclic hardening exponent n’, 
and the ratios σ’ f /SU and n’/(b/c) of the considered steels 
and aluminum alloys. This does not necessarily mean that 
these variables follow the Log-Logistic distribution, it is 

only an indication that among the 12 considered 
distributions this is the one that most likely produced the 
specific data sets used in this analysis. The best-fitted 
distributions and their mean, median, and coefficient of 
variation V (defined as the ratio between the standard 
deviation and the mean) are shown in Figure 3. 

 
Figure 3. Probability density functions and {mean, median, 
coefficient of variation} of Coffin-Manson and Ramberg-
Osgood parameters of 724 steels and 81 aluminum alloys. 

It has been found that all 845 metals have σ’ f /SU 
ratios between 0.5 and 10, with average 1.65 and median 
1.5 for steels, suggesting that Manson’s estimate σ’ f = 
1.9⋅SU is potentially non-conservative for these materials. 
The fatigue ductility coefficient ε’ f has the greatest scatter 
of all studied properties (coefficient of variation V up to 
179%), with values ranging from 0.001 to 400. It must be 
noted that ε’ f values much greater than 2.3 are very likely a 
result of bad fitting of the Coffin-Manson curve, because 
such values would imply in a reduction in area RA much 
greater than 90% at 2N = 1. Also, all considered metals 
have cyclic hardening coefficients K’  ranging between 
E/1000 and E/20, cyclic hardening exponents n’ between 
0.01 and 0.6, fatigue strength exponents b between −0.35 
and −0.01, and fatigue ductility exponents c between −1.5 
and −0.1. More specifically, 93% of the steels have 0.06 < 
n’ < 0.35, 92% have −0.2 < b < −0.05, and 94% are in the 
range −0.9 < c < −0.3. In addition, 94% of the aluminum 
alloys have 0.03 < n’ < 0.2, 91% have −0.2 < b < −0.08, 
and 88% present −1.0 < c < −0.4. 

The coherence between Coffin-Manson’s and 
Ramberg-Osgood’s elastic and plastic strain ranges is 
verified from the evaluation of the correlations presented in 
Eq. (3) for the considered steels and aluminum alloys, see 
Figure 4. From this study on 724 steels, it is found that 
there is a reasonable (but not exact) correlation between the 
cyclic hardening exponent n’ and the ratio b/c, with a 
coefficient of variation V = 15%. The cyclic hardening 
coefficient K’  estimate based on n’ and on Coffin-
Manson’s coefficients is also fairly good for steels, despite 
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the somewhat significant scatter in the experimental data, 
V = 15% as well. However, for the considered 81 
aluminum alloys it is found that Eq. (3) tends to 
overestimate both n’ and K’ , see Figs. 3 and 4. This is an 
indication that the coherence between the stress-strain and 
strain-life relationships used in the traditional εN method 
is better verified in steels than in aluminum alloys. 

 

Figure 4. Coherence between Coffin-Manson and 
Ramberg-Osgood parameters for steels and aluminum 

alloys. 

As seen in Figure 5, Manson’s estimate for the 
fatigue strength coefficient σ’ f is non-conservative for most 
steels, while Mitchell’s method results in better values. 
However, due to the 345MPa offset in Mitchell’s estimate, 
σ’ f is overestimated in materials with low ultimate strength 
SU, such as steels under high temperatures (Figure 5). 
Muralidharan-Manson’s method provides a much better σ’ f 
estimate for steels, however it is overly conservative for 
aluminum and titanium alloys. Also, it is found that 
Muralidharan-Manson’s σ’ f estimate for steels can be 
successfully approximated by 1.5⋅SU, a much simpler and 
equally effective expression. Interestingly, the factor 1.5 is 
also the median value of the σ’ f /SU ratio for the 724 steels. 

 
Figure 5. Estimates of Coffin-Manson’s coefficient σ’ f . 

The correlations between the fatigue strength 
exponent b and RA or SU are poor for all studied metals: 
Manson’s Four-Point method underestimates b for most 
materials, while Mitchell’s correlation has a large scatter 
(Figure 6). Even though b and c correlate fairly well with 
the hardening exponent n’, estimating these exponents as 
constants results in a smaller coefficient of variation if 
compared to the available estimates. In addition, Morrow’s 
b estimate is non-conservative for almost all studied 
aluminum and titanium alloys. It is found that better 
predictions are obtained from constant b and c estimates: b 
= −0.09 and c = −0.59 for the 724 steels, and b = −0.11 
and c = −0.66 for the 81 aluminum alloys (Figure 7). 

 
Figure 6. Estimates of Coffin-Manson’s exponents b and c. 

 
Figure 7. Coffin-Manson’s exponents b and c for 724 steels 

and 81 aluminum alloys.  

As seen in Figure 8, the fatigue ductility coefficient 
ε’ f does not correlate well with the reduction in area RA or 
the true fracture ductility ε f. Mitchell’s and Manson’s ε’ f 
estimates are non-conservative. Also, there’s a large scatter 
in Muralidharan-Manson’s and Bäumel-Seeger’s ε’ f 
estimates to justify a suitable correlation with SU/E. One 
limitation of Bäumel-Seeger’s method is that it is only 
valid if the ultimate strength SU is much smaller than 
2.2GPa, otherwise negative values of ε’ f may be obtained. 
Raske-Morrow’s ε’ f estimate has also a large scatter, 
because it implicitly assumes a perfect correlation between 
the elastic and plastic strain ranges in Ramberg-Osgood 
and Coffin-Manson. 
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Figure 8. Estimates of Coffin-Manson’s coefficient ε’ f . 

Manson’s method based on fixed points also results 
in poor estimates for the studied materials. The elastic and 
plastic strain ranges in Manson’s Four-Point Correlation 
are overestimated at N = 1/4, 10 and 104 cycles for steels. 
The only fixed point with a fair correlation is N = 105 
cycles, where the elastic strain amplitude is slightly 
underestimated by 0.45⋅SU/E. The Coffin-Manson 
coefficients σ’ f and ε’ f are overestimated from the Four-
Point Correlation method, the exponent b is 
underestimated, and for 93% of the steels c results in the 
narrow range −0.7 < c < −0.5. Ong’s proposed 
modification to the Four-Point Correlation method results 
in better average estimates for σ’ f, b and c, however, as in 
Mitchell's method, it overestimates ε’ f. 

Roessle-Fatemi’s method results in a fair correlation 
between σ’ f and the Brinnell hardness HB. From the good 
correlation SU = 3.4⋅HB for steels, this σ’ f estimate can be 
rewritten as 1.25⋅SU + 225MPa, an intermediate function 
in between Manson’s and Mitchell’s. However, Roessle-
Fatemi’s estimate for ε’ f does not correlate well with the 
analyzed data, see Figure 9. 

 
Figure 9. Roessle-Fatemi’s estimates for Coffin-Manson 
coefficients σ’ f  and ε’ f  based on the Brinnell Hardness 

HB. 

Therefore, from a statistical viewpoint, sophisticated 
equations surprisingly tend to increase the dispersion in ε’ f. 
The least scatter in those cases was obtained assuming a 
constant value such as its median 0.45 for steels or 0.28 for 
aluminum alloys (Figure 3). 

Based on the above conclusions, an εN estimate 
called the Medians method is proposed, which estimates 
σ’ f /SU, ε’ f, b and c as constants equal to their medians for 
each alloy family: 
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(from 81 aluminum alloys)     

Interestingly, the Medians estimate for steels is 
almost insensitive to the operating temperature. The only 
parameter with a significant temperature dependence is the 
fatigue ductility coefficient ε’ f : the median value for 540 
steels at room temperature is ε’ f = 0.51, while 184 steels at 
temperatures between 400oC and 800oC have ε’ f = 0.35. 
Using these values, separate Medians estimates can then be 
proposed for high and low temperature steels. The fatigue 
strength coefficient σ’ f has also a significant temperature 
dependence, however the median of the σ’ f /SU ratio 
remains unchanged. 

Other Medians estimates for {σ’ f, ε’ f, b, c} are 
obtained for three alloy families: {1.9⋅SU, 0.50, −0.10, 
−0.69} from a study on 15 titanium alloys; {1.2⋅SU, 0.04, 
−0.08, −0.52} calculated from 16 cast irons; and {1.4⋅SU, 
0.15, −0.08, −0.59} from 9 nickel alloys. However, these 
three estimates should be used with caution, because they 
were based on a very limited sample. 

Other useful estimates based on median values are E 
= 205GPa (median value of 3157 steels at room 
temperature from the ViDa database [15-16], with a 
coefficient of variation V = 3.1%), E = 71GPa (from 551 
Al alloys, V = 4.0%), E = 108GPa (139 Ti alloys, V = 
7.4%), E = 140GPa (22 cast irons, V = 24%), and E = 
211GPa (376 Ni alloys, V = 3.4%).  

STATISTICAL EVALUATION OF εεεεN FATIGUE 
LIFE ESTIMATES 

In the previous section, all fatigue estimates were 
evaluated by treating the εN parameters as independent 
random variables. However, for fatigue life estimation 
purposes, Coffin-Manson’s coefficients and exponents are 
not independent. For instance, it is possible to obtain fair 
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life predictions using a method that overestimates the 
fatigue strength coefficient σ’ f while underestimating the 
corresponding exponent b, since both errors may cancel 
each other. Therefore, to validate εN estimates, a statistical 
study must be performed comparing the predicted lives 
(and not only the individual Coffin-Manson parameters) 
with the experimentally measured ones. 

From measured Coffin-Manson data on 724 steels 
and 81 aluminum alloys, it is found that the scatter in the 
εN specimen lives for the different materials is minimum 
between 1000 and 3000 cycles. This is perhaps a good 
reason to continue estimating Wöhler’s curve using N = 
103 cycles as a fixed point in the SN methodology. Also, 
the average strain amplitude at 103 cycles in both steels 
and aluminum alloys is approximately ∆ε(103)/2 = 0.8%. 
Even though the scatter is minimum around 0.8%, εN 
specimen lives varying from less than 50 cycles (for a few 
wet welds) up to 2⋅104 cycles (for a hot-worked H11 tool 
steel) can be obtained at this strain amplitude. The high 
scatter observed at lives greater than 105 cycles is expected, 
due to the large variation in the fatigue resistance of 
several steels and aluminum alloys. 

The performance of each fatigue estimate is now 
evaluated through the life prediction ratio (LPR), defined 
as the ratio between the life (in cycles) predicted by any of 
the presented methods, Npredicted, and the observed 
experimental life, Nobserved. Therefore, LPR values between 
zero and 1.0 are a result of conservative estimates, while 
values greater than 1.0 are non-conservative. It must be 
noted that all mean values and standard deviations of the 
LPR will be calculated based on the logarithmic 
representation of Npredicted/Nobserved, in order to give equal 
weight to, e.g., ratios 3 and 1/3, since both imply on a 
factor of 3 in the life estimation error. 

The probability density functions (pdf) that best-fitted 
the εN specimen LPR of the 724 steels are shown in Figure 
10, obtained under the strain amplitude ∆ε/2 = 1.0%. 
Under such strain amplitude, Manson’s Universal Slopes 
method results in average non-conservative prediction 
errors of 97% (since its mean LPR is 1.97), Bäumel-
Seeger’s in 38%, and the Medians method in 3%, with 
similar standard deviations. Except for Mitchell’s method, 
which presents a high scatter in the LPR, it is found that 
all studied estimates result in roughly the same standard 
deviations when represented in the logarithmic scale at 
each strain range level. However, these standard deviations 
do vary with the strain amplitude level, presenting a 
minimum near ∆ε/2 = 1.0%. The poor performance of 
Mitchell’s method in this study is mainly a result of its 
non-conservative ε’ f estimate, since the great majority of 
steels and aluminum alloys have ε’ f much smaller than the 
true fracture ductility ε f. 

 
Figure 10. Statistics of the life prediction ratio obtained by 
a few estimation methods for 724 steels, obtained under the 

strain amplitude ∆ε/2 = 1.0%. 

Each estimation method is further evaluated as 
follows through the average values of the LPR probability 
density functions obtained under several strain amplitudes 
∆ε/2, see Figure 11. Mitchell’s method is not represented 
in this figure, because its average LPR is greater than 4.0 
in the entire life range. 

 
Figure 11. Average life prediction ratios obtained by 

several estimation methods for 724 steels, under strain 
amplitude levels between 0.2% and 5%. 

Both Manson’s Universal Slopes and Four-Point 
Correlation methods are non-conservative for short lives, 
with average life prediction errors of over 100%. Also, 
these two methods are highly conservative for long lives, 
underestimating the elastic strain amplitude ∆εe/2 at 105 
cycles using 0.44⋅SU/E or 0.45⋅SU/E. A better correlation 
for the 724 steels is obtained from the Medians estimate 
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Even though significantly non-conservative 
predictions may be obtained at strain amplitudes ∆ε /2 
below 1.0%, Muralidharan-Manson’s and Roessle-
Fatemi’s methods result in reasonable average LPR for 
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steels (Figure 11). Bäumel-Seeger’s and Ong’s methods 
also result in fair predictions, however they are slightly 
non-conservative at high ∆ε /2 levels because of the poor 
estimates for ε’ f, which does not correlate with SU/E or ε f 
for the 724 steels. The lowest average prediction errors are 
obtained from the Medians estimate for steels, with LPR 
very close to 1.0 in all strain amplitudes between 0.4% and 
5%, and conservative errors below this interval. However, 
this could be expected as the parameters from the Median 
method were calibrated using the same material data set 
used in the comparisons. 

It is found that better predictions are obtained from 
the Medians method for aluminum and titanium alloys, 
followed by Bäumel-Seeger’s Uniform Material law, very 
likely because both are based on constant σ’ f /SU, ε’ f , b and 
c. Also, Bäumel-Seeger’s estimate c = −0.69 may be 
appropriate for titanium but a little low for aluminum 
alloys. Therefore, it is always a good idea to consider 
separate estimates for each alloy family, separating the 
aluminum from the titanium alloys such as in the Medians 
method. 

CONCLUSIONS 

In this work, the existing Coffin-Manson parameter 
estimates were statistically evaluated, based on monotonic 
tensile and uniaxial fatigue properties of 845 metals. From 
this analysis it is concluded that, in average, steels present 
significantly higher b and c exponents than aluminum and 
titanium alloys. Therefore, different estimates for the 
Coffin-Manson parameters should be considered for each 
alloy family. Also, correlations between Coffin-Manson’s 
b, c and ε’ f and the monotonic tensile test properties are 
poor, however the fatigue strength coefficient σ’ f presents a 
fair correlation with the ultimate strength SU. The 
relatively large scatter in this correlation does not justify 
the use of non-linear estimates such as Muralidharan-
Manson’s, or linear estimates with offsets such as 
Mitchell’s or Roessle-Fatemi’s, which overestimate σ’ f for 
low values of SU or HB. Constant estimates for the ratio σ’ f 
/SU were found to better agree with the studied data. In 
addition, the correlations between σ’ f and σ f  and between 
ε’ f and ε f should not be used. 

From the studied data, it is found that better life 
predictions are obtained simply from constant estimates of 
the parameters b, c, σ’ f /SU and ε’ f, such as in the proposed 
Medians method. Other estimates that resulted in good 
predictions are Roessle-Fatemi’s, Bäumel-Seeger’s, and 
Muralidharan-Manson’s methods for steels. However, the 
estimates of the fatigue ductility coefficient ε’ f in these 
three methods are not very good. The main reason for the 
good performance of these methods is the combination of 
constant values for the b and c exponents and reasonable 

estimates for the fatigue strength coefficient. Ong’s method 
also results in reasonable predictions, despite its poor σ’ f 
and ε’ f estimates. It must also be noted that Muralidharan-
Manson’s method should not be applied to aluminum or 
titanium alloys, which present significantly lower b and c 
exponents. Manson’s Universal Slopes and Four-Point 
Correlation methods are very conservative for steels at long 
lives, as pointed out by Park and Song. Also, both methods 
result in average in significantly non-conservative life 
predictions at short lives. 

Finally, for future work, improved Medians estimates 
could be obtained for both uniaxial and torsional fatigue 
properties using larger samples of material data. 
Nevertheless, it must be pointed out that all the presented 
estimates should never be used in design, because for some 
materials even the best methods may result in life 
prediction errors of an order of magnitude. The use of such 
estimates, even the proposed Medians method, is only 
admissible during the first stages of design, otherwise all 
fatigue properties should be obtained experimentally. 
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