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ABSTRACT 

Fatigue crack kinking and bifurcation are phenomena 
capable of inducing significant growth retardation or even 
crack arrest. However, bifurcated crack models available in 
the literature cannot account for the subsequent 
propagation behavior observed in practice. In this work, 
specialized Finite Element (FE) and life assessment 
software are used to predict the reduction in the 
propagation rates in kinked and bifurcated cracks. The 
crack path and associated stress intensity factors (SIF) of 
bifurcated cracks are numerically obtained for several 
bifurcation angles and branch lengths. From these results, 
empirical crack retardation equations are proposed to 
model the retardation factor along the crack path, allowing 
for a better understanding of the influence of crack 
deflection in the propagation life. 
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INTRODUCTION 

Overloads, multi-axial stresses, microstructural 
inhomogeneities such as grain boundaries and interfaces, 
or environment effects can significantly deviate fatigue 

cracks from their Mode I growth direction, generating 
crack kinking or branching [1]. A fatigue crack deviated 
from its nominal Mode I plane induces mixed-mode near-
tip conditions even if the far-field stress is purely Mode I. 
Since the stress intensity factors (SIF) associated to 
deflected or branched fatigue cracks can be considerably 
smaller than that of a straight crack with the same 
projected length, such deviations can cause retardation or 
even arrest of crack growth [2]. Very small differences 
between the branch lengths b and c are enough to cause the 
shorter branch to arrest as the larger one propagates, until 
reaching approximately its pre-overload SIF and growth 
rate. This typical propagation behavior has been observed 
on a branched crack on an aircraft wheel rim made of 
2014-T6 aluminum alloy [3]. 

Analytical solutions have been obtained for the SIF of 
kinked and branched cracks [2, 4-8]. However, numerical 
methods such as Finite Elements (FE) and Boundary 
Elements (BE) are the only means to predict the 
subsequent curved propagation behavior. 

To predict the path of a branched crack and to 
calculate the associated Modes I and II SIF, an interactive 
FE program named Quebra2D is used [9]. This program 
simulates two-dimensional fracture processes based on a 



FE self-adaptive strategy, using appropriate crack tip 
elements and crack increment criteria. The adaptive FE 
analyses are coupled with modern and efficient automatic 
remeshing schemes. The program has been validated 
through experiments on ESE(T) and modified C(T) 
specimens made of 4340 and 1020 steel, and from 
comparisons with analytical solutions for kinked cracks. 
The crack path and associated SIF are then exported to ViDa, a general-purpose fatigue design program 
developed to predict both initiation and propagation fatigue 
lives under variable loading by all classical design methods 
[10]. This companion life assessment program is used to 
estimate the number of delay cycles associated with crack 
bifurcation. In the next sections, the propagation behavior 
of kinked and bifurcated (branched) cracks is calculated. 

MIXED-MODE CRACK GROWTH 
CALCULATIONS 

In mixed-mode crack growth calculations using FE, 
three methods are generally used to compute the stress 
intensity factors along the (generally curved) crack path: 
the displacement correlation technique [11], the potential 
energy release rate computed by means of a modified 
crack-closure integral technique [12-13], and the J-integral 
computed by means of the equivalent domain integral 
(EDI) together with a mode decomposition scheme [14-
15]. The EDI method replaces the J-integral along a 
contour by another one over a finite size domain, using the 
divergence theorem, which is more convenient for FE 
analysis. Since Bittencourt et al. [16] showed that for 
sufficiently refined FE meshes all three methods predict 
essentially the same results, only the EDI method is 
considered in the calculations presented here. However, the 
other two methods also provide good results even for 
coarse meshes. 

Several models have been proposed to obtain an 
equivalent SIF Keq from KI, KII and KIII . Tanaka [18] 
obtained an equivalent stress intensity model based on the 
displacements behind the crack tip reaching a critical 
value, leading to 
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where ν is Poisson’s coefficient. 

Hussain et al. [19] used complex variable mapping 
functions to obtain the potential energy release rate G at a 
direction θ with respect to the crack propagation plane. He 
assumed that crack extension occurs in a direction θ = θ0 
that maximizes G, leading to the maximum fracturing 

energy release rate (Gmax) criterion. Thus, an equivalent 
SIF is obtained at θ = θ0 that maximizes the expression 
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The computed θ0 values at each calculation step are 
used to obtain the crack incremental growth direction - and 
thus the fatigue crack path - in the linear-elastic regime. 

Sih [20] proposed a criterion for mixed-mode loading 
based on the strain energy density S around the crack tip. It 
is assumed that the crack propagates in a direction θ = θ0’ 
that minimizes S. The associated equivalent SIF is then 
calculated at θ = θ0’ that minimizes the expression 
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Erdogan and Sih [21] proposed the maximum 
circumferential stress (σθmax) criterion, which considers 
that crack growth should occur in the direction that 
maximizes the circumferential stress in the region close to 
the crack tip. They considered the stresses at the crack tip 
under combined Mode I and II loading, given by summing 
up the stress fields generated by each mode:  ⋅ θ−θ−
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where σr is the normal stress component in the radial 
direction, σθ is the normal stress component in the 
tangential direction and τrθ is the shear stress component. 
These expressions are valid both for plane stress and plane 
strain. The Maximum Circumferential Stress criterion 
assumes that crack growth begins on a plane perpendicular 
to the direction in which σθ is maximum. The maximum 
value of σθ is obtained when ∂σθ/∂θ is zero, which is 
equivalent to equating τrθ = 0, according to Equation (6). 
The equation τrθ = 0 has a trivial solution θ = ±π (for 
cos(θ/2) = 0), and a non-trivial solution θ = θ0” given by 
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where the sign of θ0” is the opposite of the sign of KII. 
According to the σθmax criterion, the equivalent SIF is 
calculated at the value θ = θ0”, which maximizes the 
expression 
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The above models have notable differences if the 
amount of Mode II loading is significant. For instance, 
under pure Mode II loading, the propagation angle θ is 
±70.5o, ±75o and ±82o according to the σθmax, Gmax and Smin 
models, respectively, leading to Keq values of 
approximately 1.15⋅KII, 1.60⋅KII and 1.05⋅KII (assuming ν 
= 0.3). In addition, Tanaka’s model results in this case in 
Keq = 1.68⋅K II. The values of θ and Keq obtained from each 
model are plotted in Figures 1 and 2 as a function of the 
KII/K I ratio. 

 
Figure 1. Crack propagation direction θ as a function of 

the KII/KI ratio according to the σθmax, Gmax and Smin 
models. 

 
Figure 2. Equivalent SIF Keq as a function of the 

KII/KI ratio according to several models. 

The differences among the studied models might be 
significant for mixed-mode fracture predictions, however 
they are negligible for fatigue crack propagation 
calculations. In fact, since all above models predict crack 
path deviation (θ ≠ 0) under any KII different than zero 
(see Figure 1), they imply that fatigue cracks will always 
attempt to propagate in pure Mode I, minimizing the 
amount of Mode II loading, curving their paths if 
necessary to avoid rubbing their faces. As soon as the crack 
path is curved to follow pure Mode I, all models agree that 
Keq is equal to KI. Therefore, not only the crack path but 
also the SIF values calculated by any of the above criteria 
are essentially the same. This has been verified by 
Bittencourt et al. [16], who concluded from FE simulations 
that these criteria provide basically the same numerical 
results. Since the Maximum Circumferential Stress 
criterion is the simplest, presenting a closed form solution, 
it is the one adopted in the present work. 

CRACK BIFURCATION PREDICTIONS 

In this section, the Modes I and II SIF are evaluated 
for cracks of length a with a small bifurcation of branch 
lengths b0 and c0 (b0 ≥ c0) forming an angle 2θ, see Figure 
3(a). To perform the calculations, a standard C(T) 
specimen is FE modeled using Quebra2D with width w = 
32.0mm, crack length a = 14.9mm, and bifurcations with 
initial crack branch lengths b0 = 10µm and c0 = 5, 7, 8, 9, 
9.5 and 10µm. The Modes I and II SIF k1 and k2 of each 
crack branch are obtained considering bifurcation angles 
2θ between 40o and 168o. Note that typical overload-
induced bifurcated cracks can have initial branch lengths 
between 10 and 100µm, with 2θ varying between 30o, e.g. 
for very brittle materials such as glass, and 180o, e.g. in the 
vicinity of the interface of a bi-material composite, when a 
crack propagates from the weak to the strong material [22]. 



 
    (a)    (b) 

Figure 3. Schematic representation of a branched crack at 
the onset of propagation (a) and during propagation (b). 

Note that an efficient meshing algorithm is 
fundamental to avoid elements with poor aspect ratio, since 
the ratio between the size scale of the larger and smaller 
elements is above 1,000 in this case. To accomplish that, 
Quebra2D uses an innovative algorithm incorporating a 
quadtree procedure to develop local guidelines to generate 
elements with the best possible shape. The internal nodes 
are generated simultaneously with the elements, using the 
quadtree procedure only as a node-spacing function. This 
approach tends to give a better control over the generated 
mesh quality and to decrease the amount of heuristic 
cleaning-up procedures. Moreover, it specifically handles 
discontinuities in the domain or boundary of the model. 
Finally, to enhance the quality of the shape of the mesh 
element, an a posteriori local mesh improvement 
procedure is used [23]. 

Figure 4 shows the FE results for the SIF k1 and k2 
(normalized by the Mode I SIF KI of the straight crack) of 
symmetrically bifurcated cracks (which have b0 = c0). Note 
that k2 vanishes for a bifurcation angle 2θ = 2θ* = 53o. 
The bifurcation angle 2θ* for which k2 vanishes on a 
symmetrically branched crack is a very important 
parameter, because it is associated with a self-similar 
propagation of the crack branches. Since k2 is equal to 
zero, no path deflection will occur in this case, thus both 
branches will continue propagating at an angle θ* = ±26.5o 
with respect to the horizontal. Note however that the value 
of 2θ* is a function of the ratio b0/a. For b0/a < 0.001, 2θ* 
tends to approximately 53o, but for b0/a = 0.025 the value 
of 2θ* drops to 36o [24] and for b0/a = 0.1 it has been 
predicted that 2θ* = 32o [25]. Therefore, the infinitesimal 
kink solution shown in Figure 4 can only be numerically 
reproduced using very refined FE calculations with b0/a 
ratios much smaller than 0.1 or 0.025, such as the 
considered b0/a = 10µm/14.9mm = 6.7⋅10−4. 

 
Figure 4. Normalized stress intensity factors for 

symmetrically bifurcated cracks. 

The FE-obtained k1 and k2 are now used to compute, 
using Equation (8), an equivalent SIF Kb0 of both branches 
that will characterize the propagation behavior 
immediately after the bifurcation event. Note from Figure 4 
that Kb0 is approximately constant for symmetrically 
bifurcated cracks with 2θ < 140o, estimated equal to 0.75 
within 3%. 

Special care must be taken when calculating the SIF 
of bifurcated cracks with 2θ approaching 180o. In this case, 
the effective SIF increases considerably at the very 
beginning of the propagation. For instance, a 
symmetrically bifurcated crack with 2θ = 160o has Kb0/KI 
equal to 0.688 for both branches (as suggested in Figure 4), 
however after a brief propagation of less than 0.1⋅b0 this 
value jumps to 0.751. Therefore, the decrease in Kb0 for 2θ 
> 140o shown in Figure 4 is only valid at the onset of 
propagation, almost immediately increasing to 
approximately 0.75 after that. It is concluded from further 
simulations that Kb0 can be estimated as 0.75 within 3% 
for all symmetrically bifurcated cracks with 40o ≤ 2θ ≤ 
168o. 

Figure 5 shows the FE results for the equivalent SIF 
Kb0 and Kc0 of the longer and shorter branches respectively 
(normalized by the Mode I SIF KI of the straight crack) of 
both symmetrically and asymmetrically bifurcated cracks. 
Note once again the apparent decrease in Kb0 for 2θ > 
140o, an effect that disappears soon after the propagation 
starts. This high initial sensitivity can be explained by the 
small projected length of crack branches with 2θ 
approaching 180o. This projected length is easily overcome 
even by a very small propagation step, significantly 
changing the crack geometry and SIF. For instance, it is 
found that a bifurcated crack with 2θ = 170o has an initial 
propagation angle around 35o, thus the crack branch b0 has 
the same projected length as the one generated by a 



propagation step of only b0⋅cos(0.5⋅170o)/cos(35o) ≅ 
0.11⋅b0. 

 
Figure 5. Normalized equivalent stress intensity factors for 

symmetrically and asymmetrically bifurcated cracks. 

Another interesting conclusion is that the initial 
propagation direction of the longer branch is always below 
40o (with respect to the pre-overload growth direction), 
independently of the considered bifurcation angle 2θ. 
Therefore, for values of 2θ greater than 80o, a sharp 
deflection can be clearly noted in the beginning of the 
propagation. This deflection has been experimentally 
confirmed by Lankford and Davidson [1], who carried out 
overload fatigue crack tests on a 6061-T6 aluminum alloy 
in a scanning electron microscope using a special in-situ 
servo-controlled hydraulic loading stage, obtaining growth 
retardation caused by crack bifurcation. They have found 
that the bifurcated crack would grow only a short distance 
in the same direction of the overload-induced bifurcation, 
before a sharp deflection in the crack path would occur. 
This deflection causes a sudden increase in the Mode I SIF 
almost immediately after the propagation begins, resulting 
in a significantly smaller retardation effect if compared to 
simplistic predictions based on branched crack solutions 
that do not include the propagation phase. However, if the 
equivalent stress intensity ranges of both branches are 
below the threshold SIF ∆Kth, then the entire crack arrests 
and therefore no sharp deflection has the chance to 
develop. 

The FE-obtained results shown in Figure 5 are used 
to fit empirical equations to the initial SIF Kb0 and Kc0 of 
the longer and shorter branches, resulting in:  −⋅θ−+=
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Equations (9-10) result in errors smaller than 2% for 
40o ≤ 2θ ≤ 168o and 0.7 ≤ c0/b0 ≤ 1.0. Figure 6 plots the FE 
results against the proposed equations, showing a good fit. 
In the next section, further FE analyses are conducted to 
evaluate the subsequent propagation behavior of these 
bifurcated cracks. 

 
Figure 6. Initial equivalent SIF of both branches of a 

bifurcated crack as a function of the asymmetry ratio c0/b0 
and bifurcation angle 2θ. 

PROPAGATION OF BRANCHED CRACKS 

The growth of branched cracks is studied in the 
Quebra2D program using the same CT specimens 
described above. A fixed crack growth step of ∆b = 3µm 
(or 1µm during the first propagation steps) is considered 
for the propagation of the longer branch b. This growth 
step is calculated in the direction defined by the σθmax 
criterion. Due to the differences in the crack growth rate, a 
growth step ∆c smaller than ∆b is expected for the shorter 
branch. This smaller step is obtained assuming a Paris 
crack propagation law, 
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where A and m are material constants. If ∆Kb and ∆Kc are 
respectively the stress intensity ranges of the longer and 
shorter branches, then the growth step ∆c of the shorter 
branch c should be 
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Interestingly, the ratio between the propagation rates of the 
two branches is independent of the material constant A. In 
this analysis, the exponent m is assumed to be 2.0, 3.0, and 
4.0, which are representative values for steels. 



Once a (small) growth step ∆b is chosen for the 
numerical propagation of the longer branch, the growth of 
the shorter branch ∆c is readily obtained from Equation 
(12). Both the crack path and the associated SIF along 
each branch are then obtained using the FE program. It 
must be noted, however, that linear-elastic FE calculations 
can only lead to accurate solutions if the lengths of the 
crack branches b and c are significantly larger than the 
size scale of both the microstructure and the near-tip 
plastic (or process) zone. But as the crack branches grow 
further, the FE method can give a reasonable estimate of 
their behavior where LEFM is applicable. In addition, the 
growth of branched cracks is typically transgranular, as 
verified from optical microscope observations performed by 
Shi et al. [26], which is one of the requirements to allow 
for the simulation of fatigue behavior in isotropic linear-
elastic regime. 

The propagation behavior of branched cracks is 
studied using FE considering no closure effects (Kop = 0). 
Figure 7 shows the contour plots of the stress in the load 
direction axis and propagation results for a bifurcated 
crack with angle 2θ = 150o, obtained from the FE analysis 
for c0/b0 = 0.91, m = 2 and no closure.  In this figure, the 
deformations are highly amplified to better visualize the 
crack path. Note that the crack path deviates from the 
original branch angles, deflecting from ±75o to 
approximately ±28o. In addition, the originally shorter 
branch arrests after propagating (only) about 29µm, while 
the longer branch returns to the pre-overload growth 
direction and SIF (even though the subsequent crack 
growth plane may be offset from the pre-overload one, see 
Figure 7). 

 
Figure 7. Propagation simulation of a bifurcated crack on a 

CT specimen (left), with a close-up of the two original 
11µm and 10µm branches with angle 2θ = 150o (right). 

Figure 8 shows the crack paths obtained from the FE 
analyses of bifurcated cracks with 2θ = 130o and c0/b0 = 
{0.5, 0.8, 0.95, 1}, considering m = 2 and no closure 
effects. The dashed lines show the theoretical propagation 
behavior of a perfectly symmetric bifurcation (c0/b0 = 1). In 
this case, the retardation effect would never end because 
both branches would propagate symmetrically without 
arresting. Clearly, such behavior is not observed in 

practice, since the slightest difference between b0 and c0 
would be sufficient to induce an asymmetrical behavior. 

 

Figure 8. Bifurcated crack paths for several c0/b0 ratios. 

The angles of the symmetrical dashed lines in Figure 
8 for small b0/a ratios are found to be θ* = ±26.5o with 
respect to the horizontal, where 2θ* has been previously 
defined as the bifurcation angle for which k2 vanishes on a 
symmetrically branched crack. As the symmetrical 
branches grow following the ±26.5o directions, it is found 
that the ratio between the equivalent SIF and the SIF of a 
straight crack with same projected length is approximately 
constant and equal to 0.757, a value compatible with the 
0.75 estimate for Kb0. Note that the directions ±26.5o are 
independent of 2θ and m, therefore symmetrical 
bifurcations with any initial angle 2θ would tend to the 
self-similar solution 2θ* = 53o as long as the ratio b/a of 
the propagating branches is sufficiently small. FE 
calculations also showed that the slopes of the dashed lines 
are gradually decreased as both branches grow, resulting in 
angles ±18o in the vicinity of b/a = 0.025, ±16o close to b/a 
= 0.1, and ±15.3o for b/a >> 1. This last result has been 
obtained from a FE analysis of a symmetrical bifurcation 
starting at the edge of a very large plate (therefore with a = 
0 and b/a → ∞). 

Figure 8 also shows that lower c0/b0 ratios result in 
premature crack arrest, leading to smaller retardation 
zones. Also, the propagation path of the longer branch is 
usually restrained to the region within the dashed lines, 
while the shorter one is “pushed” outside that envelope due 
to shielding effects. 

The size of the retardation zone can be estimated 
from the ratio bf/b0, where bf is the value of the length 
parameter b of the longer branch beyond which the 
retardation effect ends (in the same way that it was defined 
for kinked cracks). The ratio bf/b0 is then calculated 
through FE propagation simulations for all combinations 
of c0/b0 = {0.5, 0.8, 0.9, 0.95}, 2θ = {40o, 80o, 130o, 168o} 



and m = {2, 3, 4}, and fitted by the proposed empirical 
function:  
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Figure 9 shows a comparison between the fitted and 
the FE-obtained data. Note that a greater symmetry 
between the branches (as c0/b0 approaches 1.0) results in a 
longer retardation zone, as expected from the delayed 
arrest of the shorter branch. 

 
Figure 9. Normalized process zone size as a function of the 

bifurcation angle and branch asymmetry c0/b0 (m=3). 

The FE-calculated equivalent SIF Kb and Kc of the 
longer and shorter branches are now evaluated along the 
obtained crack paths. Figure 10 plots the crack retardation 
factors (defined as the ratios between Kb or Kc and the 
Mode I SIF KI of a straight crack) for 2θ = 130o and m = 2, 
as a function of the normalized length (b−b0)/b0 of the 
longer branch (measured along the propagation path). 
Because of the different crack branch lengths, the SIF at 
the longer is much higher than that at the shorter branch. 
Assuming Kb and Kc to be the crack driving force, it can be 
seen from Figure 10 that the longer branch reaches its 
minimum propagation rate right after the bifurcation 
occurs, returning to its pre-overload rate as the crack tip 
advances away from the influence of the shorter branch. As 
seen in the figure, the retardation behavior is misleadingly 
similar to closure-related effects, even though no closure is 
present in that case. 

 

 
Figure 10. Normalized equivalent SIF for the longer (top) 
and shorter (bottom) branches of a bifurcated crack during 

its propagation (2θ = 130o, m = 2). 

In addition, as the length difference between both 
branches increases, it is expected that the propagation rate 
of the shorter one is reduced until it arrests, after which the 
larger branch will dominate. Note that even small 
differences between the branch lengths (such as in the case 
c0/b0 = 0.95 shown in Figure 10) are sufficient to cause 
subsequent arrest of the shorter branch. 

Figure 11 shows the effect of the bifurcation angle 2θ 
on the retardation factor Kb/KI for c0/b0 = 0.9 and m = 3. 
Note that the retardation effect lasts longer for larger 
bifurcation angles, not only because the associated Mode I 
SIF is smaller, but also because the shielding effect is 
weaker since both branch tips are further apart, delaying 
the arrest of the shorter one. 



 
Figure 11. Normalized SIF Kb/KI of the longer branch 
during its propagation as a function of the normalized 

length (b−b0)/b0 for c0/b0 = 0.9, m = 3. 

An empirical expression is here proposed to model 
the SIF Kb of the longer branch during the transition 
between Kb0 (immediately after the bifurcation event) and 
the straight-crack KI (after the end of the retardation 
effect), valid for b0 ≤ b ≤ bf and 0.7 < c0/b0 < 1: 
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Note that all proposed empirical equations are, at 
least in theory, applicable to any bifurcated crack in any 
specimen, provided that the crack branches are small if 
compared to the specimen geometry and that the 
propagation behavior of the material can be described 
using Equation (11). It must be pointed out, however, that 
the presented FE results and empirical models might have 
some limitations, because actual bifurcations can be of a 
size comparable to the scale of local plasticity (e.g. the 
plastic zone size) or microstructural features (e.g. grain 
size). Moreover, possible closure and environmental effects 
should be considered when comparing the bifurcation 
model predictions with measured crack growth rates [2]. 

CONCLUSIONS 

In this work, a specialized FE program was used to 
calculate the propagation path and associated stress 
intensity factors (SIF) of kinked and bifurcated cracks, 
which can cause crack retardation or even arrest. Several 
crack propagation simulations were obtained to fit 
empirical equations to the process zone size and crack 
retardation factor along the curved crack path. In 
particular, the bifurcation simulations included several 
combinations of bifurcation angles 2θ = {40o, 80o, 90o, 
130o, 168o}, branch asymmetry ratios c0/b0 = {0.5, 0.7, 0.8, 
0.9, 0.95, 1.0}, and crack growth exponents m = {2, 3, 4} 

It was found that crack bifurcation can reduce the SIF 
to about 0.63 of its original value, however soon after the 
branches start propagating this value stabilizes at 0.75 as 
long as the branches are approximately symmetrical. It was 
also shown that very small differences between the lengths 
of the bifurcated branches are sufficient to cause the 
shorter one to eventually arrest as the longer branch 
returns to the pre-overload propagation conditions. The 
process zone size was found to be smaller for lower 
bifurcation angles and for branches with greater 
asymmetry, in both cases due to the increased shielding 
effects on the shorter branch. The retardation zone was 
reduced as well for materials with higher crack growth 
exponents, due to the increased difference between the 
crack growth rates of the longer and shorter branches. 

The proposed equations, besides capturing all above 
described phenomena, can be readily used to predict the 
propagation behavior of branched and kinked cracks in an 
arbitrary structure, as long as the process zone is small 
compared to the other characteristic dimensions. From 
these results, it was shown that crack bifurcation may 
provide an alternate mechanistic explanation for overload-
induced crack retardation, in special to explain load 
interaction effects under (closure-free) high R ratios. 

It should be recognized however that the presented 
mixed-mode equations are only accurate if the kink length 
greatly exceeds the size scale of the microstructural 
inhomogeneities and the size of the near-tip plastic zone. 
But assuming that the entire crack-front deflects uniformly, 
the specimen thickness itself may provide the size scale 
requirements for the validity of the presented equations, as 
the calculated SIF may be averaged considering the 
(several) grains present along the thickness. Otherwise, if 
the crack deflections vary significantly along the thickness, 
then further modeling including Mode III effects should be 
considered. 
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