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ABSTRACT

cracks from their Mode | growth direction, genemgti
crack kinking or branching [1]. A fatigue crack deed

Fatigue crack kinking and bifurcation are phenomena from its nominal Mode | plane induces mixed-modarne
capable of inducing significant growth retardatmneven tip conditions even if the far-field stress is gurglode I.

crack arrest. However, bifurcated crack modelslalks in

Since the stress intensity factors (SIF) associdied

the literature cannot account for the subsequent deflected or branched fatigue cracks can be coraitie

propagation behavior observed in practice. In thosk,

smaller than that of a straight crack with the same

specialized Finite Element (FE) and life assessment projected length, such deviations can cause rdtardar

software are used to predict the reduction in
propagation rates in kinked and bifurcated craddse
crack path and associated stress intensity fa¢gifg of

the even arrest of crack growth [2]. Very small diffeces
between the branch lengths b and ¢ are enoughuse the
shorter branch to arrest as the larger one propsgantil

bifurcated cracks are numerically obtained for sgive  reaching approximately its pre-overload SIF andwgno
bifurcation angles and branch lengths. From thesalts, rate. This typical propagation behavior has beeesied
empirical crack retardation equations are proposed on a branched crack on an aircraft wheel rim maide o

model the retardation factor along the crack pakiowing

2014-T6 aluminum alloy [3].

for a better understanding of the influence of krac

deflection in the propagation life.
Keywords: fatigue, crack bifurcation, growth retatidn.
INTRODUCTION

Overloads, multi-axial stresses, microstruct

Analytical solutions have been obtained for the &lF
kinked and branched cracks [2, 4-8]. However, nicaér
methods such as Finite Elements (FE) and Boundary
Elements (BE) are the only means to predict the
subsequent curved propagation behavior.

ural To predict the path of a branched crack and to

or environment effects can significantly deviatéigiae

FE program named Quebra2D is used [9]. This program
simulates two-dimensional fracture processes based



FE self-adaptive strategy, using appropriate crégk
elements and crack increment criteria. The adagfize
analyses are coupled with modern and efficient raatic

remeshing schemes. The program has been validated

through experiments on ESE(T) and modified C(T)
specimens made of 4340 and 1020 steel, and from
comparisons with analytical solutions for kinkedaaks.
The crack path and associated SIF are then exptoted
WiDa, a general-purpose fatigue design program
developed to predict both initiation and propagafetigue
lives under variable loading by all classical dasigethods
[10]. This companion life assessment program isl use
estimate the number of delay cycles associated aviabhk
bifurcation. In the next sections, the propagatiehavior

of kinked and bifurcated (branched) cracks is datedl.

MIXED-MODE CRACK GROWTH
CALCULATIONS

In mixed-mode crack growth calculations using FE,
three methods are generally used to compute thessstr
intensity factors along the (generally curved) kraath:
the displacement correlation technique [11], theempioal
energy release rate computed by means of a modified
crack-closure integral technique [12-13], and thetdgral
computed by means of the equivalent domain integral
(EDI) together with a mode decomposition scheme [14
15]. The EDI method replaces the J-integral along a
contour by another one over a finite size domasmgithe
divergence theorem, which is more convenient for FE
analysis. Since Bittencourt et al. [16] showed tlfat
sufficiently refined FE meshes all three methodedjmt
essentially the same results, only the EDI methed i
considered in the calculations presented here. Hewéhe
other two methods also provide good results evan fo
coarse meshes.

Several models have been proposed to obtain an
equivalent SIF K, from K, K, and kK,. Tanaka [18]
obtained an equivalent stress intensity model basethe
displacements behind the crack tip reaching acatiti
value, leading to
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wherev is Poisson’s coefficient.

Hussain et al. [19] used complex variable mapping
functions to obtain the potential energy release Gaat a
direction® with respect to the crack propagation plane. He
assumed that crack extension occurs in a dire@&ieng,
that maximizesq, leading to the maximum fracturing
energy release ratdgga,y) criterion. Thus, an equivalent
SIF is obtained & = 6, that maximizes the expression
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The computed, values at each calculation step are
used to obtain the crack incremental growth dioectiand
thus the fatigue crack path - in the linear-elastgime.

Sih [20] proposed a criterion for mixed-mode loagin
based on the strain energy density S around tlo& tipa It
is assumed that the crack propagates in a direétoB,’
that minimizes S. The associated equivalent SIEhén
calculated a6 = 6’ that minimizes the expression
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Erdogan and Sih [21] proposed the maximum
circumferential stressofmay Criterion, which considers
that crack growth should occur in the direction ttha
maximizes the circumferential stress in the regilmse to
the crack tip. They considered the stresses atriek tip
under combined Mode | and Il loading, given by sumgn
up the stress fields generated by each mode:
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where o, is the normal stress component in the radial
direction, og is the normal stress component in the
tangential direction ande is the shear stress component.
These expressions are valid both for plane stredpkane
strain. The Maximum Circumferential Stress criterio
assumes that crack growth begins on a plane pequéaid

to the direction in whictog is maximum. The maximum
value of gy is obtained wherdog/06 is zero, which is
equivalent to equatinge = 0, according to Equation (6).
The equationt,g = 0 has a trivial solutio® = £ (for
cosP/2) = 0), and a non-trivial solutioh = 6," given by
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where the sign 08, is the opposite of the sign of K

According to theogmax Criterion, the equivalent SIF is
calculated at the valu® = 6,", which maximizes the
expression

Keq = %[3COS§ + cos%] K, —%[sing + sin%} K, (©)

The above models have notable differences if the
amount of Mode Il loading is significant. For inste,
under pure Mode Il loading, the propagation angles
+70.5, £75° and+82° according to th@gmax Gmaxand Sin
models, respectively, leading to (K values of
approximately 1.1%,, 1.60K, and 1.0%; (assumingv
= 0.3). In addition, Tanaka’'s model results in tbése in
Keq = 1.68K,. The values 08 and Kk, obtained from each
model are plotted in Figures 1 and 2 as a funatiothe
K||/K| ratio.
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Figure 1. Crack propagation directiéras a function of
the K/K;, ratio according to th@gmax, Gmax and Sin
models.
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Figure 2. Equivalent SIF ¢ as a function of the
Ky/K, ratio according to several models.

The differences among the studied models might be
significant for mixed-mode fracture predictionswever
they are negligible for fatigue crack propagation
calculations. In fact, since all above models mtedrack
path deviation § # 0) under any K different than zero
(see Figure 1), they imply that fatigue cracks aillvays
attempt to propagate in pure Mode I, minimizing the
amount of Mode Il loading, curving their paths if
necessary to avoid rubbing their faces. As sodh@asrack
path is curved to follow pure Mode I, all modelserythat
Keq is equal to K Therefore, not only the crack path but
also the SIF values calculated by any of the alooieria
are essentially the same. This has been verified by
Bittencourt et al. [16], who concluded from FE slations
that these criteria provide basically the same migale
results. Since the Maximum Circumferential Stress
criterion is the simplest, presenting a closed fsotution,
it is the one adopted in the present work.

CRACK BIFURCATION PREDICTIONS

In this section, the Modes | and Il SIF are evatdat
for cracks of length a with a small bifurcation lwianch
lengths p and ¢ (b = @) forming an angle@ see Figure
3(a). To perform the calculations, a standard C(T)
specimen is FE modeled using Quebra2D with width w
32.0mm, crack length a = 14.9mm, and bifurcatioits w
initial crack branch lengthg b= 1Qum and g =5, 7, 8, 9,
9.5 and 1Qm. The Modes | and Il SIF;kand k of each
crack branch are obtained considering bifurcatiogles
206 between 40 and 168. Note that typical overload-
induced bifurcated cracks can have initial braregths
between 10 and 1Q@n, with 2 varying between 30e.g.
for very brittle materials such as glass, and°18@y. in the
vicinity of the interface of a bi-material compesitvhen a
crack propagates from the weak to the strong nat&2].
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Figure 3. Schematic representation of a branchack it
the onset of propagation (a) and during propagabpn

(b)

Note that an efficient meshing algorithm is
fundamental to avoid elements with poor aspecbratnce
the ratio between the size scale of the larger sandller
elements is above 1,000 in this case. To accomiiiah
Quebra2D uses an innovative algorithm incorporatng
quadtree procedure to develop local guidelinesetzegate
elements with the best possible shape. The interodés
are generated simultaneously with the elementsgusie
quadtree procedure only as a node-spacing funciibis
approach tends to give a better control over theeigged
mesh quality and to decrease the amount of heuristi
cleaning-up procedures. Moreover, it specificalgntdles
discontinuities in the domain or boundary of thedelo
Finally, to enhance the quality of the shape of thesh
element, an a posteriori local mesh improvement
procedure is used [23].

Figure 4 shows the FE results for the SiFakd k
(normalized by the Mode | SIF, Kf the straight crack) of
symmetrically bifurcated cracks (which hawe=bc). Note
that k vanishes for a bifurcation angl® 2 26* = 53°,
The bifurcation angle @& for which k, vanishes on a
symmetrically branched crack is a very important
parameter, because it is associated with a selfesim
propagation of the crack branches. Singeiskequal to
zero, no path deflection will occur in this cadeyd both
branches will continue propagating at an arjle +26.5
with respect to the horizontal. Note however tihet value
of 26* is a function of the ratioga. For /a < 0.001, &*
tends to approximately 83but for k/a = 0.025 the value
of 26* drops to 38 [24] and for la = 0.1 it has been
predicted that @ = 32° [25]. Therefore, the infinitesimal
kink solution shown in Figure 4 can only be numealtic
reproduced using very refined FE calculations wigfa
ratios much smaller than 0.1 or 0.025, such as the
considered gfa = 1um/14.9mm = 6.70™*.
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Figure 4. Normalized stress intensity factors for
symmetrically bifurcated cracks.

The FE-obtained kand k are now used to compute,
using Equation (8), an equivalent Sl kf both branches
that will characterize the propagation behavior
immediately after the bifurcation event. Note fréigure 4
that Ky is approximately constant for symmetrically
bifurcated cracks with @< 140, estimated equal to 0.75
within 3%.

Special care must be taken when calculating the SIF
of bifurcated cracks with@approaching 1801n this case,
the effective SIF increases considerably at they ver
beginning of the propagation. For instance, a
symmetrically bifurcated crack withe2= 160 has KoK
equal to 0.688 for both branches (as suggeste@jird-4),
however after a brief propagation of less thani@.this
value jumps to 0.751. Therefore, the decrease,irfdk 20
> 140 shown in Figure 4 is only valid at the onset of
propagation, almost immediately increasing to
approximately 0.75 after that. It is concluded framther
simulations that K can be estimated as 0.75 within 3%
for all symmetrically bifurcated cracks with 4& 26 <
168.

Figure 5 shows the FE results for the equivaleft Sl
Kpo and Ky of the longer and shorter branches respectively
(normalized by the Mode | SIF, Kf the straight crack) of
both symmetrically and asymmetrically bifurcatedaks.
Note once again the apparent decrease jnfét 20 >
14@, an effect that disappears soon after the promagat
starts. This high initial sensitivity can be expledl by the
small projected length of crack branches witl® 2
approaching 180 This projected length is easily overcome
even by a very small propagation step, signifigantl
changing the crack geometry and SIF. For instaitds,
found that a bifurcated crack witt92 170 has an initial
propagation angle around®33hus the crack branch has
the same projected length as the one generated by a



propagation step of only (lBos(0.517¢)/cos(35) O
0.11M,.
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Figure 5. Normalized equivalent stress intensitydies for
symmetrically and asymmetrically bifurcated cracks.

Another interesting conclusion is that the initial
propagation direction of the longer branch is akvbaglow
40° (with respect to the pre-overload growth directjon
independently of the considered bifurcation angke 2
Therefore, for values of @ greater than 80 a sharp
deflection can be clearly noted in the beginningttoé
propagation. This deflection has been experimantall
confirmed by Lankford and Davidson [1], who carrisat
overload fatigue crack tests on a 6061-T6 alumiralioy
in a scanning electron microscope using a speciaitu
servo-controlled hydraulic loading stage, obtaingngwth
retardation caused by crack bifurcation. They hiaved
that the bifurcated crack would grow only a shastahce
in the same direction of the overload-induced Iotion,
before a sharp deflection in the crack path wouldun
This deflection causes a sudden increase in theeM&dF
almost immediately after the propagation beginsulteng
in a significantly smaller retardation effect ifrapared to
simplistic predictions based on branched crack tsolg
that do not include the propagation phase. Howeténge
equivalent stress intensity ranges of both brancues
below the threshold SIBKy, then the entire crack arrests

Equations (9-10) result in errors smaller than 2% f
40° <20 <168 and 0.7< ¢/l < 1.0. Figure 6 plots the FE
results against the proposed equations, showirmpd fif.

In the next section, further FE analyses are caeduto
evaluate the subsequent propagation behavior dcfethe
bifurcated cracks.
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Figure 6. Initial equivalent SIF of both branchés o
bifurcated crack as a function of the asymmetripregtby
and bifurcation angle@®

PROPAGATION OF BRANCHED CRACKS

The growth of branched cracks is studied in the
Quebra2D program using the same CT specimens
described above. A fixed crack growth stepAbf= 3um
(or lum during the first propagation steps) is considered
for the propagation of the longer branch b. Thiswgh
step is calculated in the direction defined by tigax
criterion. Due to the differences in the crack giowate, a
growth stepAc smaller tham\b is expected for the shorter
branch. This smaller step is obtained assuming rés Pa
crack propagation law,

da

— =ARK"
dN

11

where A and m are material constantiKf, andAK; are
respectively the stress intensity ranges of thgdorand

and therefore no sharp deflection has the chance 10 ghorter pranches, then the growth stepof the shorter

develop.

The FE-obtained results shown in Figure 5 are used
to fit empirical equations to the initial SIF,Kand Ky of
the longer and shorter branches, resulting in:

% = 075+ (L-sin6) Eﬁl—gOJ ©)
| 0

Ko — g76— (1 —ai _% 10
K, = 075-(1 sme)EE bo] (10)

branch ¢ should be
Ac = AbEReym (12)
DKy

Interestingly, the ratio between the propagatidesaf the
two branches is independent of the material cohgtam
this analysis, the exponent m is assumed to be820and
4.0, which are representative values for steels.



Once a (small) growth stepb is chosen for the
numerical propagation of the longer branch, thevgnoof
the shorter branclc is readily obtained from Equation
(12). Both the crack path and the associated SdRgal
each branch are then obtained using the FE progitam.
must be noted, however, that linear-elastic FEutalons
can only lead to accurate solutions if the lengthshe
crack branches b and c are significantly largen ttize
size scale of both the microstructure and the ftipar-
plastic (or process) zone. But as the crack bragnew
further, the FE method can give a reasonable estinfa
their behavior where LEFM is applicable. In additithe
growth of branched cracks is typically transgranukes
verified from optical microscope observations perfed by
Shi et al. [26], which is one of the requiremermtsalow
for the simulation of fatigue behavior in isotropinear-
elastic regime.

The propagation behavior of branched cracks is

studied using FE considering no closure effects, €K0).
Figure 7 shows the contour plots of the streshienload
direction axis and propagation results for a b#ied
crack with angle @ = 150, obtained from the FE analysis

for co/ly = 0.91, m = 2 and no closure. In this figure, the

deformations are highly amplified to better vismalithe
crack path. Note that the crack path deviates fthm
original branch angles, deflecting fromt75° to
approximately+28°. In addition, the originally shorter
branch arrests after propagating (only) aboytn29while
the longer branch returns to the pre-overload drowt

direction and SIF (even though the subsequent crack

growth plane may be offset from the pre-overload, mee
Figure 7).

Figure 7. Propagation simulation of a bifurcateackron a
CT specimen (left), with a close-up of the two ora
11um and 1@m branches with angleb2= 150 (right).

Figure 8 shows the crack paths obtained from the FE

analyses of bifurcated cracks witl® 2 130 and g/by =
{0.5, 0.8, 0.95, 1}, considering m = 2 and no clesu
effects. The dashed lines show the theoreticalggapon
behavior of a perfectly symmetric bifurcation/fg = 1). In
this case, the retardation effect would never eechibse
both branches would propagate symmetrically withou
arresting. Clearly, such behavior is not observed i

practice, since the slightest difference betwegmand ¢
would be sufficient to induce an asymmetrical bébrav

Co/b, = 0.95

Co/bp = 0.8
Colby = 0.5

arrest of shorter branch

m= 2, no closure

Figure 8. Bifurcated crack paths for sevei#bgcratios.

The angles of the symmetrical dashed lines in Eigur
8 for small /a ratios are found to b@& = +26.5 with
respect to the horizontal, wher@*2has been previously
defined as the bifurcation angle for whichvanishes on a
symmetrically branched crack. As the symmetrical
branches grow following th#26.5 directions, it is found
that the ratio between the equivalent SIF and tkecSa
straight crack with same projected length is apipnexely
constant and equal to 0.757, a value compatible thie
0.75 estimate for k. Note that the directions26.5 are
independent of @ and m, therefore symmetrical
bifurcations with any initial angle@would tend to the
self-similar solution 8 = 53° as long as the ratio b/a of
the propagating branches is sufficiently small. FE
calculations also showed that the slopes of theethBnes
are gradually decreased as both branches growtingsin
anglest18 in the vicinity of b/a = 0.025t16’ close to b/a
= 0.1, and+15.2 for b/a >> 1. This last result has been
obtained from a FE analysis of a symmetrical bdtian
starting at the edge of a very large plate (theeefoth a =
0 and b/a- ).

Figure 8 also shows that loweg/l® ratios result in
premature crack arrest, leading to smaller retamdat
zones. Also, the propagation path of the longendinais
usually restrained to the region within the dasheds,
while the shorter one is “pushed” outside that epedue
to shielding effects.

The size of the retardation zone can be estimated
from the ratio Bby, where bis the value of the length
parameter b of the longer branch beyond which the
retardation effect ends (in the same way that & defined
for kinked cracks). The ratiog/b, is then calculated

 through FE propagation simulations for all combioas

of co/by = {0.5, 0.8, 0.9, 0.95}, @ = {40°, 8C", 130, 168}



longer retardation zone, as expected from the ddlay 0.80

arrest of the shorter branch.
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and m = {2, 3, 4}, and fitted by the proposed erigair = 1.00-
function: g
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Figure 9 shows a comparison between the fitted and E 0,85 - C/by=0.8
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longer and shorter branches are now evaluated afemg ~ @nd shorter (bottom) branches of a bifurcated ccarkng
obtained crack paths. Figure 10 plots the crackrdetion its propagation @= 130, m = 2).
factors (defined as the ratios betweep df K; and the N )
Mode | SIF K of a straight crack) for@= 130 and m = 2, In addition, as the length difference between both
as a function of the normalized length-g/b, of the branches increases, it is expected that the prapagate
longer branch (measured along the propagation path) Of the shorter one is reduced until it arrestraithich the
Because of the different crack branch lengths, She at larger branch will dominate. Note that even small
the longer is much higher than that at the shdtanch. differences between the branch lengths (such Hweicase

Assuming K and K, to be the crack driving force, it can be ~ @/Bo = 0.95 shown in Figure 10) are sufficient to cause
seen from Figure 10 that the longer branch readises ~ Subsequent arrest of the shorter branch.
minimum propagation rate right after the bifurcatio

occurs, returning to its pre-overload rate as trlc tip Figure 11 shows the effect of the bifurcation ariifle
advances away from the influence of the shortemdiraAs on the retardation factor &, for c/bp = 0.9 and m = 3.
seen in the figure, the retardation behavior ideaiingly Note that the retardation effect lasts longer fargér
similar to closure-related effects, even thougtclosure is bifurcation angles, not only because the associstiadk |
present in that case. SIF is smaller, but also because the shieldingctefie

weaker since both branch tips are further apatgyitey
the arrest of the shorter one.
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Figure 11. Normalized SIFJK, of the longer branch
during its propagation as a function of the noraedi
length (b-b)/b for c/lby = 0.9, m = 3.

An empirical expression is here proposed to model
the SIF K of the longer branch during the transition
between I, (immediately after the bifurcation event) and
the straight-crack K(after the end of the retardation
effect), valid for < b< by and 0.7 < gby < 1:

b-b, 2CO/bO
Kp =Ko + (K| —Kbo)EEara{s 0 j/125} (14)
bt —bg

Note that all proposed empirical equations are, at
least in theory, applicable to any bifurcated craclkany
specimen, provided that the crack branches arel smal
compared to the specimen geometry and that the
propagation behavior of the material can be desdrib
using Equation (11). It must be pointed out, howetteat
the presented FE results and empirical models ntighé
some limitations, because actual bifurcations caroba
size comparable to the scale of local plasticity.(¢he
plastic zone size) or microstructural features.(g@in
size). Moreover, possible closure and environmegftatts
should be considered when comparing the bifurcation
model predictions with measured crack growth rfgs

CONCLUSIONS

In this work, a specialized FE program was used to
calculate the propagation path and associated sstres
intensity factors (SIF) of kinked and bifurcatedaaks,
which can cause crack retardation or even arresteral
crack propagation simulations were obtained to fit
empirical equations to the process zone size aadkcr
retardation factor along the curved crack path.
particular, the bifurcation simulations includedvesal
combinations of bifurcation anglesd 2= {40°, 8¢, 9C,
130, 1687}, branch asymmetry ratiog/b, = {0.5, 0.7, 0.8,
0.9, 0.95, 1.0}, and crack growth exponents m =324}

In

It was found that crack bifurcation can reduceS3tre
to about 0.63 of its original value, however sodierathe
branches start propagating this value stabilize8. 2 as
long as the branches are approximately symmetiicabs
also shown that very small differences betweerlghgths
of the bifurcated branches are sufficient to catise
shorter one to eventually arrest as the longer dbiran
returns to the pre-overload propagation conditiohise
process zone size was found to be smaller for lower
bifurcation angles and for branches with greater
asymmetry, in both cases due to the increaseddgmiel
effects on the shorter branch. The retardation avas
reduced as well for materials with higher crackvgto
exponents, due to the increased difference betwiken
crack growth rates of the longer and shorter brasch

The proposed equations, besides capturing all above
described phenomena, can be readily used to preuhct
propagation behavior of branched and kinked craclen
arbitrary structure, as long as the process zonamiall
compared to the other characteristic dimensionemFr
these results, it was shown that crack bifurcatimay
provide an alternate mechanistic explanation farload-
induced crack retardation, in special to explaimdio
interaction effects under (closure-free) high Rosat

It should be recognized however that the presented
mixed-mode equations are only accurate if the kémigth
greatly exceeds the size scale of the microstrattur
inhomogeneities and the size of the near-tip plasbne.

But assuming that the entire crack-front deflectsanmly,

the specimen thickness itself may provide the sizae
requirements for the validity of the presented ¢igua, as

the calculated SIF may be averaged considering the
(several) grains present along the thickness. @iker if

the crack deflections vary significantly along th&ekness,
then further modeling including Mode 111 effectsosiid be
considered.
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