
1

A Non-Singular Cumulative Damage Model to Predict Fatigue
Crack Growth under Service Loading

Jaime Tupiassú Pinho de Castro1

Marco Antonio Meggiolaro1

Antonio Carlos de Oliveira Miranda2

1Mechanical Engineering Department,  2Tecgraf, Computer Graphics Group
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

Abstract
After dividing into three classes the mechanisms that can cause load sequence effects on fatigue crack
growth depending on where they act in relation to the crack tip (before, at or after it), some results
that cannot be explained by plasticity-induced crack closure are discussed. Then, two mechanisms are
quantitatively proposed as viable options in these cases, crack bifurcation at the crack tip (studied
elsewhere) and damage accumulation ahead of the crack tip. A model of this type is proposed where
fatigue cracking is assumed caused by the sequential failure of volume elements or tiny εεεεN specimens
in front of the crack tip, calculated by damage accumulation concepts. The crack is treated as a sharp
notch with a small but not zero radius, avoiding the physically unrealistic singularity at its tip. The
crack stress concentration factor and a strain concentration rule are used to calculate the notch root
strain and to shift the origin of a modified HRR field, resulting in a non-singular model of the strain
distribution ahead of the crack tip. In this way, the damage caused by each load cycle, including the
effects of residual stresses, can be calculated at each element ahead of the crack tip using the correct
hysteresis loops caused by the loading. This proposed approach is first validated by comparing the
measured with the predicted da/dN×∆∆∆∆K curves of three structural alloys. The predictions are made
using only εεεεN, toughness and threshold properties, since the model does not need any fitting constant.
This idea is then extended to predict fatigue crack growth under variable amplitude loading, assuming
that the width of the volume element broken at each cycle is equal to the region ahead of the crack tip
that suffers damage beyond its critical value. The reasonable predictions of the measured fatigue crack
growth behavior in steel specimens under service loads corroborate this simple and clear way to
correlate da/dN and εεεεN properties.

1. Introduction
In a classical work, Paris taught us in 1961 that the fatigue crack growth (FCG) rate da/dN was

controlled by the stress intensity range ∆∆∆∆K and not by the stress range ∆∆∆∆σσσσ applied on the structure. He
measured the growth of a fatigue crack in 2 identical cracked aluminum plates subjected to the same
∆∆∆∆σσσσ = ∆∆∆∆P/wt (where ∆∆∆∆P is the force range applied on the plate, w is the width and t is the thickness of
the plate), but had the bright idea of applying ∆∆∆∆P on the crack faces in one of the plates and on the
plate borders in the other. If the stress range ∆σ∆σ∆σ∆σ was the controlling factor for the fatigue crack
propagation process in those plates, it was expected that their da/dN history should be equal (or at
least should vary in the same way). But instead the FCG rate da/dN increased with the crack length a
in the plate loaded by its borders, while da/dN decreased as the crack grew in the plate loaded by the
crack faces. However, when plotting the da/dN×∆∆∆∆K curves of both plates they coincided, proving that
∆∆∆∆K was the FCG controlling parameter in those tests, see Figure 1 [1-2].
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Since Paris’ discovery, ∆∆∆∆K has been successfully used to predict the fatigue life of cracked
structures under constant amplitude loading. But as Miner’s rule type calculations turned out to be too
conservative in many variable amplitude loading problems, it was early realized that load sequence
effects can be very significant in fatigue crack growth problems.

Due to the great practical importance of these problems, fatigue crack growth under real service
loading has been a fascinating and challenging research field since the 60’s, yet to be completely
understood. No one disputes that e.g. an overload (OL) can stop or retard the subsequent fatigue crack
growth, but why and how this happens is still far from being a settled issue. There are many who
firmly believe that plasticity-induced crack closure [3-4] can explain all such effects [5-6], and many
others who are convinced that crack closure cannot be used at all [7-8]. And to make things more
interesting, there is plenty of experimental evidence to (at least in part) support both views!

This is no surprise, as there are so many mechanisms that can retard or accelerate the growth of a
fatigue crack after significant load amplitude variations [9-11]. These several load interaction
mechanisms can act behind, at or ahead of the crack tip, and among them the most important are

• crack closure (behind the crack tip), which can be caused by plasticity, oxidation or roughness
of the crack faces, or even by strain induced phase transformation, e.g.,

• crack tip blunting, kinking or bifurcation (at or close to the crack tip), and
• residual stress and strain fields (ahead of the crack tip).
Moreover, these various load interaction mechanisms generally can act simultaneously, with their

relative importance in any problem depending on several factors such as crack and piece sizes,
dominant stress state at the crack tip, microstructure of the material, mean load, and environment.

Despite some important limitations [7-8, 12-13], plasticity-induced crack closure probably still is
the most used mechanism to model and explain load sequence effects in fatigue crack propagation.
Fatigue crack closure does occur in real life, and can be measured, e.g., from the slope changes in the
compliance (or in the load versus displacement, P×δδδδ) curves of predominantly linear elastic cracked
structures, as discovered by Elber in the early 70’s [3-4] and illustrated in Figure 2 [14]. If plasticity-
induced crack closure is the controlling load sequence mechanism, then the expected FCG retardation
after an OL can be described as follows (see Figure 3). The OL blunts the fatigue crack tip, suddenly
and locally increasing da/dN (due to the consequent tip stretching) but, as the crack enters the plastic
zone swollen by the overload zpol, da/dN quickly decreases and then slowly increases again until
reaching its regular value after the crack crosses zpol (regular is the da/dN rate at which the crack
would be growing in the absence of the OL), as described by von Euw et al. in 1972 [15].

The schematics of the plasticity-induced crack closure or the Elber retardation mechanism in
fatigue crack growth after an overload (when the stress intensity range ∆∆∆∆K, the plastic zone size zp
and the crack opening load Kop are elsewhere constant) is illustrated in Figure 4. After crossing the
crack tip blunted by the overload, the crack opening load Kop increases due to the oversized zpol and
thus decreases the effective stress intensity range ∆∆∆∆Keff ==== Kmax −−−− Kop. This decrease in ∆∆∆∆Keff would be
the reason for the delays on the subsequent crack growth rate, as da/dN (supposedly) should depend
on ∆∆∆∆Keff and not on ∆∆∆∆K, since the fatigue crack could grow only after fully opened. In other words,
the central arguments of this idea are (i) if the fatigue crack tip is closed it cannot be stretched, and
thus cannot grow, and (ii) Kop increases inside zpol.
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This ∆∆∆∆Keff concept has been successfully applied both for design and for analysis in many
important variable amplitude loading fatigue problems [11, 16-20], since it can indeed be used to
model several experimentally observed load sequence effects in FCG.

E.g., McEvily suppressed overload-induced FCG delays in 12.7mm thick aluminum specimens
after symmetrically machining their faces until reaching half of the original thickness, to eliminate the
surface increase in closure levels due to the OL (supporting in this way an Elber-controlled retardation
mechanism), as illustrated in Figure 5 [21]. Schijve [22] studied the effects of overloads (OLs), OLs
followed by underloads (ULs) and of ULs followed by OLs in the fatigue lives of Al 2024-T3 plates,
and found a behavior also compatible with elberian crack retardation mechanisms, as shown in Figure
6. The success in explaining the overall fatigue crack growth behavior of these and many other similar
problems is probably the reason why there still are scholars and engineers who believe that the Elber
mechanism could explain all load sequence effects. However, this generalization can be unwise.

Let’s avoid at this point the arguments of those who seriously question if plasticity-induced crack
closure can be a realistic or a physically admissible model, and let’s assume that it at least can be a
reasonable phenomenological model to explain many load sequence effects. But even if and when this
is the case, assuming that the FCG rate is always controlled by ∆∆∆∆Keff and not by ∆∆∆∆K has some serious
consequences not yet as well emphasized as they should be among fatigue designers, as we generally
assume that reliable fatigue life predictions can be made (at least for simple loading) by integrating a
properly measured da/dN×∆∆∆∆K curve of the material. And these are usually obtained by testing small
specimens following a standard procedure.

In practice, the load range ∆∆∆∆P can in principle be measured, and nowadays a proper stress-intensity
expression ∆∆∆∆K can be reliably calculated using available numerical tools to solve the stress analysis
problem (which depends on ∆∆∆∆P and on the structure and crack geometries) even in non-trivial cases,
as illustrated later on. This allows designers to accurately calculate the ∆∆∆∆K load history which is used
in integrating the da/dN×∆∆∆∆K curve to predict the structure fatigue life. But if the FCG rate da/dN is
really a function of ∆∆∆∆Keff instead of ∆∆∆∆K, one cannot simply assume that the da/dN curve measured in
the standard specimen was obtained under the same ∆∆∆∆Keff that loads the structure, as in general the
stress intensity factor that opens the crack Kop and thus ∆∆∆∆Keff do not depend only on ∆∆∆∆K. And there is
still no reliable way to calculate Kop in complex structures.

Indeed, Newman’s classical finite-element calculations of crack opening loads on simple plates
[16] showed that ∆∆∆∆Keff has a quite strong dependence on the plate thickness and on the applied
σσσσmax/Sfl ratio, where Sfl ==== (SY + SU)/2 is the so-called flow stress and SY and SU are the yield and
ultimate strengths of the material, and σσσσmax is the maximum applied stress.

Therefore, predicting thick plate fatigue lives using da/dN×∆∆∆∆K properties measured by testing
thinner specimens could be a dangerous practice. In fact, if the fatigue crack growth rate is controlled
by ∆∆∆∆Keff instead of by ∆∆∆∆K, generally unsafe predictions could be made when using da/dN×∆∆∆∆K data
measured under plane stress (plane-σ) conditions to predict the residual life of cracked structures that
work under a dominantly plane strain (plane-ε) state. This general assertion is based on the reasonable
expectation that crack closure levels in plane-ε are normally smaller than in plane-σ. This is a
condition that can easily occur in practice if FCG tests made on relatively thin standard specimens are
used to predict the life of much thicker structures (a practice, by the way, not forbidden in the ASTM
widely used E-647 standard test method for measuring fatigue crack growth rates [23]).
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E.g., if da/dN ==== A∆∆∆∆K3.25 is the measured FCG curve under (dominant) plane-σ conditions, and if
∆∆∆∆Keff,σσσσ and ∆∆∆∆Keff,εεεε are the Newman’s predicted plane-σ and plane-ε effective stress intensity factor
ranges shown in Figure 7, the error in plane-ε life predictions based on plane-σ data would depend on
the ((((∆∆∆∆Keff,σσσσ/∆∆∆∆Keff,εεεε)3.25 ratio, and would be non-conservative when ∆∆∆∆Keff ,σσσσ > ∆∆∆∆Keff ,εεεε.

This quite alarming prediction is illustrated in Figure 8, where it can be seen that thick plate
fatigue lives of only 1/5 of the expected lives predicted from the thin plate tests could be obtained in
practice. But it should be pointed out that such a strong da/dN dependence on the specimen thickness
is not observed in all cases, as illustrated in Figure 9 [24], indicating that there is still a need for
improving the fatigue crack closure modeling procedures.

2. Other Limitations of ∆∆∆∆Keff as a Prediction Tool
Plasticity-induced crack closure is the most popular load sequence effect mechanism, but certainly

it is not the only one, as there are several important fatigue problems that cannot be explained by the
∆∆∆∆Keff concept. For example, Sadananda and Vasudevan support their strong objections against crack
closure using convincing experimental evidence such as fatigue crack growth threshold values ∆∆∆∆Kth

that are higher in vacuum than in air [7-8]. Another important problem that cannot be explained by the
Elber mechanism is the crack delays or arrests under high R = Kmin/Kmax ratios, when the minimum
value Kmin of the applied range ∆∆∆∆K = Kmax −−−− Kmin always remains above Kop, the (measured) load that
opens the fatigue crack. Experiments presented in Figures 10-13 [13] illustrate this point.

Fatigue crack growth retardation can be clearly observed in Figure 10 after applying 50%
overloads (Kol = 1.5⋅⋅⋅⋅Kmax) on a crack growing at a quasi-constant baseline ∆∆∆∆Kbl = 10MPa√√√√m under a
quite high tensile mean load R = 0.7 in a C(T) specimen of an A-542/2 (2.25Cr1Mo) martensitic steel
(SY = 769 and SU = 838MPa, da/dN×∆∆∆∆K curves at R = 0.05 and at R = 0.70 presented in Figure 11).

 The fatigue test reported in Figure 10 was made under predominantly plane-ε conditions, as both
the constant baseline zpbl ≅≅≅≅ 300µµµµm and the overload zpol ≅≅≅≅ 675µµµµm plastic zones were smaller than
w/16, where w = 12mm was the specimen thickness (assuming, as usual, that the E-399 [25] plane-ε
definition can also be used here, and that zp ≅≅≅≅ (Kmax/SY)2/2ππππ). The test frequency was 50Hz, but the
OLs were applied at a much smaller 0.1Hz or less, to maintain a close control of the servohydraulic
testing machine. The overall crack retardation behavior is very similar to the plane-σ case, but the
mechanism that caused it certainly was not plasticity-induced crack closure, as demonstrated in Figure
12. The compliance measurements presented in this figure clearly indicate Kop < Kmin and ∆∆∆∆Keff ==== 

  

 ∆∆∆∆K
both before and after the overload. Therefore, as the fatigue crack was fully opened before and after
the OL, plasticity-induced variations on Kop cannot be used to justify these load-sequence effects.

It is important to emphasize that these compliance measurements were particularly careful. They
were made using a highly sensitive linearity subtractor circuit connected to an analog computer which
differentiated its output. These instruments were specially designed and built to enhance the non-
linear part of the P×εεεε signal, as reported in [14]. The C(T) back face strain εεεε was a more robust signal
than the crack mouth opening displacement δδδδ in the tests reported here, but both were used in all the
measurements and presented identical results. The Kop measurement uncertainty of this experimental
set-up is small, and it can easily detect variations of only 1% in the opening loads. And, by the way,
the growth of the fatigue crack could also be easily measured by compliance changes, with a crack
increment resolution similar to that obtained in potential drop systems [26].
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Figure 13 shows several compliance measurements made before and after stopping, by an 100%
overload, a crack that was growing at a ∆∆∆∆Kbl = 10MPa√√√√m and R = 0.70 baseline load. In this case the
E399 standard requirement cannot be used to claim dominant plane-ε conditions after the OL (using
the estimate zp ≅≅≅≅ (Kmax/SY)2/2ππππ, the OL plastic zone was zpol ≅≅≅≅ w/10, whereas the E399 requirement
is zp < w/16 for plane-ε). Despite that, no crack closure was again observed before nor after the OL.

Keeping an open mind and avoiding dogmatic arguments (such as “when fatigue crack closure is
measured the test is correct, but when it is not the results must obviously be wrong, as closure should
always be there”), the only reasonable conclusion is that at a such high R = 0.7 ratio Kop simply was
not interfering with the fatigue crack growth process. Moreover, the set of results presented in Figures
15-20 is a still more striking argument against the “plasticity-induced crack closure explaining all load
interaction effects in FCG” dogma, since in these cases closure was definitely measured before and
after the overloads, but ∆∆∆∆Keff increased in the retardation zone [13].

Figure 15 presents the overall FCG delay obtained after 100% OLs applied on another 12×50mm
C(T) of the same 2.25Cr1Mo A-542/2 martensitic steel reported above, tested at a ∆∆∆∆Kbl = 10MPa√√√√m
baseline load, but this time at a much smaller R = 0.05. In this test, the plane-ε conditions were even
more clearly dominant, with zpbl ≅≅≅≅ 30µµµµm and zpol ≅≅≅≅ 120µµµµm less than 1/100 of the C(T) thickness
(assuming again that zp = (Kmax/SY)2/2ππππ). Figure 16 shows the opening loads of this crack measured
at the nine cycles preceding the OL (numbered −9 to −1, as the OL cycle was arbitrarily called cycle
0), all obtained using the described setup. It was found that Pop/Pmax = 0.28 in all those tests. Note that
the measurements had a very low dispersion, which supports the 1% uncertainty claim made before.

Just after the overload was applied, the closure measurements were repeated and the next eight
cycles presented a significantly smaller Pop/Pmax = 0.23 ratio, implying that the OL caused a 22%
increase in ∆∆∆∆Keff, as shown in Figure 17. This increase should cause a sudden acceleration of the
crack, but even the quite sensitive instrumentation used in this test had no resolution to measure very
small crack increments. Despite some claims on the contrary, both potential drop and compliance-
based crack length measurements a have a 10-30µm range for their uncertainty as proved in [26], and
this is one of the reasons why plane-ε FCG results are not only far less common than those obtained
under plane-σ, but also a bit more difficult to judge. Therefore, one cannot conclude from Figure 16
whether in this case occurred the delayed retardation behavior frequently described in plane-σ tests.

However, Figures 18 and 19 present concluding evidence against such a behavior. During the
following 104 cycles no crack growth was detected either, and the opening load remained below its
pre-overload value maintaining the Pop/Pmax = 0.23 measured just after the OL. And 7.5⋅104 cycles
after the OL, when a small 40µm crack increment had already been detected, the retardation on the
FCG rate started to decrease, but the crack opening load increased to Pop/Pmax = 0.25 and kept
increasing (causing, therefore, ∆∆∆∆Keff to decrease) until reaching its pre-overload Pop/Pmax ==== 0.28 value
at 2.0⋅105 cycles after the OL, when its effect had almost disappeared. In other words, the maximum
delay was obtained when the value of ∆∆∆∆Keff was minimum, a behavior completely incompatible with
an elberian retardation mechanism.

Finally, Figure 20 presents another test where the crack stopped after a 200% OL despite a 31%
increase in ∆∆∆∆Keff, a result that clearly cannot be explained by the Elber mechanism either. Again this
test conditions were clearly plane-ε dominated, as zpol ≅≅≅≅ w/25 in this case and the same type of
material and specimen already described was used.
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But at least for design purposes it is certainly not sufficient to point out that crack closure cannot
explain all load sequence effects observed in fatigue crack propagation. Indeed, it is much more useful
to quantitatively explore the influence other mechanisms can have on such problems, as discussed
later on in this paper. But first some additional comments are made on the use of ∆∆∆∆K as a prediction
tool in non-trivial variable amplitude load fatigue problems.

3. Fatigue Life Predictions in Complex 2D Structures under Real Loading
Despite all doubts about the mechanisms responsible for the load sequence effects, decent life

predictions can nowadays be made even for non-trivial problems such as FCG in complex two-
dimensional (2D) structures that work under variable amplitude (VA) loading. This can be achieved
by experimentally fitting the parameters of phenomenological or engineering models that describe the
overall crack growth behavior, when the FCG law for the material and the ∆∆∆∆K expression for the
cracked structure are known, as exemplified below.

The generally curved crack path and its associated stress intensity factors (SIF) KI and KII can be
efficiently predicted by finite element (FE) procedures. However, the time-consuming remeshing and
FE recalculations of the entire structure stress/strain field after each VA event require such a large
computer effort that this global approach is simply not useful in most practical cases. Moreover, the
FE modeling of load sequence effects is, at best, only a partially solved question, and still cannot be
reliably used to predict lives in most VA fatigue problems. On the other hand, these problems can be
efficiently treated by direct integrating the material da/dN law to obtain the crack increment caused
by each VA event, considering crack growth retardation or acceleration using semi-empirical design
rules. But this local approach requires the SIF expression for the crack, usually unknown in real cases.

As the advantages of these two approaches are complementary, the life prediction problem can be
successfully divided into two tasks. First, the crack path and its SIF are calculated in a specialized FE
program, supposing constant amplitude (CA) loading and using pre-fixed small crack increments and
automatic remeshing schemes. An analytical expression KI(a) is fitted to the mode I SIF calculated at
each crack step, where a is the length along the crack path, which then is used in a local approach
fatigue program to predict the VA fatigue life. This hybrid (global-local) methodology has been
implemented in two specially developed pieces of software named Quebra and ViDa, and then
experimentally validated [27-29].

Quebra is a FE code designed to model cracking problems in arbitrary 2D geometries. This
friendly tool is very efficient for automatically remeshing the structure at small discrete crack steps, to
predict the generally curved crack path and its KI(a) and KII(a) under simple load. It uses quarter-
point special crack tip FE, self-adaptive mesh generation schemes, and 3 reliable crack increment
methods: Displacement Correlation, Modified Crack Closure, and J-integral with an Equivalent
Domain Integral. To predict the new crack growth direction after each crack step, the Quebra user
can choose the Maximum Potential Energy Release Rate, or the Minimum Strain Energy Density, or
the Maximum Circumferential Stress criterions. ViDa was developed to automate fatigue analysis
procedures by all the traditional local methods (SN, εεεεN and weld codes for crack initiation and da/dN
for crack propagation.) It is particularly useful to deal with complex real loads, considering sequence
effects both in the initiation and in the propagation of 1D and of 2D (elliptical) cracks, using several
counters and filter outputs, corrected hysteresis loops, 2D crack fronts, and extensive databases
including properties of more than 13000 materials.
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These codes, which can be shared with all groups with joint research programs, are used in the
calculations presented in this work. Complete details on these programs are available elsewhere [30].

To verify this hybrid methodology, tests were made on SE(B) and on C(T) specimens, modified
with holes designed and machined to curve the crack path. The material was 1020 steel (SY = 285 and
SU = 491MPa, ∆∆∆∆K0 = ∆∆∆∆Kth(R = 0) = 11.5 and KC = 280MPa√√√√m, with the da/dN×∆∆∆∆K curves shown
in Figure 21). Before the tests, the hole-modified specimens were FE modeled in Quebra following
the procedures described above, and the hole position was varied in the (numerical) models to obtain
the most interesting prediction for the curved crack path, by means of a simple trial-and-error process.
After that, the chosen specimen geometries were machined, measured and FE remodeled, to account
for small deviations in the manufacturing process.

Even though the curved (but unwarped) crack path geometry is 2D, once it is calculated the crack
can be described by its 1D length a measured along the crack path. Hence, its KI expression can be
written as a function of a, KI(a) = σσσσ√√√√(ππππa)⋅⋅⋅⋅f(a/w). The discrete values of the geometry factors f(a/w)
were calculated for each crack step in Quebra and exported to ViDa, where they were automatically
fitted by an appropriate continuous analytical function. Then, using this KI(a) expressions and the
1020 da/dN×∆∆∆∆K equation, the load program for the test was calculated to maintain a quasi-constant
stress-intensity range around ∆∆∆∆KI ≈≈≈≈ 20MPa√√√√m, with R = 0.1. These values are well within the Paris
regime of the 1020 steel, see Figure 21.

Cracks were fatigue propagated in SE(B) specimens with a hole machined to the side of the
starting notch. Figure 22 shows a picture of a typical crack path after the test and the FE crack path
prediction (made before the test) given by the line that connects the open dots in the figure.

Then several modified C(T) specimens were tested, each with a 7mm diameter hole positioned at a
slightly different horizontal A and vertical distance B from the notch root, see Figure 23. This odd
configuration was chosen because two different crack growth behaviors had been predicted by the FE
modeling of the holed C(T) specimens, depending on the hole position. The predictions indicated that
the fatigue crack was always attracted by the hole, but it could either curve its path and grow toward
the hole, or else could be deflected by the hole and continue to propagate after missing it. To test the
accuracy of the Quebra modeling, the transition point between the “sink in the hole” and the “miss
the hole” crack growth behaviors was identified and two borderline specimens were dimensioned: one
with the hole only half a millimeter below that point and the other with the hole half a millimeter
above it. These specimens were then remodeled to account for machining errors to predict the actual
crack path. The measured and the predicted crack paths are compared in Figure 24. Using initial and
final (after the simulated FCG) meshes with about 1300/2300 and 2200/5500 elements/nodes, the
required computation time in a 500MHz PC was less than 15 minutes.

Two specimens (CT1(CA) and CT2(CA)) were tested under constant and two other under variable
amplitude loading, one standard C(T) and the holed specimen CT1(VA). The goals of this experiment
were: (i) to check whether the curved crack paths predicted under CA loading would give good
estimates for the measured paths under VA; and (ii) to verify if load interaction models calibrated for
straight cracks in the standard C(T) could be used to predict the fatigue life of the holed specimen.
The VA load histories applied to the tested specimens are shown in Figure 25.

The predicted and measured crack paths for the three modified specimens tested under CA and VA
loading are shown in Figure 24. This suggests that the crack path under VA loading is the same as the
one predicted under CA.
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Therefore, assuming that only the crack growth rate (but not its path) is influenced by load
interaction effects, the discussed two-step methodology can be generalized to deal with the VA
problem. Thus, the SIF values calculated under CA along the crack path using the Quebra program
can be exported to the ViDa software to predict fatigue life, considering load interaction effects.

To evaluate whether the load interaction models calibrated for straight-crack experiments could
also be applied to specimens with curved cracks, several crack retardation models were fitted to the
data measured on the standard C(T) data under VA loading. The better results were obtained by the
Constant Closure model, where Kop was calibrated as 26% of the maximum overload SIF, Kol,max; by
the Modified Wheeler model, with the adjustable exponent estimated as 0.51; and by Newman’s
closure model (generalized for the VA case), with the stress-state constraint fitted as 1.07 (a value
more appropriate to model dominant plane-σ FCG conditions, despite the small zps in this test), see
[29] for further details. The measured and fitted growth behaviors are shown in Figure 26.

The fitted parameters were then used to predict the crack growth behavior of the hole-modified
CT1(VA) specimen under VA loading, see Figure 27. The significant retardation effects of that test
were quite well predicted using these 3 models in the ViDa program. In particular, the very simple
Modified Wheeler model generated as good a prediction as the more elaborated ones, possibly
because its simplistic empirical yield-zone formulation can account for both closure and residual
stress effects. These results suggest that many such load interaction engineering models can be used to
reasonably predict the crack retardation behavior of curved cracks under VA after being calibrated by
testing much simpler straight cracks.

The VA histories in Figure 25 are not identical, but they have similar stress levels and OL ratios.
This might be one of the reasons why the same adjustable parameters could be used to describe both
tests, as the possible load-spectrum dependency of these parameters might result in poor predictions if
completely different VA histories are considered.

In addition, the very high sensitivity of the crack growth predictions with these adjustable
parameters is another error source that cannot be ignored. This sensitivity is particularly high when the
crack growth rates approach stage I (or near threshold) values, as seen in the post-overload regions
with almost horizontal slope in Figures 26 and 27.

In this threshold region, miscalculations of just a few percent for the effective SIF can be the
difference between crack growth or crack arrest. Since most life cycles are spent during stage I
growth, this is the dominant (and most important) region in fatigue design, where the crack growth
rates and load interaction effects should be better modeled and measured.

These points must be carefully considered before generalizing crack retardation experiments made
under the Paris regime, where the high fatigue life sensitivity of the with load interaction model
parameters is masked by the smaller effect of crack closure or residual stress fields.

Finally, it must be emphasized that the quite reasonable fatigue life predictions shown in Figure 27
were made using 3 engineering models based on different mechanistic assumptions. This clearly prove
that reasonable fatigue life predictions by no means imply that the supposed mechanism used in the
(numerical) load interaction model caused the VA sequence effects observed in fatigue tests. It only
means that the model is mathematically versatile and can describe the overall crack growth behavior.

And to close this topic, it is worth returning to the justification used to present it. Since plasticity-
induced crack closure cannot explain all sequence effects in FCG, it is important to quantitatively
explore other possible mechanisms capabilities. Two possible candidates are studied below.
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4. Mechanisms That Can Cause Load Sequence Effects Acting at the Crack Tip
Crack tip blunting is not an efficient retardation mechanism (because Kt, the stress concentration

factor of a blunt fatigue crack, is always very high), but crack branching can be. Overloads can cause
crack branching, inducing mixed-mode conditions near to its tip even when the far-field stress is pure
traction. Such crack branching can retard or even arrest the subsequent fatigue crack growth behavior
because the equivalent SIF Kb and Kc of the longer and shorter branches can be considerably smaller
than that of a straight crack with the same projected length. Moreover, very small differences between
the branch lengths b and c are enough to cause the shorter branch c to arrest as the longer one b keeps
propagating, in the general case changing its curvature and retarding its growth rate until reaching
approximately its pre-OL SIF and growth direction and rate, see Figure 28.

Some analytical solutions have been obtained for the SIF of kinked and branched cracks, but it is
very difficult to develop complete analytical solutions to describe their complex propagation behavior.
Thus, numerical methods are usually the only practical means to predict the propagation behavior of
branched cracks. A summary of such SIF solutions as a function of the deflection angle and the length
of the deflected part of the crack is presented in [31]. Quebra is an ideal tool to predict the (generally
curved) path of a branched crack and to calculate the associated Modes I and II SIF. Its very efficient
meshing algorithm is fundamental to avoid elements with poor aspect ratio, since the ratio between the
size scale of the larger and smaller elements can be above 1,000 in crack bifurcation calculations.

Details of these calculations, too long to be included here, are available elsewhere [32-35]. But
some experimental results are worth mentioning. Figure 29 shows a crack bifurcated by a 100% OL in
a 4340 steel specimen. Figure 30 shows the resulting retardation effect of a similar branched crack,
which last around 12,600 delay cycles along a process zone of about 0.3mm. Figure 31 shows closure,
but Pop remained below Pmin before and after the OL. Thus, this is another test where the measured
retardation cannot be explained by crack closure. In fact, the bifurcation reduced Pop by 25% due to
the increase in the specimen compliance caused by the crack branches. But assuming that crack
bifurcation was the dominant growth retardation mechanism, the branching model mentioned above
predicted a process zone of 307µm and 12,000 delay cycles. In several other tests similar fatigue life
predictions were within a factor of two of the measured delay cycles, a quite reasonable result that
justifies further research to continue exploring quantitatively the potential of crack branching as a load
sequence mechanism.

5. A Non-Singular Critical Damage Model to Quantify What Is Happening Ahead of
the Crack Tip During the Fatigue Process
Contrary to the laborious modeling of the bifurcation delay mechanism mentioned above, the

damage ahead of a fatigue crack tip can be estimated using simple but sound hypotheses and standard
fatigue calculations. The basic ideas in this modeling process are to suppose that fatigue cracks grow
by sequentially breaking small volume elements (VE) ahead of their tips, and that these VE fracture
when the crack tip reaches them because accumulate all the damage the material can support. In this
way, the so-called εεεεN procedures, which are generally used only to model fatigue crack initiation, can
be combined with fracture mechanics concepts to predict fatigue crack growth too, using the cyclic
properties of the material and the strain distribution ahead of the crack tip. These models can consider
the VE width in the FCG direction as being the distance that the crack grows on each cycle, or the
FCG rate as being the element width divided by the number of cycles that the crack would need to
cross it.
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Critical damage models are not new [36-42], but they still need improvements. Most models that
assume a singular stress/strain field ahead of the crack tip (concentrating in this way all the damage
next to the tip) need some adjustable constant to fit the da/dN data, compromising their prediction
potential. But the supposed singularity at the crack tip is a characteristic of the mathematical models
that postulate a zero radius tip, not of the real cracks, which have a blunt tip when loaded (and finite
strains at their tip, or else they would be unstable).

To avoid this problem, the actual finite strain range at the crack tip ∆∆∆∆εεεεtip can be estimated using the
stress concentration factor Kt for the blunt crack [43] and a strain concentration rule. The strain range
field ahead of the crack tip can then be upper-bounded by ∆∆∆∆εεεεtip (e.g. by assuming ∆∆∆∆εεεεtip constant inside
region I in Figure 32, where the singular solution would predict strains greater than ∆∆∆∆εεεεtip). Supposing
that all fatigue damage occurs inside this region I next to the tip, the number of cycles N* associated
with ∆ε∆ε∆ε∆εtip can be obtained from Coffin-Manson’s rule, and the FCG rate da/dN can then be estimated
as the length of region I divided by N*. But such models have two shortcomings. First, neglecting the
fatigue damage outside region I concentrates it in the few very last N* cycles, a non-conservative
hypothesis. Second, assuming an intermittent (grouped by N* cycles) and not a cycle-by-cycle FCG,
although valid in some cases of crazing in polymers, is certainly not true for most metallic structures,
as verified by microscopic observations of fatigue striations.

To avoid these limitations, the model proposed here [40-42] (i) uses Schwalbe’s modification [37]
of the HRR field [44-46] to represent the strain range distribution ahead of the crack tip, and (ii)
removes the crack tip singularity  by shifting the origin of the strain field from the crack tip to a point
inside the crack, located by matching the tip strain with ∆∆∆∆εεεεtip predicted by a strain concentration rule,
such as Neuber [47], Molsky and Glinka [48], or the linear rule [49]. This approach recognizes that
the strain range ∆∆∆∆εεεε(r, ∆∆∆∆K) in an unbroken VE increases and causes damage in each load cycle as the
crack tip approaches it, see Figure 33. Therefore, the VE closest to the tip breaks due to the sum of all
damages it suffered during the previous load cycles. In this way, the fatigue crack growth rate under
constant ∆∆∆∆K is modeled by the sequential failure of identical VE ahead of the crack tip.

This model is then extended to deal with the VA loading case, which has idiosyncrasies that must
be treated appropriately. First, the VE that breaks in any given cycle has variable width, which should
be calculated by locating the point ahead of the crack tip where the accumulated damage reaches a
specified value (e.g. 1.0 when using Miner’s rule). Load sequence effects, such as overload-induced
crack growth retardation, are associated with hysteresis loop shifts and with mean load effects on the
material εεεεN curve, and can be calculated using the powerful numerical tools available in the ViDa
software [30]. Moreover, this model can recognize an opening load, and thus can separate the cyclic
damage from the closure contributions to the crack growth process.

5.1. Constant Amplitude Loading
In every load cycle, each VE ahead of a fatigue crack tip suffers strain hysteresis loops of

increasing range as the tip approaches it (Figure 34). It suffers a damage increment that depends on
the strain range in that cycle, a function of the distance ri from the i-th VE to the tip and of the load
∆∆∆∆Kj at that event. The fracture of a VE near the crack tip occurs when its accumulated damage reaches
a critical value, quantified e.g. by Miner’s rule, ΣΣΣΣnj/Nj = 1, where nj is the number of cycles of the j-th
load event and Nj is the number of cycles that the piece would last if loaded solely by that event.
Therefore, under constant ∆∆∆∆K (or ∆∆∆∆Keff) it can be assumed that the fatigue crack advances a fixed
distance δδδδa in every load cycle.
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If, for simplicity, the damage outside the cyclic plastic zone zpc is neglected, there are thus zpc/δδδδa
VE ahead of the crack tip at any instant. Since the plastic zone advances with the crack, each new load
cycle breaks the VE adjacent to the crack tip, induces an increased strain range in all other unbroken
VE (because the crack tip approaches them by δδδδa, Figure 35), and adds a new element to the damage
zone. Thus, as each load cycle causes a growth increment, nj = 1. Moreover, since the VE are
considered as small εεεεN specimens, they break when:

c c

i

zp / a zp

c ii 0 r 0

1 1 1N(zp i a) N(r )

δδδδ

= == == == =

= == == == =− ⋅δ− ⋅δ− ⋅δ− ⋅δ∑ ∑∑ ∑∑ ∑∑ ∑       (1)

where N(ri) = N(zpc −−−− i⋅⋅⋅⋅δδδδa), the fatigue life corresponding to the plastic strain range ∆∆∆∆εεεεp(ri) acting at a
distance ri from the crack tip, can be calculated using the coefficient εεεεc and the exponent c of the
plastic part of Coffin-Manson’s rule:

1/ c
p i

i
c

(r )1N(r ) 2 2
∆ε∆ε∆ε∆ε    ====     εεεε    

    (2)

where ∆∆∆∆εεεεp(ri) in its turn can be described by Schwalbe’s [37] modification of the HRR field:

c
1

1 hcYcp i
i

zp2S(r ) rE
++++    ∆ε = ⋅∆ε = ⋅∆ε = ⋅∆ε = ⋅    

    
    (3)

In the above equation, SYc is the cyclic yield strength, hc the Ramberg-Osgood cyclic hardening
exponent, and zpc is the cyclic plastic zone size in plane strain, which can be estimated, e.g., by [41]:

(((( ))))22
c

c Yc

(1 2 ) Kzp 4 (1 h ) S
− ν− ν− ν− ν ∆∆∆∆= ⋅= ⋅= ⋅= ⋅π⋅ +π⋅ +π⋅ +π⋅ +     (4)

where νννν is Poisson’s coefficient. Therefore, substituting (4) in (3) results in:

c

1/ c1
1 hcYci

c i

zpS1N(r ) 2 E r
++++    

        = ⋅= ⋅= ⋅= ⋅    εεεε             

    (5)

The next step is approximating the VE width δδδδa by a differential da at a distance dr ahead of the
crack tip and the Miner’s summation by an integral, which is easier to deal with:

czp

0

da dr
dN N(r)==== ∫∫∫∫     (6)

The HRR field describes the plastic strains ahead of an idealized crack tip, thus it is singular
at r = 0. But an infinite strain is physically impossible (which does not mean that singular models are
useless, but only that the damage close to the crack tip is not predictable by them). To eliminate this
unrealistic strain singularity, the origin of the HRR coordinate system is shifted into the crack by a
small distance X, copying Creager and Paris idea [43]. In this case, (3) and (6) become

c
1

1 hcYcp
zp2S(r X) E r X

++++    ∆ε + = ⋅∆ε + = ⋅∆ε + = ⋅∆ε + = ⋅    ++++    
    (7)

czp

0

da dr
dN N(r X)==== ++++∫∫∫∫     (8)

To determine X and N(r + X) two paths can be followed. The first uses Creager and Paris’
X = ρρρρ/2, ρρρρ being the actual crack tip radius, estimated by ρρρρ = CTOD/2, thus
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2max
Yc c

K (1 2 )CTOD 1X 2 4 E S 2(1 h )
⋅ − ν⋅ − ν⋅ − ν⋅ − νρρρρ= = = ⋅= = = ⋅= = = ⋅= = = ⋅π⋅ ⋅ +π⋅ ⋅ +π⋅ ⋅ +π⋅ ⋅ +     (9)

The second path is more reasonable. Instead of arbitrating the strain field origin offset, it
determines X by first calculating the crack (linear elastic) stress concentration factor Kt [43]:

t nK 2 K ( )= ∆ ∆σ ⋅ πρ= ∆ ∆σ ⋅ πρ= ∆ ∆σ ⋅ πρ= ∆ ∆σ ⋅ πρ   (10)
For any given ∆∆∆∆K and R it is possible to calculate ρρρρ and Kt from (9) and (10), and then the strain

range ∆∆∆∆εεεεtip at the crack tip using a strain concentration rule. The solution depends on the material
stress-strain behavior, which has been assumed parabolic with cyclic strain hardening coefficient Hc

and exponent hc, with a negligible elastic range. The Linear concentration rule is the simplest,
resulting in a plastic strain range at the crack tip given by:

t ntip
K 2 K

E E CTOD / 2
⋅∆σ⋅∆σ⋅∆σ⋅∆σ ∆∆∆∆∆ε = =∆ε = =∆ε = =∆ε = =

π⋅π⋅π⋅π⋅
  (11)

Neuber’s rule requires solving both the crack tip stress and strain ranges ∆σ∆σ∆σ∆σtip and ∆∆∆∆εεεεtip:

c

2 2t n
tip tip

1/ h
tip

tip
c

(K ) 8 K
E E CTOD

2 2H

 ∆σ∆σ∆σ∆σ ∆∆∆∆∆σ ⋅∆ε = ⋅ =∆σ ⋅∆ε = ⋅ =∆σ ⋅∆ε = ⋅ =∆σ ⋅∆ε = ⋅ = ⋅π⋅⋅π⋅⋅π⋅⋅π⋅
 ∆σ∆σ∆σ∆σ    ∆ε =∆ε =∆ε =∆ε =          

  (12)

And according to Molsky and Glinka, ∆∆∆∆εεεεtip is calculated by:
c

c

2 1/ h2 tip tip tip

c c
1/ h

tip
tip

c

2 K
E CTOD 4E 1 h 2H

2 2H

 ∆σ∆σ∆σ∆σ ∆σ ∆σ∆σ ∆σ∆σ ∆σ∆σ ∆σ    ∆∆∆∆ = + ⋅= + ⋅= + ⋅= + ⋅     ⋅π⋅ +⋅π⋅ +⋅π⋅ +⋅π⋅ +     


∆σ∆σ∆σ∆σ    ∆ε =∆ε =∆ε =∆ε =          

  (13)

After calculating ∆∆∆∆εεεεtip at the crack tip using one of these rules, the shift X of the HRR field origin
is obtained from (7) using r = 0, resulting in

c
c

1 1 h
1 hcYc Yctip c

tip

zp2S 2SX zpE X E

++++
++++         ∆ε = ⋅∆ε = ⋅∆ε = ⋅∆ε = ⋅ ⇒⇒⇒⇒ = ⋅= ⋅= ⋅= ⋅         ∆ε∆ε∆ε∆ε         

(14)

The strain distribution at a distance r ahead of the crack tip, ∆∆∆∆εεεεp(r + X), without the singularity
problem at the crack tip, can now be readily obtained from (7) and (14). The fatigue crack propagation
rate is then calculated from (8) as:

czp 1/ c
c

p
0

2da 2 drdN (r X)
    εεεε= ⋅= ⋅= ⋅= ⋅    ∆ε +∆ε +∆ε +∆ε +    ∫∫∫∫   (15)

This prediction was experimentally verified in SAE1020 and API 5L X-60 steels and in a 7075 T6
Al alloy, using (15) to obtain the constant of a McEvily-type da/dN equation [21], which describes the
da/dN××××∆∆∆∆K curves using only one adjustable parameter:

[[[[ ]]]] (((( ))))2 cth
c

Kda A K K (R)dN K [ K /(1 R)]= ∆ − ∆= ∆ − ∆= ∆ − ∆= ∆ − ∆ − ∆ −− ∆ −− ∆ −− ∆ −   (16)

where Kc and ∆∆∆∆Kth(R) are the material fracture toughness and crack propagation threshold at the load
ratio R. To guarantee the consistence of this experimental verification, Kc, ∆∆∆∆Kth(R), the εεεεN and the
da/dN data were all obtained by testing proper specimens manufactured from the same stock of the 3
materials, following ASTM standards.
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The various da/dN××××∆∆∆∆K experimental curves are compared with this simple model predictions in
Figures 36-38. Both the shape and the magnitude of the data are quite reasonably reproduced by the
model, with the Linear rule generating better predictions probably because the tests were made under
predominantly plane-ε conditions. Since no adjustable constant was used in this modeling, it can be
concluded that this performance is no coincidence.

But some remarks are required. First, damage beyond zpc was neglected to simplify the numerical
calculations, but as it accumulates at all points ahead of the crack tip, it is wiser to choose the damage
origin by numerically testing its influence on da/dN, or better by comparing the predictions with crack
propagation tests, as done later on. Second, FE calculations [50] indicate that there is a region adjacent
to the blunt crack tip with a strain gradient much lower than predicted by the HRR field. The above
model does not reproduce such low gradient, nor account for the required stress redistribution due to
the coordinate system origin shifting into the crack. These shortcomings could be avoided by shifting
the origin away from the tip by x2 and assuming the crack-tip strain range ∆ε∆ε∆ε∆εtip constant over the
region I of length x1+x2 shown in Figures 39 and 40. x1 can be obtained equating ∆ε∆ε∆ε∆εtip and the HRR-
calculated strain range, and the crack-tip stress range ∆σ∆σ∆σ∆σtip from:

c c
c

h h
1 h tipc

tip Yc Yc1
Yc1

Ezp(r x ) 2S 2Sx 2S
++++ ⋅∆ε⋅∆ε⋅∆ε⋅∆ε        ∆σ = ∆σ = = ⋅ = ⋅∆σ = ∆σ = = ⋅ = ⋅∆σ = ∆σ = = ⋅ = ⋅∆σ = ∆σ = = ⋅ = ⋅         

         
  (17)

Then, following Irwin’s classical idea, the value of the shift x2 is obtained by integrating the stress
field σσσσ(r), guaranteeing that the shadowed areas below the curves in Figure 40 are the same:

1 2 1 1 2

1

x x x x x

tip tip

0 0 x 0 0

(r)dr dr (r)dr      (r)dr dr
+ ++ ++ ++ +∞ ∞∞ ∞∞ ∞∞ ∞

∆σ = ∆σ + ∆σ∆σ = ∆σ + ∆σ∆σ = ∆σ + ∆σ∆σ = ∆σ + ∆σ ⇒⇒⇒⇒ ∆σ = ∆σ∆σ = ∆σ∆σ = ∆σ∆σ = ∆σ∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ∫ ∫   (18)

Since x1 < zpc, ∆σ∆σ∆σ∆σ(r) in the above integral can be described by the HRR solution, resulting in
1 c

c

x h
1 hc

Yc tip c tip c2 21 1 1

0

zp2S dr x (1 h ) (x x ) x x hr
++++    ⋅ = ∆σ ⋅ ⋅ + = ∆σ ⋅ +⋅ = ∆σ ⋅ ⋅ + = ∆σ ⋅ +⋅ = ∆σ ⋅ ⋅ + = ∆σ ⋅ +⋅ = ∆σ ⋅ ⋅ + = ∆σ ⋅ + ⇒⇒⇒⇒ = ⋅= ⋅= ⋅= ⋅    

    ∫∫∫∫   (19)

These simple tricks generate a more reasonable strain distribution model (Figure 41):
tip(r)∆ε = ∆ε∆ε = ∆ε∆ε = ∆ε∆ε = ∆ε , 0 ≤≤≤≤ r ≤≤≤≤ x1 + x2 (region I)   (20)

c
1

1 hcYc
2

zp2S(r) E r x
++++    ∆ε = ⋅∆ε = ⋅∆ε = ⋅∆ε = ⋅    −−−−    

, x1 + x2 < r ≤≤≤≤ zpc + x2 (region II, shifted HRR)   (21)

c 2 cYc
c

zp x r zp2S(r) (1 )E r zp zp
+ −+ −+ −+ −∆ε ≅ ⋅ ⋅ + ν∆ε ≅ ⋅ ⋅ + ν∆ε ≅ ⋅ ⋅ + ν∆ε ≅ ⋅ ⋅ + ν −−−− , zpc + x2 < r < zp (region III, interpolation)   (22)

K (1 )(r)
E 2 (r zp/2)

∆ ⋅ + ν∆ ⋅ + ν∆ ⋅ + ν∆ ⋅ + ν∆ε =∆ε =∆ε =∆ε =
κ π −κ π −κ π −κ π −

, r ≥≥≥≥ zp (region IV, shifted Irwin)   (23)

where κκκκ = 1 for plane stress and κκκκ = 1/(1 −−−− 2νννν) for plane strain, and

(((( ))))2
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2 Yc
K1zp S= ⋅= ⋅= ⋅= ⋅

πκπκπκπκ
 and (((( ))))2

c 2 Ycc

1 Kzp S4 (1 h )
∆∆∆∆= ⋅= ⋅= ⋅= ⋅

πκ ⋅ +πκ ⋅ +πκ ⋅ +πκ ⋅ +
  (24)

Both CA and VA fatigue crack growth can then be calculated using these equations (20-24), which
consider all the damage ahead of the crack tip (inside and outside the cyclic and monotonic plastic
zones) and probably provide a more realistic model of the FCG process.
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However, as significant elastic stress components act beyond r = zpc, equations (2), (5) and (15)
must be modified to include Coffin-Manson’s elastic coefficient σσσσc and exponent b. And in this case it
is certainly better to use εεεεN equations which can account for the mean load σσσσm effects on the VE life
such as Morrow elastic (25), Morrow elastic-plastic (26) or Smith-Topper-Watson (27):

c m b cc(2N) (2N)2 E
σ − σσ − σσ − σσ − σ∆ε∆ε∆ε∆ε = + ε= + ε= + ε= + ε   (25)

c/bc m c mb cc c(2N) ( ) (2N)2 E
σ − σσ − σσ − σσ − σ σ − σσ − σσ − σσ − σ∆ε∆ε∆ε∆ε = + ε= + ε= + ε= + ε σσσσ   (26)

2c c c2b b c
max max

(2N) (2N)2 E
++++σ σ εσ σ εσ σ εσ σ ε∆ε∆ε∆ε∆ε = += += += +σ σσ σσ σσ σ   (27)

But the life N in these equations cannot be explicitly written as a function of the VE strain range
and mean load and thus must be calculated numerically, a programming task that, despite introducing
no major conceptual difficulty, is far from trivial [30].

5.2. Variable Amplitude Loading
The da/dN×∆∆∆∆K curve predicted for CA can be used with some load interaction engineering model

in the ViDa software for VA problems. But the idea here is to directly quantify the fatigue damage
induced by the VA load considering the crack growth as caused by the sequential fracture of variable
size VE ahead of the crack tip. Since the Linear strain concentration rule generated better predictions
above, it is the only one used here, and as load interaction effects can have a significant importance in
FCG, they are modeled by using Morrow elastic equation to describe the VE fatigue life:

(((( ))))
1/ cc / bp m

c c

(r X)1N(r X) 12 2
−−−−    ∆ε +∆ε +∆ε +∆ε + σσσσ+ = −+ = −+ = −+ = −    ε σε σε σε σ    

  (28)

To account for mean load effects, a modified stress intensity range can be easily implemented for
R > 0 to filter the loading cycles that cause no damage by using:

PRPRmaxeff KR1
KKKK −−−−−−−−

∆∆∆∆====−−−−====∆∆∆∆   (29)

where KPR is a propagation threshold that depends on the considered retardation mechanism, such as
Kop or Kmax

* from the Unified Approach [7-8]. The damage function for each cycle is then:

(((( )))) (((( ))))
ii i

i i
nd r X N r X+ =+ =+ =+ = ++++

  (30)

If the material ahead of the crack is supposed virgin, then its increment δδδδa1 caused by the first load
event is the value r = r1 that makes Equation (30) equal to one, therefore:

(((( ))))1 1 1 1 1d r X 1      a r+ =+ =+ =+ = ⇒⇒⇒⇒ δ =δ =δ =δ =   (31)
In all subsequent events, the crack increments take into account the damage accumulated by the

previous loading, in the same way it was done for the constant loading case. But as the coordinate
system moves with the crack, a coordinate transformation of the damage functions is necessary:

i i 1

i j p
j 1 p j

D d r a
−−−−

= == == == =

    
    = + δ= + δ= + δ= + δ
    
    

∑ ∑∑ ∑∑ ∑∑ ∑   (32)

Since the distance r = ri where the accumulated damage equals one in the i-th event is a variable
that depends on ∆∆∆∆Ki (or ∆∆∆∆Keffi) and on the previous loading history, VE of different widths may be
broken at the crack tip by this model. This idea is illustrated by the events schematized in Figure 42.
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5.3 Results and Discussions
FCG tests under VA loading were performed on API-5L-X52 steel 50××××10mm C(T) specimens,

pre-cracked under CA at ∆∆∆∆K = 20MPa√√√√m until reaching crack sizes a ≅≅≅≅ 12.6mm. These cracks were
measured within 20µµµµm accuracy by optical methods and by a strain gage bonded at the back face of
the C(T) [26]. The basic monotonic and cyclic properties, measured in computer-controlled servo-
hydraulic machines using standard ASTM testing procedures, are E = 200⋅⋅⋅⋅103, SU = 527, SY = 430,
SYc = 370, Hc = 840, and σσσσc = 720 (all in MPa), hc = 0.132, εεεεc = 0.31, b = -0.076 and c = -0.53. About
50 specimens were tested under deformation ratios varying from R = −−−−1 to R = 0.8 (at least 2 at each
strain range) to obtain the εεεεN curve, see Figure 43. Morrow’s strain-life equation (25), which includes
the mean stress effect only in Coffin-Manson’s elastic term, best fit the experimental data. The basic
da/dN curve, measured using the same equipment, is fitted by da/dN(R = 0.1) = 2⋅⋅⋅⋅10−−−−10(∆∆∆∆K −−−− 8)2.4 (in
m/cycle), where ∆∆∆∆Kth(R = 0.1) = 8MPa√√√√m.

FCG tests were then conducted under several VA histories. The history shown in Figure 44 has
50,000 blocks containing 100 reversals each. The high mean stress levels were chosen to avoid crack
closure effects. The load history was counted by the sequential rain-flow method, using the ViDa
software [30]. The damage calculation was made using a specially developed code following all the
procedures discussed above. The crack growth predictions based solely on εεεεN parameters are again
quite reasonable, see Figure 45. The prediction assuming no damage outside the cyclic plastic zone
zpc underestimated the crack growth. However, when the small (but significant) damage in the
material between the cyclic and monotonic plastic zone borders is also included in the calculations, an
even better agreement is obtained. Note also that crack growth is slightly underestimated after 1.8⋅106

cycles, probably due to having neglected the elastic damage and the (small) mean stress effects.
A similar test was conducted on AISI 1020 steel C(T) specimen of the same dimensions described

above. The measured monotonic and cyclic material properties are E = 205GPa, SU = 491, SY = 285,
SYc = 270, Hc = 941 and σσσσc = 815MPa, hc = 0.18, εεεεc = 0.25, b = −−−−0.114, and c = −−−−0.54. The FCG
curve fit is da/dN = 5⋅⋅⋅⋅10−−−−10⋅⋅⋅⋅(∆∆∆∆K −−−− ∆∆∆∆Kth)2⋅⋅⋅⋅{Kc/[Kc −−−− ∆∆∆∆K/(1 −−−− R)]}, where ∆∆∆∆Kth = 11.6 and Kc = 277
(∆∆∆∆K, ∆∆∆∆Kth and Kc in MPa√√√√m and da/dN in m/cycle).

The VA load history is a series of blocks containing 101 peaks and valleys, as shown in Figure 46,
with a duration of two seconds each. Figure 47 compares the predictions with the experimentally
obtained data. This other prediction of fatigue crack growth under VA based only on εN properties
turns out to be again quite accurate. Therefore, these tests indicate that the ideas behind the proposed
critical damage model make sense and deserve to be better explored.

6. Conclusions
Several mechanisms can cause load sequence effects on fatigue crack growth, and they may act

before, at or after the crack tip. Plasticity-induced crack closure is the most popular of them, but it
cannot explain sequence effects in various important problems. A damage accumulation model ahead
of the crack tip based on εN cyclic properties, which can explain those effects in the absence of
closure, was proposed for predicting fatigue crack propagation under variable amplitude loading. The
model treats the crack as a sharp notch with a small but finite radius to avoid singularity problems,
and calculates damage accumulation explicitly at each load cycle. Experimental results show a good
agreement between measured crack growth both under constant and variable amplitude loading and
the predictions based purely on εN data.
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Figure 1: Paris’ classical experiment which proved that the fatigue crack growth controlling parameter
was the stress intensity range ∆∆∆∆K, not the stress range ∆∆∆∆σσσσ [2].

Figure 2: Typical crack closure measurement, where the non-linear part of the P×δδδδ curve is enhanced
by a technique called linearity-subtraction [14].
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Figure 3: Expected fatigue crack growth retardation after an overload due to plasticity-induced crack
closure [15].

Figure 4: Schematics of the plasticity-induced crack closure (or the Elber [3-4]) retardation
mechanism after an overload when ∆∆∆∆K is elsewhere constant.
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Figure 5: McEvily’s measured crack lengths, who avoided overload-induced FCG delays in 12.7mm
thick Al specimen by machining their faces until half the original thickness to eliminate the
surface closure (supporting an Elber-controlled retardation mechanism) [21].

Figure 6: Effect of overloads (OLs), OLs followed by underloads (UL) and of ULs followed by OLs
in Al 2024-T3 plate lives reported by Schijve, a behavior also compatible with elberian
mechanisms [22].
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Figure 7: Ratio ∆∆∆∆Keff,σσσσ 

  

 

/∆∆∆∆Keff,εεεε, which could be much smaller than one according to Newman’s finite
element based calculations of the opening loads in plates [16].

Figure 8: Non-conservative plane-ε fatigue life predictions obtained by using a da/dN ==== A∆∆∆∆K3.25

FCG curve measured under plane-σ conditions, assuming Newman’s
∆∆∆∆Keff,σσσσ 

  

 

/∆∆∆∆Keff,εεεε expressions.
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Figure 9: This da/dN××××∆∆∆∆K data measured in 2.5 and 25mm thick specimens of Al 7475, under plane-σ
and plane-ε dominated conditions respectively [24], shows no dependence in the thickness,
supporting in this way the ASTM standard that does not forbid the use of thin specimens to
measure the FCG behavior of a given material.

Figure 10: Fatigue crack growth retardation after 50% overloads applied at a high R = 0.7, on a crack
growing at a quasi-constant ∆∆∆∆Kbl = 10MPa√√√√m under plane-ε conditions.
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Figure 11: A542-2 (2.25Cr1Mo martensitic steel) da/dN×∆∆∆∆K curves at R = 0.05 and R = 0.7.

Figure 12: P×εεεε curves showing no closure neither before nor after the 50% OL that delayed this crack
(the change in the P×εεεε slope after the crack restarted to grow reflects the measurement
sensitivity)



25

Figure 13: P×εεεε curves where no closure was detected, neither before nor after the overload in this
crack arrest test after a single 100% OL,  applied over a constant baseline load ∆∆∆∆Kbl ====
10MPa√√√√m and R ==== 0.7.

Figure 14: ∆∆∆∆Keff,εεεε/∆∆∆∆K ratio predicted from Newman’s FE closure model [16], indicating that no
closure is expected for R-ratios higher than R = 0.5 under CA loading.
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Figure 15: Fatigue crack growth retardation after 100% overloads applied at a low R = 0.05, on a
crack growing at a quasi-constant ∆∆∆∆Kbl = 10MPa√√√√m under plane-ε conditions.

Figure 16: P×εεεε curves where crack closure was clearly measured in the 9 cycles before a 100%
overload (−9 through −1) that retarded the subsequent fatigue crack growth, all with
Pop/Pmax ==== 0.28.
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Figure 17: P×εεεε curves where significant crack closure also occurred just after the overload at a low R
= 0.05, but the ratio Pop/Pmax ==== 0.23 was smaller than the Pop/Pmax ==== 0.28 measured before,
indicating that ∆∆∆∆Keff increased due the overload in this case.

Figure 18: P×εεεε curves where no crack growth was detected during the next 104 cycles after the 100%
overload, despite the 22% increase in ∆∆∆∆Keff caused by it.
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Figure 19: P×εεεε curves showing that at 7.5⋅104 cycles after the overload, when the crack growth could
be detected again and the retardation started to diminish, the Pop/Pmax ratio started to
increase (causing ∆∆∆∆Keff to decrease) until reaching its pre-overload Pop/Pmax ==== 0.28 value at
2.0⋅105 cycles after the OL, when its effect had almost disappeared.

Figure 20: Crack arrest after a 200% overload associated with a 31% increase in ∆∆∆∆Keff.
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Figure 21: da/dN equation fitted to the SAE 1020 steel data.
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Figure 22: Predicted (dots) and measured paths of a fatigue crack propagated on a single edge notch 4

point bending SE(B) test specimen, modified with a hole machined on the left of the
starting notch to curve the crack path.
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Figure 23: Measured dimensions of the hole-modified C(T) specimens (mm).
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Figure 24: Predicted and measured crack paths for the modified C(T) specimens (mm).



31

Figure 25: Applied load history (in kN) for the standard C(T) and for the modified CT1(VA)
specimens.
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Figure 26: Measured crack sizes and results of the fitted load sequence effects engineering models on
the standard C(T) tested under variable amplitude (VA) loading.
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Figure 27: Crack growth predictions on the holed C(T) made by the several crack propagation models
(with adjustable constants calibrated by testing the standard C(T)  presented in Figure 26).

Figure 28: Typical propagation behavior of a bifurcated fatigue crack.
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Figure 29: Crack branching after a 100% overload in an SAE 4340 SE(T) specimen for ∆∆∆∆Kbl =
16.2MPa√√√√m and R = 0.05. Note that the shorter branch stopped, while the longer one
continued to propagate to the left.

Figure 30: Fatigue crack growth retardation induced by a 100 % overload that caused crack branching
in another SAE 4340 SE(T) specimen for ∆∆∆∆Kbl = 12.8MPa√√√√m and R = 0.5.
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Figure 31: Opening load measurements, including the linearity subtractor output to enhance the non-
linear part of the load versus back face strain ε, made before and after the overload test
reported in Figure 30.

Figure 32: Estimated (solid line) non-singular strain distribution ahead of a real (blunt) crack tip,
which has a small but a certainly not zero radius, limiting the HRR field by the strain range
at the crack tip ∆∆∆∆εεεεtip, calculated by a strain concentration rule.
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Figure 33: Schematics of the fatigue crack growth behavior, assumed to be caused by the sequential
fracture of volume elements (or tiny εεεεN specimens) at every load cycle, loaded by an
increasing strain history as the crack tip approaches them.

Figure 34: Schematics of the hysteresis loops at a fixed VE at different crack growth stages, under
constant ∆∆∆∆K loading, showing that an accumulated damage of 0.47 is already present in
this VE when it is reached by the cyclic plastic zone zpc.
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Figure 35: Schematics of the increasing strain ranges in any given VE as the crack grows and its tip
approaches the VE.
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Figure 36: da/dN××××∆∆∆∆K behavior measured and predicted by the various strain concentration rules used
in the critical damage model, for SAE 1020 low carbon steel at R = 0.1 and R = 0.7. (P&C
= Paris and Creager, M&G = Molsky and Glinka.)



38

Figure 37: da/dN××××∆∆∆∆K behavior measured and predicted by the various strain concentration rules used
in the critical damage model, for API-5L-X60 pipeline steel at R = 0.1 and R = 0.7.
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Figure 38: da/dN××××∆∆∆∆K behavior measured and predicted by the various strain concentration rules used
in the critical damage model, for 7075 T6 high strength aluminum alloy at R = 0.1 and R =
0.7.

Figure 39: Singular and shifted HRR strain distributions ahead of the crack tip, limited by ∆∆∆∆εεεεtip.
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Figure 40: Singular and shifted HRR stress distributions ahead of the crack tip, limited by ∆∆∆∆σσσσtip, with
the shadowed areas equalized to maintain equilibrium.

Figure 41: Proposed strain range distribution, divided in 4 regions to consider both the elastic and the
plastic contributions to the damage ahead of the crack tip.
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Figure 42: Schematics of the critical damage calculations, which under variable amplitude loading
recognize variable crack increments by forcing the crack to grow over the region where D
= 1.
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Figure 43: Measured strain-life data for the API 5L X52 steel, and Morrow elastic model that best
fitted this data.

Figure 44: Variable amplitude load block applied to the API-5L-X52 steel C(T). Note the high mean
R-ratio.
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Figure 45: Comparison between the crack growth measurements and the εN-based predictions for the
variable amplitude load presented in Figure 44 (API-5L-X52 steel).

Figure 46: Variable amplitude load block applied to the SAE 1020 steel C(T). Again a high mean R-
ratio was used in this test, to avoid the interference of possible significant closure effects
which could mask the model performance.
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Figure 47: Comparison between the crack growth measurements and the εN-based predictions for the
variable amplitude load presented in Figure 46 (SAE 1020 steel).


