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Abstract. Fatigue crack kinking and bifurcation are well-known phenomena capable of 
inducing significant growth retardation or even crack arrest. However, symmetrically 
bifurcated crack models available in the literature cannot account for the propagation 
behavior observed in practice. In this work, specialized Finite Element (FE) and life 
assessment software are used to predict the reduction in the propagation rates in 
asymmetrically bifurcated cracks. The crack path and the associated stress intensity factors 
(SIF) of asymmetrically bifurcated cracks are numerically obtained for several bifurcation 
angles. A companion life assessment program is used to estimate the number of delay cycles 
associated with crack bifurcation, allowing for a better understanding of the influence of 
crack deflection in the propagation life of structural components. 
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1. INTRODUCTION 
 
 It is well known that fatigue cracks can significantly deviate from their Mode I growth 
direction due to the influence of overloads, multi-axial stresses, micro structural 
inhomogeneities such as grain boundaries and interfaces, or environmental effects, generating 
crack kinking or branching (Lankford, 1981), see Figure 1. A fatigue crack deviated from its 
nominal Mode I plane induces mixed-mode near-tip conditions even if the far-field stress is 
purely Mode I. For instance, as shown in Fig. 1, a pure Mode I stress intensity factor (SIF) KI 
induces Modes I and II SIF k1 and k2 near the longer branch of a bifurcated crack and k1’ and 
k2’ near the shorter one. Since these SIF associated to deflected or branched fatigue cracks can 
be considerably smaller than that of a straight crack with the same projected length, such 
deviations can retard or even arrest the subsequent crack growth (Suresh, 1983). In addition, 
the fracture surface roughness generated by such deviations can also alter the crack closure 
level, leading to further perturbations on the crack propagation rates. 
 It is experimentally observed that very small differences between the crack branch 
lengths b and c are enough to cause the shorter branch to arrest as the larger one propagates, 
generally changing its curvature until reaching approximately its pre-overload SIF and growth 
direction and rate, see Figure 2. Therefore, although many branches can be developed along 
the main crack path, only the fastest branch continues to grow, while all others are brought to 
a stop due to its shielding effect. In addition, the crack growth is retarded. This typical 
propagation behavior has been observed in many structural components, e.g. on a branched 
crack on an aircraft wheel rim made of 2014-T6 aluminum alloy (Kosec, 2002). 
 

 

Figure 1 - Bifurcated crack geometry and nomenclature (Lankford, 1981). 

 Some analytical solutions have been obtained for the SIF of kinked and branched cracks, 
but it is generally recognized that it is very difficult to develop accurate analytical solutions to 
their complex propagation behavior (Suresh, 1993; Suresh, 1998; Seelig, 1999; Karihaloo, 
1992). Therefore, presently numerical methods such as Finite Elements (FE) and Boundary 
Elements (BE) are the only practical means to predict the propagation behavior of branched 
cracks. A summary of such SIF solutions as a function of the deflection angle and the length 
of the deflected part of the crack are presented in Suresh (1986). 
 To predict the (generally curved) path of a branched crack and to calculate the associated 
Modes I and II SIF, a specially developed interactive FE program named Quebra2D (meaning 
2D fracture in Portuguese) is used (Miranda, 2002). This program simulates two-dimensional 
fracture processes based on a FE self-adaptive strategy, using appropriate crack tip elements 
and crack increment criteria. The adaptive FE analyses are coupled with modern and very 
efficient automatic remeshing schemes. The remeshing algorithm developed for Quebra2D 



works both for regions without cracks and for regions with one or multiple cracks, which may 
be either embedded or surface breaking.  
 

 
 

Figure 2 – Behavior of bifurcated crack propagation. 
 
 
2. CRACK KINKING CALCULATIONS AND FINITE ELEMENT SOFTWARE 

VALIDATION 
 
 In this section, the Modes I and II SIF k1 and k2 are evaluated for cracks of length a with 
a small kink of length b0 at an angle θ, see Figure 3(a). According to Bilby (1977) and 
Cotterell (1980), if b0 is much smaller than all other crack dimensions, then k1 and k2 can be 
calculated from the Modes I and II SIF KI and KII of the straight crack (without the kink) 
using: 
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Figure 3 - Schematic representation of a kinked crack before propagation (a) and at the onset 
of propagation (b). 

 
 Equations (1-2) are only valid for very small b0/a ratios. On the other hand, when b0/a is 
greater than 0.5, k1 and k2 are also independent of b0/a for both kinked and symmetrically 
bifurcated cracks. 
 To validate the Quebra2D program, the Modes I and II SIF k1 and k2 of an infinitesimally 
kinked crack (b0/a → 0 in Figure 3(a)) are obtained and compared to the analytical solutions. 
 In order to numerically reproduce Equations (1-2), very small b0/a ratios must be 
considered. Kitagawa et al. (1975) performed numerical analyses using b0/a = 0.1, however 
this ratio was not small enough to converge to the infinitesimal kink solution. In this work, a 
standard C(T) specimen is FE modeled with width w = 32.0mm, crack length a = 14.9mm, 
and a very small kink with length b0 = 10µm. It is found that the considered ratio b0/a = 
10µm/14.9mm = 6.7×10−4 << 0.1 is appropriate for this validation. 
 Note that an efficient meshing algorithm is fundamental to avoid elements with poor 
aspect ratio, since the ratio between the size scale of the larger and smaller elements is above 
1,000 in this case. To accomplish that, Quebra2D uses an innovative algorithm incorporating 
a quadtree procedure to develop local guidelines to generate elements with the best possible 
shape. The internal nodes are generated simultaneously with the elements, using the quadtree 
procedure only as a node-spacing function. This approach tends to give a better control over 
the generated mesh quality and to decrease the amount of heuristic cleaning-up procedures. 
Moreover, it specifically handles discontinuities in the domain or boundary of the model. 
Finally, to enhance the quality of the shape of the mesh element, an a posteriori local mesh 
improvement procedure is used (Miranda, 1993). 
 Figure 4 shows a comparison between the analytical and the FE-predicted k1 and k2 
(normalized by the straight crack SIF KI) for several kink angles θ, showing a very good 
agreement. The equivalent SIF Kb0, which is the crack rate controlling parameter, is then 
calculated based on the σθmax criterion (Miranda, 1993), using KI ≡ k1 and KII ≡ k2. This Kb0 
can also be interpreted as the Mode I SIF of the kinked crack immediately after it starts 
propagating, soon after the expected sharp deflection is developed. Note that Kb0 is only 
significantly smaller than the straight crack KI (e.g. beyond 5%) for kink angles larger than 
45o. Therefore, crack kinking is not a significant cause of retardation for kink angles smaller 
than 45o. 
 



 

Figure 4 - Validation of the Quebra2D software for a kinked crack. 

 The equivalent SIF Kb0 at the onset of the propagation can be calculated analytically 
using the σθmax criterion, however its expression is quite lengthy, see Equation (3a), where 
sign(x) is the sign function returning either 1, 0 or −1. Alternatively, a simple and practical 
empirical function of θ (in degrees) can be successfully fitted to the calculated data within 
less than 1%, see Equation (3b). 
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 The initial propagation angle θb0, defined in Figure 3(b), can also be calculated using the 
σθmax criterion and fitted within less than 1% by the empirical function: 
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3.     PROPAGATION OF BRANCHED CRACKS 

 The growth of branched cracks is studied in the Quebra2D program using the same C(T) 
specimen described above. A fixed crack growth step of ∆b = 3µm (or 1µm during the first 



propagation steps) is considered for the propagation of the longer branch b. This growth step 
is calculated in the direction defined by the σθmax criterion. Due to the differences in the crack 
growth rate, a growth step ∆c smaller than ∆b is expected for the shorter branch. This smaller 
step is obtained assuming a crack propagation law that models the first two growth phases, 
 

mthda A ( K K )
dN

= ⋅ ∆ − ∆         (5) 

where A and m are material constants and ∆Kth is the propagation threshold. If ∆Kb and ∆Kc 
are respectively the stress intensity ranges of the longer and shorter branches, then the growth 
step ∆c of the shorter branch c should be 
 

 c th m
b th

K Kc b ( )
K K

∆ − ∆∆ = ∆ ⋅
∆ − ∆

        (6) 

 
 Interestingly, the ratio between the propagation rates of the two branches is independent 
of the material constant A. In this analysis, the exponent m is assumed to be 2.0, 3.0, and 4.0, 
which are representative for the range of the measured exponents for steels. Note that a 
similar expression can be obtained if crack closure effects are considered, even including 
mean load effects through a function f(R) of the load ratio R, using the effective SIF ∆Keff = 
Kmax − Kop: 
 

 max,c opm mmax op
max,b op

K Kda A (K K ) f(R) c b ( )
dN K K

−
= ⋅ − ⋅ ⇒ ∆ = ∆ ⋅

−
    (7) 

 
where Kmax,b and Kmax,c are the maximum SIF of the longer and shorter branches respectively, 
and Kop is the crack opening SIF, assumed equal for both branches. 
 Once a (small) growth step ∆b is chosen for the numerical propagation of the longer 
branch, the growth of the shorter branch ∆c is readily obtained from Equations (6) or (7). 
Both the crack path and the associated SIF along each branch are then obtained using the FE 
program. Several numerical simulations were performed for different values of the exponent 
m, angle 2θ, relation c0/b0, and SIF, considering or not crack closure. Figure 5 shows the 
algorithm flowchart used to perform the analyses.  
 In the following sections, semi-empirical crack retardation equations are proposed to 
model the retardation effect along the path of the crack branches as a function of their ratio 
c0/b0, the bifurcation angle 2θ, and crack growth exponent m. 
 

3.    BRANCHED CRACK PROPAGATION WITHOUT CLOSURE  

 In this section, the propagation behavior of branched cracks is studied using FE 
considering no closure effects (Kop = 0). Figure 6 shows the contour plots of the normal stress 
component in the load direction axis and propagation results for a bifurcated crack with angle 
2θ = 150o, obtained from the FE analysis for c0/b0 = 0.91, m = 2 and no closure.  In this 
figure, the deformations are highly amplified to better visualize the crack path. Note that the 
crack path deviates from the original branch angles, deflecting from ±75o to approximately 
±28o. In addition, the originally shorter branch arrests after propagating (only) about 29µm, 
while the longer branch returns to the pre-overload growth direction and SIF (even though the 
subsequent crack growth plane may be offset from the pre-overload one, see Figure 6). 



 
 

Begin

Loops:
m = 2, 3, 4

2θ = 40, 80, 130, 168°
c0/b0 = 0.5, 0.7, 0.7, 0.9, 0.95

Load model and 
compute FE anlysis

Loop Kth = 0 and 2 MPa.√m:
KI = 20, 8, 5, 3.6 MPa.√m

End

Propagate crack and 
Store results in file

KIb > KI
NO

YES

Begin

Loops:
m = 2, 3, 4

2θ = 40, 80, 130, 168°
c0/b0 = 0.5, 0.7, 0.7, 0.9, 0.95

Load model and 
compute FE anlysis

Loop Kth = 0 and 2 MPa.√m:
KI = 20, 8, 5, 3.6 MPa.√m

End

Propagate crack and 
Store results in file

KIb > KI
NO

YES

 

Figure 5 - Algorithm flowchart used to perform the analyses. 
 

 

Figure 6 - Propagation simulation of a bifurcated crack on a C(T) specimen (left), and close-
up view of the two original 11µm and 10µm branches with angle 2θ = 150o (right). 

 
 Figure 7 shows the crack paths obtained from the FE analyses of bifurcated cracks with 
2θ = 130o and c0/b0 = {0.5, 0.8, 0.95, 1}, considering m = 2 and no closure effects. The 
dashed lines show the theoretical propagation behavior of a perfectly symmetric bifurcation 
(c0/b0 = 1). In this case, the retardation effect would never end because both branches would 



propagate symmetrically without arresting. Clearly, such behavior is not observed in practice, 
since the slightest difference between b0 and c0 would be sufficient to induce an asymmetrical 
behavior. 
 

 

Figure 7 - Bifurcated crack paths for several c0/b0 ratios. 
 
 The angles of the symmetrical dashed lines in Figure 7 for small b0/a ratios are found to 
be θ* = ±26.5o with respect to the horizontal, where 2θ* has been previously defined as the 
bifurcation angle for which k2 vanishes on a symmetrically branched crack. As the 
symmetrical branches grow following the ±26.5o directions, it is found that the ratio between 
the equivalent SIF and the SIF of a straight crack with same projected length is approximately 
constant and equal to 0.757, a value compatible with the 0.75 estimate for Kb0. Note that the 
directions ±26.5o are independent of 2θ, m, and the closure level, therefore symmetrical 
bifurcations with any initial angle 2θ would tend to the self-similar solution 2θ* = 53o as long 
as the ratio b/a of the propagating branches is sufficiently small. FE calculations also showed 
that the slopes of the dashed lines are gradually decreased as both branches grow, resulting in 
angles ±18o in the vicinity of b/a = 0.025, ±16o close to b/a = 0.1, and ±15.3o for b/a >> 1. 
This last result has been obtained from a FE analysis of a symmetrical bifurcation starting at 
the edge of a very large plate (therefore with a = 0 and b/a → ∞). 
 Figure 7 also shows that lower c0/b0 ratios result in premature arrest of the shorter crack 
branch, leading to smaller retardation zones. Also, the propagation path of the longer branch 
is usually restrained to the region within the dashed lines, while the shorter one is “pushed” 
outside that envelope due to shielding effects. 
 The size of the retardation zone can be estimated from the ratio bf/b0, where bf is the 
value of the length parameter b of the longer branch beyond which the retardation effect ends 
(in the same way that it was defined for kinked cracks). The ratio bf/b0 is then calculated 
through FE propagation simulations for all combinations of c0/b0 = {0.5, 0.8, 0.9, 0.95}, 2θ = 
{40o, 80o, 130o, 168o} and m = {2, 3, 4}, and fitted by the proposed empirical function: 
 

 
o (12 m)/20f 0 02 / 3o

b 2 30exp (1 c / b )
b 56 17 (m 2)

− θ −= − + ⋅ − 
    (8) 

 
 Figure 8 shows a comparison between the fitted and the FE-obtained data. Note that a 
greater symmetry between the branches (as c0/b0 approaches 1.0) results in a longer 
retardation zone, as expected from the delayed arrest of the shorter branch. 



 The FE-calculated equivalent SIF Kb and Kc of the longer and of the shorter branches are 
now evaluated along the obtained crack paths. Figures 9(a) and 9(b) plots the crack 
retardation factors (defined as the ratios between Kb or Kc and the Mode I SIF KI of a straight 
crack) for 2θ = 130o and m = 2, as a function of the normalized length (b−b0)/b0 of the longer 
branch (measured along the propagation path). Because of the different crack branch lengths, 
the SIF at the longer one is much higher than that at the shorter branch. Assuming Kb and Kc 
to be the crack driving force, it can be seen from Figures 9(a) and 9(b) that the longer branch 
reaches its minimum propagation rate right after the bifurcation occurs, returning to its pre-
overload rate as the crack tip advances away from the influence of the shorter branch. As seen 
in the figure, the retardation behavior is misleadingly similar to closure-related effects, even 
though no closure is present in that case. 
 In addition, as the length difference between both branches increases, it is expected that 
the propagation rate of the shorter one is reduced until it arrests, after which the larger branch 
will dominate. Note that even small differences between the branch lengths, such as in the 
case c0/b0 = 0.95 shown in Figures 9(a) and 9(b), are sufficient to cause subsequent arrest of 
the shorter branch. 

 

Figure 8 - Normalized process zone size as a function of the bifurcation angle and branch 
asymmetry c0/b0 (m = 3). 

 

 

Figure 9(a) - Normalized equivalent SIF for the longer branch of a bifurcated crack during its 
propagation (2θ = 130o, m = 2). 

 



 

Figure 9(b) - Normalized equivalent SIF for the shorter branch of a bifurcated crack during its 
propagation (2θ = 130o, m = 2). 

 
 An empirical expression is here proposed to model the SIF Kb of the longer branch 
during the transition between Kb0 (immediately after the bifurcation event) and the straight-
crack KI (after the end of the retardation effect), valid for b0 ≤ b ≤ bf and 0.7 < c0/b0 < 1: 
 

( ) 00
0 0

2c /b
0b b I b

f 0
b bK K (K K ) atan 3 /1.25
b b

− = + − ⋅ − 
     (9) 

where bf is given in Equation (8) and Kb0 by 
 

( )b0 0
I 0

K c0.75 (1 sin ) 1
K b

= + − θ ⋅ −        (10) 

 It must be pointed out, however, that the presented FE results and empirical models might 
have some limitations, because actual bifurcations can be of a size comparable to the scale of 
the local plasticity (e.g., of the plastic zone size) or microstructural features (e.g., of the grain 
size). Moreover, possible closure and environmental effects should be considered when 
comparing the bifurcation model predictions with measured crack growth rates (Suresh, 
1983). The interaction between crack branching and closure is studied next. 
 
4. BRANCHED CRACK PROPAGATION WITH CLOSURE 
  
 All presented branched growth simulations so far have not included the effect of crack 
closure. This effect is easily accounted for in the FE calculations using Equation (7). The 
crack opening SIF Kop is assumed to be the same at both branch tips and always larger than 
the minimum SIF of each branch. Further simulations are then conducted considering several 
Kop values, normalized by the maximum Mode I SIF KI of the straight crack, namely Kop/KI 
= {0.067, 0.08, 0.10, 0.13, 0.20, 0.25, 0.40, 0.57}. 
 A generalized version of Equation (8) is then proposed to fit the calculated process zone 
sizes including crack closure effects: 
 



opf
(12 m) / 20o I0 0 0 0

Kb exp
b K(1 c / b ) (1 c / b )− γ

 −βα= ⋅ ⋅ − − 
     (11) 
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 Note that the ratio Kop/KI in Equation (11) should be replaced with zero if Kop is smaller 
than the minimum SIF of both branches, because in this case the crack would remain opened 
during the entire cycle. Figures 10 and 11 show a comparison between the fitted and the FE-
obtained data as a function of the crack opening ratio Kop/KI. Note that greater closure levels 
result in shorter retardation zones, because the shorter branch is more easily arrested due to 
the reduction in its effective stress intensity range. 
 

 

Figure 10 - Normalized process zone size of bifurcated cracks as a function of the crack 
opening SIF and branch asymmetry c0/b0 (2θ = 130o, m = 3). 

 
 Figure 12 shows the effect of crack closure at the branch tips on the retardation factor for 
2θ = 130o, c0/b0 = 0.9 and m = 2. Note that higher closure levels reduce the size of the 
retardation process zone, due to the closure-induced premature arrest of the shorter branch. In 
Figure 12, e.g., the normalized size of the process zone is reduced from 18 for no closure to 
3.6 for Kop/KI = 0.74, a factor of 5. In this example, 0.74 is the minimum closure level that 
prevents the shorter branch to even start propagating. Therefore, at any closure level above 



0.74 the normalized process zone size will also be 3.6, because the propagation geometry will 
remain unchanged as long as the shorter branch remains at c = c0, as discussed before. 
 

 

Figure 11 - Normalized process zone size of bifurcated cracks as a function of the crack 
opening SIF and bifurcation angle 2θ (c0/b0 = 0.8, m = 3). 

 

 

Figure 12 - Normalized SIF of the longer branch during its propagation as a function of the 
normalized length (b−b0)/b0 for several opening levels (c0/b0 = 0.9, m = 2). 

 
 Note, however, that a smaller process zone does not necessarily mean fewer delay cycles, 
since the longer branch will also experience a closure-induced reduction in the crack 
propagation rate. Therefore, a competition between lower growth rates of the longer branch 
and smaller process zone sizes will take place to determine the real effect of combined 
bifurcation and closure. 



 Equations (11-14) and (10) can then be applied to Equation (9) to model the SIF Kb of 
the longer branch during the transition between Kb0 (the SIF immediately after the bifurcation 
event) and the straight-crack KI (the SIF after the end of the retardation effect), completing 
this analysis. 
 
5. CONCLUSION 
 
 In this work, a specialized FE program was used to calculate the propagation path and 
associated stress intensity factors (SIF) of kinked and bifurcated cracks, which can cause 
crack retardation or even arrest. A total of 262 crack propagation simulations were obtained 
from a total of 6,250 FE calculation steps to fit empirical equations to the process zone size 
and crack retardation factor along the curved crack path. In particular, the bifurcation 
simulations included several combinations of bifurcation angles 2θ = {40o, 80o, 90o, 130o, 
168o}, branch asymmetry ratios c0/b0 = {0.5, 0.7, 0.8, 0.9, 0.95, 1.0}, crack growth exponents 
m = {2, 3, 4}, and even considered interaction between crack branching and closure effects 
through the ratios Kop/KI = {0.0, 0.067, 0.08, 0.10, 0.13, 0.20, 0.25, 0.40, 0.57}. 
 It was shown that very small differences between the lengths of the bifurcated branches 
are sufficient to cause the shorter one to eventually arrest as the longer branch returns to the 
pre-overload propagation conditions. The process zone size was found to be smaller for lower 
bifurcation angles and for branches with greater asymmetry, in both cases due to the increased 
shielding effects on the shorter branch. The retardation zone was reduced as well for materials 
with higher crack growth exponents, due to the increased difference between the crack growth 
rates of the longer and shorter branches. Higher closure levels also resulted in smaller process 
zones, because the shorter branch was more easily arrested due to the reduction in its effective 
stress intensity range. However, a competition between smaller process zone sizes and lower 
growth rates of the longer branch did take place to determine the real effect of combined 
bifurcation and closure. 
 The proposed equations, besides capturing all above described phenomena, can be readily 
used to predict the propagation behavior of branched and kinked cracks in an arbitrary 
structure, as long as the process zone is small compared to the other characteristic dimensions. 
 It should be recognized however that the presented mixed-mode equations are only 
accurate if the kink length greatly exceeds the size scale of the microstructural 
inhomogeneities and the size of the near-tip plastic zone. But assuming that the entire crack-
front deflects uniformly, the specimen thickness itself may provide the size scale requirements 
for the validity of the presented equations, as the calculated SIF may be averaged considering 
the (several) grains present along the thickness. Otherwise, if the crack deflections vary 
significantly along the thickness, then further modeling including Mode III effects should be 
considered. 
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