COMPARAÇÃO ENTRE MÉTODOS DE PREVISÃO DE VIDA À FADIGA SOB CARGAS MULTIAXIAIS II – RELAÇÕES TENSÃO x DEFORMAÇÃO

Marco Antonio Meggiolaro¹ Jaime Tupiassú Pinho de Castro²

Resumo

Uma dificuldade não trivial na aplicação de modelos multiaxiais de previsão de vida à fadiga é o cálculo das tensões a partir das deformações elastoplásticas. Nas previsões de vidas curtas não se pode usar a lei de Hooke devido aos efeitos plásticos. Ramberg-Osgood também não pode ser utilizado para correlacionar diretamente as tensões e deformações principais de uma história multiaxial, pois este modelo foi desenvolvido para o caso uniaxial. Desse modo, para quantificar os efeitos de plasticidade cíclica, são estudados e comparados quatro modelos concebidos para correlacionar as tensões e deformações em histórias multiaxiais proporcionais: o método do maior K_t , o modelo das razões constantes, o de Hoffmann-Seeger, e o de Dowling.

Palavras-chave: Fadiga multiaxial; Iniciação de trinca; Relações tensãodeformação.

60° Congresso Anual da ABM - 25 a 28 de Julho de 2005, Belo Horizonte, MG ¹Eng.Mecânico, Ph.D., Prof. Visitante Dept. Engenharia Mecânica PUC-Rio ²Eng.Mecânico, Ph.D., Prof. Dept. Engenharia Mecânica PUC-Rio

1 INTRODUÇÃO

Na primeira parte deste trabalho, foram estudados os principais modelos que correlacionam tensões ou deformações com vidas de iniciação de trinca à fadiga sob carregamentos multiaxiais (os quais podem induzir fletores, torçores, normais e/ ou cortantes, gerando tensões bi ou tri-axiais variáveis). Foram apresentados os modelos baseados em tensão de Sines e de Findley, aplicáveis apenas para vidas longas, e os modelos baseados em deformação de Brown-Miller, Fatemi-Socie e Smith-Watson-Topper (SWT). Uma dificuldade na aplicação dos modelos de Fatemi-Socie ou SWT é a necessidade de calcular as tensões elastoplásticas a partir das deformações multiaxiais, pois Ramberg-Osgood só é válido para tensões uniaxiais.

Outro desafio no cálculo da vida à fadiga sob cargas multiaxiais está na modelagem do efeito dos entalhes. Os fatores de concentração de tensão K_{σ} e de deformação K_{ε} elásticos são iguais no caso uniaxial, mas em geral no caso multiaxial K_{σ} é diferente de K_{ε} mesmo sob tensões elásticas.

Assim, mesmo no caso elástico, não é trivial estudar o efeito de entalhes sob solicitações multiaxiais. O problema é ainda mais difícil no caso elastoplástico, onde até as cargas uniaxiais podem gerar histórias de tensões e deformações multiaxiais não-proporcionais (NP), devido ao estado triaxial no entalhe e à diferença entre os coeficientes de Poisson elástico $v_{el} \cong 0.3$ e plástico $v_{pl} = 0.5$.

Nas seções a seguir serão apresentados e comparados modelos que correlacionam tensão e deformação considerando o efeito dos entalhes.

2 RELAÇÕES TENSÃO-DEFORMAÇÃO MULTIAXIAIS

Nas previsões de fadiga multiaxial sob vidas curtas não se pode usar a lei de Hooke para correlacionar tensões e deformações, devido aos efeitos plásticos. As tensões e deformações hookeanas $\mathfrak{E} = \mathfrak{E}$, definidas como os valores de $\sigma = \varepsilon$ obtidos assumindo-se que o material é perfeitamente elástico (usando lei de Hooke e, nos entalhes, considerando $K_{\sigma} = K_{\varepsilon}$ elásticos), só podem ser aplicadas para cálculos de vidas longas.

Além disto, também não se pode usar Ramberg-Osgood para correlacionar diretamente as tensões e deformações principais $\sigma_i \in \varepsilon_i$ (i = 1, 2, 3) de uma história multiaxial, pois este modelo foi desenvolvido para o caso uniaxial.

Porém, se a gama das tensões nominais elásticas $\Delta \sigma_n$ for causada por carregamentos em fase, então é trivial calcular as tensões e deformações elastoplásticas no entalhe pelo "método do maior K_t ". Neste método aproximado, a tensão nominal $\Delta \sigma_n$ equivalente calculada por Tresca ou por Mises é usada para calcular $\Delta \sigma$ e $\Delta \varepsilon$ na raiz do entalhe usando Ramberg-Osgood e (por segurança, pois o método é conservativo) o maior K_t na regra de Neuber. No entanto este método aproximado pode gerar previsões muito conservativas, logo para considerar entalhes sob tensões combinadas recomenda-se utilizar relações $\sigma \varepsilon$ multiaxiais.

Três modelos foram concebidos para correlacionar $\sigma_i \in \varepsilon_i$ em histórias proporcionais: o modelo das razões constantes [1], o de Hoffmann-Seeger [2], e o de Dowling [3]. Para apresentar estes três modelos, é preciso definir algumas variáveis envolvidas na formulação:

- $\mathfrak{E}_1, \mathfrak{E}_2, \mathfrak{E}_3, \mathfrak{E}_1, \mathfrak{E}_2, \mathfrak{E}_3$: tensões e deformações hookeanas principais no entalhe (calculadas elasticamente usando lei de Hooke e K_{σ} e K_{ε} elásticos);
- ^{*}_{Mises}, ^{*}_{Mises}: tensão e deformação hookeanas de Mises (no entalhe), calculadas usando as variáveis acima;

- σ₁, σ₂, σ₃, ε₁, ε₂, ε₃: tensões/deformações principais elastoplásticas (entalhe);
- σ_{Mises}, ε_{Mises}: tensão e deformação de Mises (entalhe);
- λ_2 , λ_3 : razões entre as tensões principais, sendo $\lambda_2 = \sigma_2/\sigma_1$ e $\lambda_3 = \sigma_3/\sigma_1$, ambas com valores entre –1 e 1;
- φ₂, φ₃: razões as deformações principais, sendo φ₂ = ε₂/ε₁, φ₃ = ε₃/ε₁, ambas com valores entre −1 e 1; e
- λ_{Mises} , ϕ_{Mises} : razões de Mises $\lambda_{\text{Mises}} = \sigma_{\text{Mises}}/\sigma_1$ e $\phi_{\text{Mises}} = \epsilon_{\text{Mises}}/\epsilon_1$. A partir das definições acima obtém-se

$$\lambda_{Mises} = \frac{\sigma_{Mises}}{\sigma_1} = \frac{1}{\sqrt{2}} \sqrt{(1 - \lambda_2)^2 + (1 - \lambda_3)^2 + (\lambda_2 - \lambda_3)^2}$$
(1)

$$\phi_{Mises} = \frac{\varepsilon_{Mises}}{\varepsilon_1} = \frac{1}{\sqrt{2}(1+\nu)} \sqrt{(1-\phi_2)^2 + (1-\phi_3)^2 + (\phi_2-\phi_3)^2}$$
(2)

Os três modelos são descritos a seguir.

3.1 Modelo das Razões Constantes

O modelo das razões constantes [1] assume que, em uma história proporcional, as razões biaxiais λ_2 , λ_3 , $\phi_2 e \phi_3$ permanecem constantes mesmo após o escoamento. Como o coeficiente de Poisson elástico v_{el} , tipicamente entre 1/4 e 1/3 nas ligas metálicas, difere significativamente do plástico $v_{pl} = 0.5$, estas razões na realidade não são constantes, mas quando a deformação plástica é pequena esta é uma boa aproximação.

Assim, estas razões podem ser estimadas pelas tensões e deformações elásticas (hookeanas), calculáveis por Hooke usando o K_{σ} e o K_{ϵ} elásticos:

$$\lambda_2 \cong \frac{\mathfrak{G}_2}{\mathfrak{G}_1}, \quad \lambda_3 \cong \frac{\mathfrak{G}_3}{\mathfrak{G}_1}, \quad \phi_2 \cong \frac{\mathfrak{E}_2}{\mathfrak{E}_1}, \quad \phi_3 \cong \frac{\mathfrak{E}_3}{\mathfrak{E}_1}$$
(3)

Conclui-se assim que λ_{Mises} também é constante, e assim

$$\lambda_{Mises} \cong \frac{\mathfrak{E}_{Mises}}{\mathfrak{E}_{1}} \Longrightarrow \mathfrak{E}_{Mises} \cong \frac{\mathfrak{E}_{1}}{\sqrt{2}} \sqrt{(1-\lambda_{2})^{2} + (1-\lambda_{3})^{2} + (\lambda_{2}-\lambda_{3})^{2}}$$
(4)

e, analogamente, calcula-se ϕ_{Mises} a partir de ϕ_2 e ϕ_3 . A relação σ_{ϵ} cíclica é então definida usando-se Mises e os parâmetros uniaxiais de Ramberg-Osgood

$$\varepsilon_{\text{Mises}} = \frac{\sigma_{\text{Mises}}}{E} + \left(\frac{\sigma_{\text{Mises}}}{H_c}\right)^{1/h_c}$$
(5)

Na ausência de entalhes, a equação acima é usada em conjunto com as estimativas de λ_{Mises} , ϕ_{Mises} , λ_2 , λ_3 , $\phi_2 \in \phi_3$ para obter σ_i a partir de ε_i (i = 1, 2, 3) ou vice-versa. Nas peças com entalhes, \mathfrak{F}_{Mises} (calculado elasticamente incluindo os K_t s) é aplicado a uma variação da regra de Neuber para calcular a tensão elastoplástica de Mises σ_{Mises} e, finalmente, $\varepsilon_{\text{Mises}}$, $\sigma_i \in \varepsilon_i$ (i = 1, 2, 3):

$$\frac{(\mathfrak{E}_{Mises})^2}{E} = \sigma_{Mises} \cdot \varepsilon_{Mises} = \frac{(\sigma_{Mises})^2}{E} + \sigma_{Mises} \cdot (\frac{\sigma_{Mises}}{H_c})^{1/h_c}$$
(6)

Após calcular σ_{Mises} e ϵ_{Mises} , o modelo das razões constantes calcula então as tensões e deformações principais usando:

$$\begin{cases} \sigma_1 = \sigma_{Mises} / \lambda_{Mises}, & \sigma_2 = \lambda_2 \sigma_1, & \sigma_3 = \lambda_3 \sigma_1 \\ \epsilon_1 = \epsilon_{Mises} / \phi_{Mises}, & \epsilon_2 = \phi_2 \epsilon_1, & \epsilon_3 = \phi_3 \epsilon_1 \end{cases}$$
(7)

3.2 Modelo de Hoffmann-Seeger

O modelo de Hoffmann-Seeger [2] utiliza a mesma relação $\sigma\epsilon$ cíclica e a mesma variação da regra de Neuber para o cálculo de σ_{Mises} e ϵ_{Mises} acima, mas assume que:

- o ponto crítico ocorre na superfície da peça, com tensões principais $\sigma_1 e \sigma_2$;
- σ₃ é definido normal à superfície, e portanto σ₃ = 0 (e assim λ₃ = 0); e
- apenas a razão $\phi_2 = \mathscr{E}_2 / \mathscr{E}_1$ é estimada usando os valores elásticos lineares.

Após calcular σ_{Mises} e ϵ_{Mises} , σ_i e ϵ_i são estimados por:

$$\begin{cases} \sigma_1 = \sigma_{Mises} / \lambda_{Mises}, \quad \sigma_2 = \lambda_2 \sigma_1, \quad \sigma_3 = 0 \\ \epsilon_1 = \frac{(1 - \overline{\lambda}_2 \overline{\nu}) \epsilon_{Mises}}{\overline{\lambda}_{Mises}}, \quad \epsilon_2 = \phi_2 \epsilon_1, \quad \epsilon_3 = -\overline{\nu} \epsilon_1 \frac{1 + \overline{\lambda}_2}{1 - \overline{\lambda}_2 \overline{\nu}} \end{cases}$$
(8)

$$\overline{v} = \frac{1}{2} - \frac{(1/2 - v_{el})\sigma_{Mises}}{E \cdot \varepsilon_{Mises}}, \quad \overline{\lambda}_2 = \frac{\phi_2 + \overline{v}}{1 + \phi_2 \overline{v}}, \quad \overline{\lambda}_{Mises} = \sqrt{1 - \overline{\lambda}_2 + \overline{\lambda}_2^2}$$
(9)

3.3 Modelo de Dowling

O modelo proposto por Dowling [3] também assume que as tensões principais $\sigma_1 e \sigma_2$ agem na superfície (livre) do ponto crítico (portanto σ_3 é nula), e considera constantes $\lambda_2 e \phi_2$, estimando-as pelos valores hookeanos

$$\lambda_2 = \frac{\sigma_2}{\sigma_1} \cong \frac{\mathfrak{G}_2}{\mathfrak{G}_1} \cong \frac{\mathfrak{h}_2 + \nu}{1 + \mathfrak{h}_2 \nu}, \quad \mathfrak{h}_2 = \frac{\varepsilon_2}{\varepsilon_1} \cong \frac{\mathfrak{K}_2}{\mathfrak{K}_1} \cong \frac{\lambda_2 - \nu}{1 - \lambda_2 \nu}$$
(10)

Excepcionalmente define-se aqui σ_2 como a menor tensão principal na superfície, mesmo que σ_2 seja menor que σ_3 (i.e. a convenção de sinais $\sigma_3 \le \sigma_2 \le \sigma_1$ é violada se $\lambda_2 < 0$).

A grande diferença entre os dois modelos anteriores e o de Dowling é que este correlaciona diretamente $\sigma_1 \in \varepsilon_1$ por parâmetros efetivos $E^* \in H_c^*$:

$$E^{*} = \left(\frac{1 + \phi_{2}v}{1 - v^{2}}\right) \cdot E , \quad H_{c}^{*} = H_{c} \cdot \left(\frac{2}{2 - \lambda_{2}}\right)^{h_{c}} (1 - \lambda_{2} + \lambda_{2}^{2})^{0.5(h_{c}-1)}$$
(11)

e a relação efetiva entre σ_1 e ε_1 é [3]:

$$\varepsilon_1 = \frac{\sigma_1}{E^*} + \left(\frac{\sigma_1}{H_c^*}\right)^{1/h_c}$$
(12)

A Figura 1 apresenta as relações tensão-deformação principal para o aço 1020, segundo o modelo de Dowling.

Figura 1. Relações tensão-deformação principal sob deformação plana, tensão plana, e torção pura, segundo o modelo de Dowling.

Nas peças com entalhes, outra variação da regra de Neuber precisa ser utilizada para calcular σ_1 (e depois ε_1) a partir de \mathfrak{E}_{Mises} segundo Dowling:

$$\frac{(\mathfrak{G}_{Mises})^2}{E} = \sigma_1 \cdot \varepsilon_1 = \frac{\sigma_1^2}{E^*} + \sigma_1 \cdot \left(\frac{\sigma_1}{H_c^*}\right)^{1/h_c}$$
(13)

As outras tensões e deformações principais são obtidas a partir de σ_1 e ϵ_1 :

$$\sigma_{2} = \lambda_{2}\sigma_{1}, \quad \sigma_{3} = 0$$

$$\varepsilon_{2} = \phi_{2}\varepsilon_{1}, \quad \varepsilon_{3} = -\overline{\nu}\varepsilon_{1}\frac{1+\lambda_{2}}{1-\lambda_{2}\overline{\nu}}, \quad \overline{\nu} = \frac{1}{2} - (\frac{1}{2}-\nu)\frac{\sigma_{1}}{E^{*}\varepsilon_{1}}$$
(14)

A maior deformação cisalhante γ_{max} pode ser então calculada pela máxima diferença entre as deformações principais ε_i (i = 1, 2, 3), obtendo-se assim tanto sua intensidade quanto o plano em que ela ocorre.

É importante notar que os três modelos apresentados (formulados usando a curva $\sigma\epsilon$ cíclica) também podem ser aplicados à curva dos laços de histerese, bastando substituir em cada equação ϵ por $\Delta\epsilon/2$ e também σ por $\Delta\sigma/2$. Os modelos são comparados a seguir.

3 COMPARAÇÃO ENTRE OS MODELOS MULTIAXIAIS

Os modelos multiaxiais apresentados são comparados considerando-se um eixo entalhado de aço 1020 com diâmetro *d* igual a 60mm sob um fletor alternado M_a de 2kNm e um torçor alternado T_a de 3kNm, em fase, com fatores de concentração de tensão à flexão K_{tM} igual a 3.4 e à torção K_{tT} igual a 2.4.

Assumindo a tensão nominal alternada σ_{na} como elástica

$$\sigma_{n_a} = \frac{\sqrt{(32M_a)^2 + 3(16T_a)^2}}{\pi d^3}$$
(15)

obtém-se σ_{na} = 155MPa. Essa tensão é menor que a resistência ao escoamento cíclico S_{Ec} = 241MPa, portanto a hipótese de σ_{na} elástica é em princípio válida.

Utilizando-se o método do maior K_t , através do maior K_t = 3.4, calcula-se σ_a e ε_a usando Mises e Neuber

$$(K_{t}\sigma_{n_{a}})^{2} = (3.4 \cdot 155)^{2} = \sigma_{a}\varepsilon_{a}E = \sigma_{a}^{2} + 203000 \cdot \sigma_{a} \left(\frac{\sigma_{a}}{772}\right)^{1/0.18} \stackrel{\sigma_{a}}{\Rightarrow} \{ \sigma_{a} = 279MPa \\ \varepsilon_{a} = 0.49\%$$
(16)

e então obtém-se a vida N do eixo:

$$\frac{\Delta\varepsilon}{2} = \varepsilon_a = \frac{896}{203000} (2N)^{-0.12} + 0.41 (2N)^{-0.51} \Rightarrow N = 5871 \text{ ciclos}$$
(17)

Para utilizar os modelos tensão-deformação multiaxiais, calculam-se primeiro as tensões hookeanas na raiz do entalhe, considerando os K_{tM} = 3.4 e K_{tT} = 2.4 como puramente elásticos:

$$\mathfrak{E}_{a_{Mises}} = \sqrt{\left(K_{t_M}\sigma_M\right)^2 + 3\left(K_{t_T}\tau_T\right)^2} = \frac{\sqrt{\left(3.4 \cdot 32 \cdot M_a\right)^2 + 3\left(2.4 \cdot 16 \cdot T_a\right)^2}}{\pi \left(0.060\right)^3}$$
(18)

$$\mathfrak{E}_{a_{1,2}} = \frac{K_{t_M} \sigma_M}{2} \pm \sqrt{\left(\frac{K_{t_M} \sigma_M}{2}\right)^2 + \left(K_{t_T} \tau_T\right)^2} = 160 \pm 234 MPa \tag{19}$$

Assim, estas tensões hookeanas valem $\mathfrak{E}_{a_{Mises}}$ = 435MPa, \mathfrak{E}_{a_1} = 394MPa, \mathfrak{E}_{a_2} = -73MPa e \mathfrak{E}_{a_3} = 0, que podem ser correlacionadas às deformações hookeanas principais por Hooke (considerando v = 0.3):

$$\begin{aligned} & \&_{a_1} = [394 - 0.3(-73 + 0)] / 203000 = 0.205\% \\ & \&_{a_2} = [-73 - 0.3(394 + 0)] / 203000 = -0.094\% \\ & \&_{a_3} = [0 - 0.3(-73 + 394)] / 203000 = -0.047\% \end{aligned}$$
(20)

$$\mathscr{E}_{a_{Mises}} = \frac{1}{\sqrt{2(1+v)}} \sqrt{(\mathscr{E}_{a_1} - \mathscr{E}_{a_2})^2 + (\mathscr{E}_{a_1} - \mathscr{E}_{a_3})^2 + (\mathscr{E}_{a_2} - \mathscr{E}_{a_3})^2} = 0.214\%$$
(21)

Pelos modelos das razões constantes e Hoffmann-Seeger [2]

$$\frac{\mathfrak{E}_{a_{Mises}}^{2}}{E} = 0.93 = \frac{\sigma_{a_{Mises}}^{2}}{E} + \sigma_{a_{Mises}} \cdot \left(\frac{\sigma_{a_{Mises}}}{772}\right)^{1/0.16} \Rightarrow \sigma_{a_{Mises}} = 259 MPa$$
(22)

$$\varepsilon_{a_{Mises}} = \frac{\sigma_{a_{Mises}}}{203000} + \left(\frac{\sigma_{a_{Mises}}}{772}\right)^{1/0.18} \Rightarrow \varepsilon_{a_{Mises}} = 0.360\%$$
(23)

Como esperado, $\sigma_{a_{Mises}} < \mathfrak{E}_{a_{Mises}}$ e $\varepsilon_{a_{Mises}} > \mathfrak{E}_{a_{Mises}}$ pois, ao considerar o escoamento em Neuber, a tensão diminui e a deformação aumenta.

Pelo modelo das razões constantes, usam-se as deformações e tensões hookeanas para estimar $\lambda_{\text{Mises}} = 1.105$, $\lambda_2 = -0.185$, $\lambda_3 = 0$, $\phi_{\text{Mises}} = 1.046$, $\phi_2 = -0.460$ e $\phi_3 = -0.231$, e assim as tensões e deformações alternadas principais valem

$$\sigma_{a_1} = 259/1.1 = 235MPa, \quad \sigma_{a_2} = \lambda_2 \sigma_{a_1} = -44MPa, \quad \sigma_{a_3} = 0$$

$$\varepsilon_{a_1} = 0.359\%/1.046 = 0.344\%, \quad \varepsilon_{a_2} = \phi_2 \varepsilon_{a_1} = -0.158\%, \quad \varepsilon_{a_3} = \phi_3 \varepsilon_{a_1} = -0.080\%$$
(24)

Já pelo modelo de Hoffmann-Seeger [2], obtém-se

$$\overline{\nu} = \frac{1}{2} - \left(\frac{1}{2} - \nu\right) \frac{\sigma_{a_{Mises}}}{E \cdot \varepsilon_{a_{Mises}}} = 0.5 - 0.2 \frac{259}{203000 \cdot 0.00359} = 0.429$$

$$\overline{\lambda}_{2} = \frac{\phi_{2} + \overline{\nu}}{1 + \phi_{2}\overline{\nu}} = \frac{-0.46 + \overline{\nu}}{1 - 0.46\overline{\nu}} = -0.0387, \quad \overline{\lambda}_{Mises} = \sqrt{1 - \overline{\lambda}_{2} + \overline{\lambda}_{2}^{2}} = 1.02$$
(25)

resultando em tensões e deformações alternadas principais

$$\begin{cases} \sigma_{a_{1}} = 259/1.02 = 254MPa, \quad \sigma_{a_{2}} = -0.0387 \cdot \sigma_{a_{1}} = -10MPa, \quad \sigma_{a_{3}} = 0\\ \epsilon_{a_{1}} = (1 - \overline{\lambda}_{2}\overline{\nu}) 0.360\%/1.02 = 0.359\%, \quad \epsilon_{a_{2}} = \phi_{2}\epsilon_{a_{1}} = -0.165\% \\ \epsilon_{a_{3}} = -\overline{\nu}\epsilon_{a_{1}}(1 + \overline{\lambda}_{2})/(1 - \overline{\lambda}_{2}\overline{\nu}) = -0.146\% \end{cases}$$
(26)

Dowling [3] usa as razões (elásticas) $\lambda_2 = -0.185$ e $\phi_2 = -0.460$ para calcular os parâmetros de encruamento efetivo

$$E^{*} = \left(\frac{1 + \phi_{2}v}{1 - v^{2}}\right) \cdot E = \left(\frac{1 - 0.46 \cdot 0.3}{1 - 0.3^{2}}\right) \cdot 203GPa = 192GPa$$
(27)

$$H_{c}^{*} = 772MPa \cdot \left(\frac{2}{2-\lambda_{2}}\right)^{0.78} (1-\lambda_{2}+\lambda_{2}^{2})^{0.5(0.18-1)} = 700MPa$$
(28)

$$\frac{(\mathfrak{E}_{a_{Mises}})^{2}}{E} = 0.93 = \sigma_{a_{1}} \cdot \varepsilon_{a_{1}} = \frac{\sigma_{a_{1}}^{2}}{E^{*}} + \sigma_{a_{1}} \cdot \left(\frac{\sigma_{a_{1}}}{H_{c}^{*}}\right)^{1/h_{c}} \Longrightarrow \begin{cases} \sigma_{a_{1}} = 240MPa \\ \varepsilon_{a_{1}} = 0.388\% \end{cases}$$
(29)

$$\begin{cases} \sigma_{a_{2}} = \lambda_{2} \sigma_{a_{1}} = -45 MPa, & \sigma_{a_{3}} = 0 \\ \epsilon_{a_{2}} = \phi_{2} \epsilon_{a_{1}} = -0.179\%, & \epsilon_{a_{3}} = -\overline{v} \epsilon_{a_{1}} \frac{1 + \lambda_{2}}{1 - \lambda_{2} \overline{v}} = -0.127\% \ (\overline{v} = 0.436) \end{cases}$$
(30)

Para todos os modelos utilizados, a amplitude de deformação cisalhante máxima é calculada por $\gamma_{amax} = \varepsilon_{a1} - \varepsilon_{a2}$, assumindo-se as direções 1 e 2 como respectivamente as de máxima e mínima deformação principal. As máximas deformações e tensões normais no plano de γ_{amax} são

$$\varepsilon_{a\perp} = (\varepsilon_{a1} + \varepsilon_{a2})/2$$
 e $\sigma_{a\perp} = (\sigma_{a1} + \sigma_{a2})/2$ (31)

Como neste problema as tensões e deformações médias são nulas, as variáveis usadas pelos modelos deformação-vida de Brown-Miller [4], Fatemi-Socie [5] e Smith-Topper-Watson (STW) [6] são respectivamente $\Delta \epsilon_{\perp} = 2\epsilon_{a\perp}$, $\sigma_{\perp max} = \sigma_{a\perp} e \sigma_{\perp 1max} = \sigma_{a1}$.

A Tabela 1 resume as tensões e deformações obtidas elasticamente (valores hookeanos, que não devem ser usados pois não modelam o escoamento), pelo método do maior K_t , e pelos três modelos multiaxiais: o das razões constantes [1], o de Hoffmann-Seeger [2], e o de Dowling [3].

	valores hookeanos	método do maior K _t	razões constantes	Hoffman- Seeger	Dowling
$\sigma_{a_{Mises}}$	435	279	259	259	265
[€] a _{Mises}	0.214%	0.488%	0.360%	0.360%	0.418%
σ _{a1}	394	253	235	254	240
σ _{a2}	-73	-47	-44	-10	-45
σ_{a_3}	0	0	0	0	0
٤ _{a1}	0.205%	0.466%	0.344%	0.359%	0.388%
٤ _{a2}	-0.094%	-0.215%	-0.158%	-0.165%	-0.179%
٤ _{a3}	-0.047%	-0.108%	-0.080%	-0.146%	-0.127%
γa _{max}	0.299%	0.681%	0.502%	0.524%	0.567%
$\Delta \epsilon_{\perp}$	0.111%	0.251%	0.186%	0.194%	0.209%
$\sigma_{\perp_{max}}$	160	103	95	122	98

Tabela 1. Tensões (MPa) e deformações previstas pelos modelos estudados.

Nota-se da Tabela 1 que o método do maior K_t é conservativo, em particular no cálculo das deformações, mas não demais, logo pode ser usado na prática. Os três modelos multiaxiais são em princípio mais precisos, e prevêem aproximadamente os mesmos valores.

Agora, usando e.g. o modelo de Dowling [3], pode-se calcular a vida à fadiga N através dos diversos modelos de dano. Considerando a curva εN e usando a deformação de Mises $\varepsilon_{aMises} = 0.418\%$, obtém-se

$$\frac{\Delta \varepsilon_{\text{Mises}}}{2} = \varepsilon_{a_{\text{Mises}}} = \frac{896}{203000} (2N)^{-0.12} + 0.41 (2N)^{-0.51} \Longrightarrow N = 8765 \text{ ciclos}$$
(32)

Se ao invés da curva ϵN considerarmos a curva γN , estimando seus coeficientes através de $\tau_c \cong \sigma_c/\sqrt{3}$, $b_\gamma \cong b$, $\gamma_c \cong \epsilon_c\sqrt{3}$ e $c_\gamma \cong c$, e usando $\gamma_{amax} = 0.567\%$, obtém-se

$$\frac{\Delta \gamma_{max}}{2} = \gamma_{a_{max}} = \frac{1.5 \cdot 896}{203000} (2N)^{-0.12} + 1.73 \cdot 0.41 (2N)^{-0.51} \Longrightarrow N = 14693 \text{ ciclos}$$
(33)

Considerando-se o modelo de Brown-Miller [4], com suas constantes estimadas por $\alpha_{BM} \cong 0.3$, $\beta_1 = 1.3 + 0.7 \cdot \alpha_{BM} = 1.51$ e $\beta_2 = 1.5 + 0.5 \cdot \alpha_{BM} = 1.65$, e $\Delta \epsilon_{\perp} = 0.209\%$, então

$$\frac{\Delta \gamma_{max}}{2} + \alpha_{BM} \Delta \varepsilon_{\perp} = \beta_1 \frac{896}{203000} (2N)^{-0.12} + \beta_2 \cdot 0.41 (2N)^{-0.51} \Longrightarrow N = 10290 \text{ ciclos}$$
(34)

O modelo de Fatemi-Socie [5], usando $\alpha_{FS} \cong S_{Ec}/\sigma_c = 241MPa/896MPa \cong 0.27$ e a curva γN estimada como feito acima, e $\sigma_{\perp max} = 98MPa$, resulta em

$$\frac{\Delta \gamma_{max}}{2} (1 + \alpha_{FS} \frac{\sigma_{\perp max}}{S_{Ec}}) = \frac{1.5 \cdot 896}{203000} (2N)^{-0.12} + 1.73 \cdot 0.41 (2N)^{-0.51} \Longrightarrow N = 11201 \text{ ciclos} (35)$$

E finalmente, considerando Smith-Watson-Topper [6], modelo apropriado para materiais mais sensíveis às tensões normais, onde $\Delta \varepsilon_1/2 = \varepsilon_{a1} = 0.388\%$ e, como as cargas médias são nulas, $\sigma_{\perp 1max} = \sigma_{a1} = 240$ MPa, obtém-se

$$\frac{\Delta\varepsilon_1}{2} \cdot \sigma_{\perp 1_{max}} = \frac{896^2}{203000} (2N)^{-2 \cdot 0.12} + 896 \cdot 0.41 (2N)^{-(0.12+0.51)} \Longrightarrow N = 13577 \, ciclos \quad (36)$$

As contas acima, baseadas nas tensões e deformações de Dowling, são refeitas considerando valores hookeanos, o método do maior K_t , e os modelos das razões constantes e de Hoffmann-Seeger, e os resultados são resumidos a seguir.

	Mises +		Brown-	Fatemi-	
	curva εN	curva γ <i>N</i>	Miller	Socie	STW
valores hookeanos	59500	94300	63000	56200	18300
método do maior K _t	5900	9120	6440	6940	8470
razões constantes	13000	20300	14100	15500	18300
Hoffmann-Seeger	13000	18100	12600	12900	14200
Dowling	8770	14700	10300	11200	13600

Tabela 2. Vidas à fadiga (ciclos) previstas pelos modelos multiaxiais estudados.

Excluindo os resultados obtidos pelos valores hookeanos (que são bastante não-conservativos), todas as combinações de modelos multiaxiais de dano com os modelos de tensão-deformação resultaram em vidas similares, variando entre 5871 e 20322 ciclos. Desse modo, justifica-se em histórias proporcionais o uso de simplificações como o método do maior K_t e a curva εN aplicada a $\Delta \varepsilon_{\text{Mises}}/2$.

O péssimo modelo dos valores hookeanos superestima σ_{a1} e subestima ε_{a1} , mas curiosamente estima muito bem o produto $\sigma_{a1}\varepsilon_{a1}$ (pois, de acordo com Neuber, $\mathfrak{F}_{a_1}\mathfrak{F}_{a_1} \cong \sigma_{a_1}\varepsilon_{a_1}$), e por isso resulta em uma boa previsão de vida ao ser combinado com Smith-Watson-Topper, que se baseia neste produto.

Mas em histórias NP, o encruamento NP pode ter um papel importante na vida à fadiga. Além disso, nenhum dos modelos $\sigma\epsilon$ apresentados é válido no caso NP (pois todos assumiram ϕ_2 constante), e deve-se então usar métodos de plasticidade incremental [1].

4 CONCLUSÕES

Neste trabalho, os principais modelos multiaxiais de tensão-deformação e deformação-vida foram estudados e comparados. Conclui-se deste estudo que histórias multiaxiais necessitam de relações tensão-deformação diferentes das uniaxiais, apesar de muitas simplificações serem adequadas, como e.g. o método do maior K_t para entalhes. Como o ponto crítico de uma peça está em geral em sua superfície, muitas vezes uma análise 2D (sob tensão plana) é suficiente no projeto multiaxial à fadiga. Excluindo os resultados obtidos pelos valores hookeanos, que são bastante não-conservativos, todas as combinações de modelos multiaxiais de dano baseados em deformação com modelos de tensão-deformação resultaram em vidas similares dentro de um fator de dois para os casos estudados. As melhores previsões são feitas por modelos multiaxiais que usam a idéia do plano crítico, plano esse no qual os parâmetros de dano são maximizados. No entanto, nenhum dos modelos estudados é válido no caso de encruamento não-proporcional, que pode ter um papel importante na vida à fadiga sobretudo nos aços inox.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1 SOCIE, D.F.; MARQUIS, G.B. Multiaxial Fatigue. SAE International, 1999.
- 2 HOFFMANN, M.; SEEGER, T. A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains, Part 1: Theory. J. Eng. Materials & Technology, v.107, pp.250-254, 1985.
- 3 DOWLING, N.E.; BROSE, W.R.; WILSON, W.K. Notched Member Fatigue Life Predictions by the Local Strain Approach. **Fatigue Under Complex Loading: Analysis and Experiments**, AE-6, SAE, 1977.
- 4 BROWN, M.; MILLER, K.J. A Theory for Fatigue Under Multiaxial Stress-Strain Conditions. **Institute of Mech. Engineers**, v.187, pp.745-756, 1973.
- 5 FATEMI, A.; SOCIE, D.F. A Critical Plane Approach to Multiaxial Damage Including Out-of-Phase Loading. **Fatigue and Fracture of Eng. Materials and Structures**, v.11, n.3, pp.149-166, 1988.
- 6 SMITH, R.N.; WATSON, P.; TOPPER, T.H. A Stress-Strain Parameter for the Fatigue of Metals. J. of Materials, v.5, n.4, p.767-778, 1970.

COMPARISON AMONG FATIGUE LIFE PREDICTION METHODS UNDER MULTIAXIAL LOADING II – STRESS VS. STRAIN MODELS

Marco Antonio Meggiolaro Jaime Tupiassú Pinho de Castro

Abstract

One key issue in multiaxial fatigue design is the calculation of elastic-plastic stresses from multiaxial strains. Hooke's law cannot be used to correlate stresses and strains for short lives due to plasticity effects. Ramberg-Osgood cannot be used either to directly correlate principal stresses and strains under multiaxial loading, because this model has been developed for the uniaxial case. In this way, to incorporate plasticity effects, four models are studied and compared to correlate stresses and strains under proportional loading: the method of the highest K_t , the constant ratio model, Hoffmann-Seeger's and Dowling's models.

Key-words: Multiaxial fatigue; Crack initiation; Stress-strain models.