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ABSTRACT 

Three classes of mechanisms can cause load sequence effects on fatigue crack growth, depending if they act 
before, at or after the crack tip. Critical Damage is a mechanism of the latter type, where the fatigue cracking is 
assumed caused by the sequential failure of volume elements (VE) close to the crack tip, calculated by damage 
accumulation concepts. The crack is treated as a sharp notch, avoiding the unrealistic singularity at its tip. The 
crack stress concentration factor and a strain concentration rule are used to calculate the notch root strain, which 
gives a non-singular model for the strain distribution ahead of the crack tip. The damage caused by each load 
cycle, including the effects of residual stresses, are calculated at each VE using the corrected hysteresis loops 
caused by the loading. This proposed approach is first validated by comparing the measured with the predicted 
da/dN×∆K curves of three structural alloys. The predictions are made using only εN, toughness and threshold 
properties, since the model does not need any fitting constant. This idea is then extended to predict fatigue 
crack growth under variable amplitude loading, assuming that the width of the volume element broken at each 
cycle is equal to the region ahead of the crack tip that suffers damage beyond its critical value.  
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INTRODUCTION 

There are many mechanisms that can retard or accelerate the growth of a fatigue crack after significant load 
amplitude variations [1-3]. Moreover, these mechanisms generally can act simultaneously, with their relative 
importance in any problem depending on several factors such as crack and piece sizes, dominant stress state at 
the crack tip, microstructure of the material, mean load, and environment. These load interaction mechanisms 
can act behind, at or ahead of the crack tip, and among them the most important are 

• crack closure (behind the crack tip), which can be caused by plasticity, oxidation or roughness of the 
crack faces, or even by strain induced phase transformation, e.g., 

• crack tip blunting, kinking or bifurcation (at or close to the crack tip), and 
• residual stress and strain fields (ahead of the crack tip). 

Most models of load sequence effects in fatigue crack growth (FCG) are still based on plasticity-induced crack 
closure, despite some important limitations. However, there are several important problems that cannot be 
explained by the effective stress intensity range ∆Keff concept. For example, a strong objection [4] against crack 
closure is based on convincing experimental evidence such as fatigue crack growth threshold values ∆Kth that 
are higher in vacuum than in air. Another important problem that cannot be explained by the Elber mechanism 
is the crack delays or arrests under high R = Kmin/Kmax ratios, when the minimum value Kmin of the applied 
range ∆K = Kmax − Kmin always remains above Kop, the (measured) load that opens the fatigue crack [5-6]. 



THE NON-SINGULAR DAMAGE MODEL  
The damage ahead of a fatigue crack tip can be estimated using simple but sound hypotheses and standard 
fatigue calculations, supposing that fatigue cracks grow by sequentially breaking small volume elements (VE) 
ahead of their tips, which fracture when the crack tip reaches them because they accumulated all the damage the 
material can support. In this way, εN procedures can be combined with fracture mechanics concepts to predict 
FCG, using the cyclic properties of the material and the strain distribution ahead of the crack tip. These models 
can consider the VE width in the FCG direction as being the distance that the crack grows on each cycle, or the 
FCG rate as being the VE width divided by the number of cycles that the crack would need to cross it. Critical 
damage models are not new [7-13], but still need improvements. Most models assume a singular stress/strain 
field ahead of the crack tip (concentrating in this way all the damage next to the tip) and need some adjustable 
constant to fit the FCG da/dN data, compromising their prediction potential. But the supposed singularity at the 
crack tip is a characteristic of the mathematical models that postulate a zero radius tip, not of the real cracks, 
which have a blunt tip when loaded (and finite strains at their tip, or else they would be unstable). 

To avoid this problem, the actual finite strain range at the crack tip ∆εtip can be estimated using the stress 
concentration factor Kt for the blunt crack [14] and a strain concentration rule. The strain range field ahead of 
the crack tip can then be upper-bounded by ∆εtip (e.g. by assuming ∆εtip constant where the singular solution 
would predict strains greater than ∆εtip). Supposing that all fatigue damage occurs inside this region next to the 
tip, the number of cycles N* associated with ∆εtip can be obtained from Coffin-Manson’s rule, and the FCG rate 
can as the length of this region divided by N*. But such models have two shortcomings. First, neglecting the 
fatigue damage elsewhere concentrates it in the very last N* cycles, a non-conservative hypothesis. Second, 
assuming an intermittent and not a cycle-by-cycle FCG, although valid in some cases of crazing in polymers, is 
certainly not true for most metallic structures, as verified by microscopic observations of fatigue striations.  

To avoid these limitations, the model proposed here [6, 11-13] uses Schwalbe’s modification [8] of the HRR 
field to represent the strain range distribution ahead of the crack tip, and (ii) removes the crack tip singularity  
by shifting the origin of the strain field from the crack tip to a point inside the crack, located by matching the tip 
strain with ∆εtip predicted by a strain concentration rule, such as Neuber [15], Molsky and Glinka [16], or the 
linear rule [17]. This approach recognizes that the strain range ∆ε(r, ∆K) in an unbroken VE increases and 
causes damage in each load cycle as the crack tip approaches it, see Figure 1. Therefore, the VE closest to the 
tip breaks due to the sum of all damages it suffered during the previous load cycles. In this way, the fatigue 
crack growth rate under constant ∆K is modeled by the sequential failure of identical VE ahead of the crack tip.  

 
Figure 1: Schematics of the FCG assumed to be caused by the sequential fracture of volume elements (or tiny 
εN specimens) at every load cycle, loaded by an increasing strain history as the crack tip approaches them. 
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This model is then extended to deal with the VA loading case, which has idiosyncrasies that must be treated 
appropriately. First, the VE that breaks in any given cycle has variable width, which should be calculated by 
locating the point ahead of the crack tip where the accumulated damage reaches a specified value (e.g. 1.0 when 
using Miner’s rule). Load sequence effects, such as overload-induced crack growth retardation, are associated 
with hysteresis loop shifts and with mean load effects on the material εN curve, and can be calculated using the 
powerful numerical tools available in the ViDa software [18]. Moreover, this model can recognize an opening 
load, and thus can separate the cyclic damage from the closure contributions to the crack growth process. 

Constant Amplitude Loading 
In every load cycle, each VE ahead of the crack tip suffers strain hysteresis loops of increasing range as the tip 
approaches it, and suffers a damage increment that depends on the strain range in that cycle, thus on ri, the 
distance from the i-th VE to the tip and on the load ∆Kj at that event. The fracture of a VE near the crack tip 
occurs when its accumulated damage reaches a critical value, e.g. by Miner’s rule, Σnj/Nj = 1, where nj is the 
number of cycles of the j-th load event and Nj is the number of cycles that the piece would last if loaded solely 
by that event. If under constant ∆K (or ∆Keff) the fatigue crack advances a fixed distance δa in every load 
cycle, and if, for simplicity, the damage outside the cyclic plastic zone zpc is neglected, there are thus zpc/δa 
VE ahead of the crack tip at any instant. Since the plastic zone advances with the crack, each new load cycle 
breaks the VE adjacent to the crack tip, induces an increased strain range in all other unbroken VE, and adds a 
new element to the damage zone. Thus, as each load cycle causes a growth increment, nj = 1. Moreover, since 
the VE are considered as small εN specimens, they break when: 
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where N(ri) = N(zpc − i⋅δa), the fatigue life corresponding to the plastic strain range ∆εp(ri) acting at a distance 
ri from the crack tip, can be calculated using the plastic part of Coffin-Manson’s rule:  
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∆εp(ri) in its turn can be described by Schwalbe’s [8] modification of the HRR field: 
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where SYc is the cyclic yield strength, hc the Ramberg-Osgood cyclic hardening exponent, and zpc is the cyclic 
plastic zone size in plane strain, which can be estimated, e.g., by [12] (ν is Poisson’s coefficient): 
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The HRR field describes the plastic strains ahead of an idealized crack tip, thus it is singular at r = 0. But an 
infinite strain is physically impossible (which does not mean that singular models are useless, but only that the 
damage close to the crack tip is not predictable by them). To eliminate this unrealistic strain singularity, the 
origin of the HRR coordinate system is shifted into the crack by a small distance X, copying Creager and Paris 
idea [14]. Approximating the VE width δa by a differential da at a distance dr ahead of the crack tip and the 
Miner’s summation by an integral, which is easier to deal with: 
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To determine X and N(r + X) two paths can be followed. The first uses Creager and Paris’  X = ρ/2, ρ being 
the actual crack tip radius, estimated by ρ = CTOD/2, thus 

2max
Yc c

K (1 2 )CTOD 1X 2 4 E S 2(1 h
⋅ − νρ= = = ⋅

π⋅ ⋅ + )                   (7)

The second path is more reasonable. Instead of arbitrating the strain field origin offset, it determines X by 
first calculating the crack (linear elastic) stress concentration factor Kt [19]: 

t nK 2 K (= ∆ ∆σ ⋅ πρ )                       (8)

For any given ∆K and R it is possible to calculate ρ and Kt from (7) and (8), and then the strain range ∆εtip at 
the crack tip using a strain concentration rule. Assuming that the material stress-strain behavior is parabolic 
with cyclic strain hardening coefficient Hc and exponent hc, with a negligible elastic range, the Linear, Neuber 
and Molsky and Glinka concentration rules give, respectively: 
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After calculating ∆εtip at the crack tip using one of these rules, the shift X of the HRR origin is obtained by:   
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The strain distribution at a distance r ahead of the crack tip, ∆εp(r + X), without the singularity problem at the 
crack tip, can now be readily obtained by: 
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This prediction was experimentally verified in SAE1020 and API 5L X-60 steels and in a 7075 T6 Al alloy, 
using (13) to obtain the constant of a McEvily-type da/dN equation, which describes the da/dN×∆K curves 
using only one adjustable parameter: 

[ ] (2 cth
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where Kc and ∆Kth(R) are the material fracture toughness and crack propagation threshold at the load ratio R. 
To guarantee the consistence of this experimental verification, Kc, ∆Kth(R), the εN and the da/dN data were all 
obtained by testing proper specimens manufactured from the same stock of the 3 materials, following ASTM 
standards. The API 5L X-60 da/dN×∆K experimental curves is compared with this simple model predictions in 
Figure 2 (see [6] for the other curves). Both the shape and the magnitude of the data are quite reasonably 
reproduced by this model, with the Linear rule generating better predictions probably because the tests were 
made under predominantly plane-ε conditions. Since no adjustable constant was used in this modeling, it can be 
concluded that this performance is no coincidence. 
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Figure 2: da/dN×∆K behavior measured and predicted by the various strain concentration rules used in the 
critical damage model, for API-5L-X60 pipeline steel at R = 0.1 and R = 0.7. 

But some remarks are required. First, damage beyond zpc was neglected to simplify the numerical calculations, 
but as it accumulates at all points ahead of the crack tip, it is wiser to choose the damage origin by numerically 
testing its influence on da/dN, or better by comparing the predictions with FCG tests, as done later on. Second, 
FE calculations [19] indicate that there is a region adjacent to the blunt crack tip with a strain gradient much 
lower than predicted by the HRR field. These problems can be avoided by shifting the origin away from the tip 
by x2 and assuming the crack-tip strain range ∆εtip constant over the region I of length x1+x2 shown in Figure 3. 
x1 can be obtained equating ∆εtip and the HRR-calculated strain range, and the crack-tip stress range ∆σtip from: 
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Then, following Irwin’s classical idea, the value of the shift x2 is obtained by integrating the stress field σ(r), 
guaranteeing that the shadowed areas below the curves in Figure 40 are the same: 
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Since x1 < zpc, ∆σ(r) in the above integral can be described by the HRR solution, resulting in 
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These simple tricks generate a more reasonable strain distribution model (Figure 3):  

tip(r)∆ε = ∆ε , 0 ≤ r ≤ x1 + x2 (region I)                 (18) 
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, x1 + x2 < r ≤ zpc + x2 (region II, shifted HRR)        (19) 
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where κ = 1 for plane stress and κ = 1/(1 − 2ν) for plane strain, and 
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Figure 3: Proposed strain range distribution, divided in 4 regions to consider both the elastic and the plastic 
contributions to the damage ahead of the crack tip. 

Both CA and VA FCG can then be calculated using equations (18-22), which consider all the damage ahead of 
the crack tip and provide a more realistic model of the FCG process. But (2), (5) and (13) must be modified to 
include elastic parameters σc and b, and to account for the mean load σm effects on the VE life using Morrow 
elastic, Morrow elastic-plastic or Smith-Topper-Watson equations. But the life N in these equations cannot be 
explicitly written as a function of the VE strain range and mean load and thus must be calculated numerically, a 
programming task that, despite introducing no major conceptual difficulty, is far from trivial [18]. 

Variable Amplitude Loading 
The da/dN×∆K curve predicted for CA can be used with some load interaction engineering model in the ViDa 
software for VA problems. But the idea here is to directly quantify the fatigue damage induced by the VA load 
considering the crack growth as caused by the sequential fracture of variable size VE ahead of the crack tip. 
Since the Linear strain concentration rule generated better predictions above, it is the only one used here, and as 
load interaction effects can have a significant importance in FCG, they are modeled by using Morrow elastic 
equation to describe the VE fatigue life: 
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To account for mean load effects, a modified stress intensity range can be easily implemented for R > 0 to filter 
the loading cycles that cause no damage by using: 

PRPRmaxeff KR1
KKKK −
−
∆=−=∆                  (24) 

where KPR is a propagation threshold that depends on the considered retardation mechanism, such as Kop or 
Kmax

* from the Unified Approach [4]. The damage function for each cycle is then: 
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If the material ahead of the crack is supposed virgin, then its increment δa1 caused by the first load event is the 
value r = r1 that makes Equation (30) equal to one, therefore: 

( )1 1 1 1 1d r X 1      a r+ = ⇒ δ =                     (26) 

In all subsequent events, the crack increments take into account the damage accumulated by the previous 
loading, in the same way it was done for the constant loading case. But as the coordinate system moves with the 
crack, a coordinate transformation of the damage functions is necessary: 
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Since the distance r = ri where the accumulated damage equals one in the i-th event is a variable that depends 
on ∆Ki (or ∆Keffi) and on the previous loading history, VE of different widths may be broken at the crack tip 
by this model. This idea is illustrated by the events schematized in Figure 4. 

 
Figure 4: Schematics of the critical damage calculations, which under variable amplitude loading recognize 
variable crack increments by forcing the crack to grow over the region where D = 1. 

RESULTS AND DISCUSSIONS 

FCG tests under VA loading were performed on API-5L-X52 steel 50×10mm C(T) specimens, pre-cracked 
under CA at ∆K = 20MPa√m until reaching crack sizes a ≅ 12.6mm. These cracks were measured within 
20µm accuracy by optical methods and by a strain gage bonded at the back face of the C(T). The basic 
monotonic and cyclic properties, measured in computer-controlled servo-hydraulic machines using standard 
ASTM testing procedures, are E = 200⋅103, SU = 527, SY = 430, SYc = 370, Hc = 840, and σc = 720 (all in MPa), 
hc = 0.132, εc = 0.31, b = -0.076 and c = -0.53. About 50 specimens were tested under deformation ratios 
varying from R = −1 to R = 0.8 (at least 2 at each strain range) to obtain the εN curve, see Figure 5. Morrow’s 
strain-life equation (25), which includes the mean stress effect only in Coffin-Manson’s elastic term, best fit the 
experimental data. The basic da/dN curve, measured using the same equipment, is fitted by da/dN(R = 0.1) = 
2⋅10−10(∆K − 8)2.4 (in m/cycle), where ∆Kth(R = 0.1) = 8MPa√m. 



 
Figure 5: API 5L X52 steel measured strain-life data, and Morrow elastic model that best fitted this data. 

FCG tests were then conducted under several VA histories. The history shown in Figure 6 has 50,000 blocks 
containing 100 reversals each. The high mean stress levels were chosen to avoid crack closure effects. The load 
history was counted by the sequential rain-flow method, using the ViDa software [18]. The damage calculation 
was made using a specially developed code following all the procedures discussed above. The crack growth 
predictions based solely on εN parameters are again quite reasonable, see Figure 7. The prediction assuming no 
damage outside the cyclic plastic zone zpc underestimated the crack growth. However, when the small (but 
significant) damage in the material between the cyclic and monotonic plastic zone borders is also included in 
the calculations, an even better agreement is obtained. Note also that crack growth is slightly underestimated 
after 1.8⋅106 cycles, probably due to having neglected the elastic damage and the (small) mean stress effects. 

 
Figure 6: Variable amplitude load block applied to the API-5L-X52 steel C(T). Note the high mean R-ratio. 

A similar test was conducted on AISI 1020 steel, with measured properties E = 205GPa, SU = 491, SY = 285, 
SYc = 270, Hc = 941 and σc = 815MPa, hc = 0.18, εc = 0.25, b = −0.114, and c = −0.54. The FCG curve fit is 
da/dN = 5⋅10−10⋅(∆K − ∆Kth)2⋅{Kc/[Kc − ∆K/(1 − R)]}, where ∆Kth = 11.6 and Kc = 277 (∆K, ∆Kth and Kc in 
MPa√m and da/dN in m/cycle). The VA load history is a series of blocks containing 101 peaks and valleys, as 
shown in Figure 8, with a duration of two seconds each. Figure 9 compares the predictions with the measured 
data. This other prediction of fatigue crack growth under VA based only on εN properties turns out to be again 
quite accurate. Therefore, these tests indicate that the ideas behind the proposed critical damage model make 
sense and deserve to be better explored. 

CONCLUSIONS 
Several mechanisms can cause load sequence effects on fatigue crack growth, and they may act before, at or 
after the crack tip. Plasticity-induced crack closure is the most popular of them, but it cannot explain sequence 
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effects in various important problems. A damage accumulation model ahead of the crack tip based on εN cyclic 
properties, which can explain those effects in the absence of closure, was proposed for predicting fatigue crack 
propagation under variable amplitude loading. The model treats the crack as a sharp notch with a small but 
finite radius to avoid singularity problems, and calculates damage accumulation explicitly at each load cycle. 
Experimental results show a good agreement between measured crack growth both under constant and variable 
amplitude loading and the predictions based purely on εN data. 

 
Figure 7: Comparison between the crack growth measurements and the εN-based predictions for the variable 
amplitude load presented in Figure 44 (API-5L-X52 steel). 

 
Figure 8: VA load block applied to the SAE 1020 steel C(T). Again a high mean R-ratio was used in this test, 
to avoid the interference of possible significant closure effects which could mask the model performance. 

 
Figure 9: Comparison between the crack growth measurements and the εN-based predictions for the variable 
amplitude load presented in Figure 46 (SAE 1020 steel). 
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