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ABSTRACT 
 
In this work, cracks emanating from circular holes are studied using finite elements. For several 
combinations of notch dimensions, the smallest stress range necessary to both initiate and propagate a crack 
is calculated, resulting in expressions for the fatigue stress concentration factor Kf and therefore the notch 
sensitivity q. A generalization of El Haddad-Topper-Smith’s parameter, which better correlates with 
experimental crack propagation data from the literature, is presented. It is found that the q estimates obtained 
from this generalization better correlate with Peterson’s experimental crack initiation data. 
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INTRODUCTION 
 
It is well known that the notch sensitivity factor q can be associated with the presence of non-propagating 
cracks. Such cracks are present when the nominal stress range ∆σn is between ∆σ0/Kt and ∆σ0/Kf, where ∆σ0 
is the fatigue limit, Kt is the geometric and Kf the fatigue stress concentration factors of the notch. Therefore, 
in principle it is possible to obtain expressions for q if the propagation behaviour of small cracks emanating 
from notches is known. 
 
Several expressions have been proposed to model the dependency between the threshold value ∆Kth of the 
stress intensity range and the crack size a for very small cracks [1]. Most of these expressions are based on 
length parameters such as El Haddad-Topper-Smith’s a0 [2], estimated from ∆Kth and ∆σ0, resulting in a 
modified stress intensity range 
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which is able to reproduce most of the behaviour shown in the Kitagawa-Takahashi plot [3]. Yu et al. [4] 
and Atzori et al. [5] have also used a geometry factor α to generalize the above equation to any specimen, 
resulting in 
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Alternatively, the stress intensity range can retain its original equation, while the threshold expression is 
modified by a function of the crack length a, namely ∆Kth(a), resulting in 
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where ∆K0 is the threshold stress intensity factor for a long crack. Several expressions have been proposed to 
model this crack size dependence [6-8]. Peterson-like expressions are then calibrated to q based on these 
crack propagation estimates. However, such q calibration is found to be extremely sensitive to the choice of 
∆Kth(a) estimate. 
 
In the following section, a generalization of El Haddad-Topper-Smith’s equation is proposed to better model 
the crack size dependence of ∆Kth. This expression is then applied to a single crack emanating from a 
circular hole, resulting in improved estimates of q. 
 
 
ANALYTICAL DEVELOPMENT 
 
A new expression for the threshold stress intensity factor of short cracks is proposed, based on El Haddad-
Topper-Smith’s equation: 
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In the above equation, n is typically found to be between 1.5 and 8.0. Clearly, Eqs. (1), (2) and (3) are 
obtained from Eq. (4) when n = 2.0. Also, the classical bi-linear estimate is obtained as n tends to infinity. 
The adjustable parameter n allows the ∆Kth estimates to better correlate with experimental crack propagation 
data collected from Tanaka et al. [9] and Livieri and Tovo [10], see Fig. 1. 
 
 

 
Figure 1: Ratio between short and long crack propagation thresholds as a function of a/a0. 

 



Equation (4) is now used to evaluate the behavior of short cracks emanating from circular holes. The stress 
intensity range of a single crack with length a emanating from a circular hole with radius r is expressed, 
within 1%, by [11] 
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Note that, when the crack size a tends to zero, Eq. (5) becomes 
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as expected, since the above equation combines the solution for an edge crack in a semi-infinite plate with 
the stress concentration factor of a circular hole, Kt equal to 3. Note also that the other limit, when a tends to 
infinity, results in 
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which is the solution for a crack with length a in an infinite plate, where one of its edges is far enough from 
the circular hole not to suffer its influence in the stress field (in fact, the equivalent crack length would be 
a+ρ, however as a tends to infinity the ρ value disappears from the equation). Therefore, it follows that for a 
circular hole f(x=0) = 3 and f(x→∞) = 1/1.1215√2 ≅ 0.63. 
 
From Eqs. (4-6), it follows that the crack will propagate when 
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Using α = 1.1215 and ∆Kth ≡ ∆K0 for a long crack, then the crack length parameter from the above equation 
is 
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Equations (9) and (10) result in a crack propagation criterion based on the dimensionless functions f and g: 
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Defining 
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then the crack propagates whenever 
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Figure 2 plots f and g, assuming a material/notch combination with k = 1.5 and n = 6, as a function of the 
normalized crack length x. For a high applied ∆σ, the ratio ∆σ0/∆σ becomes small, and the function g is 
always below f, meaning that a crack of any length will propagate. The lower curve in Fig. 2 shows the 
function g obtained from a ratio ∆σ0/∆σ = 1.4, never crossing f. On the other hand, for a ∆σ small enough 
such that ∆σ0/∆σ ≥ Kt = 3, then g is always above f and no crack will initiate nor propagate, as shown by the 
top curve in the figure. 
 

 
Figure 2: Calculation of the fatigue stress concentration factor Kf from the plots of the functions f and g. 

 
Three other cases can be noted, as follows. In the first case, the g curve with ∆σ0/∆σ = 2 in the figure above 
has only one intersection point with f. This means that such stress levels cause a crack to initiate at the notch, 
however it will only propagate until a size a = x⋅ρ obtained from the x value at the intersection point. 
Therefore, non-propagating cracks will appear at the notch root. 
 
In the second case, the g curve with ∆σ0/∆σ = 1.75 in the figure above has two intersection points with f. 
Therefore, non-propagating cracks will also appear, with maximum sizes obtained from the first intersection 
point (on the left). Interestingly, cracks longer than the value defined by the second intersection will re-start 
propagating until fracture. Crack growth between the two intersections would need to be caused by a 
different mechanism, e.g. corrosion or creep. 
 
Finally, the third case can be seen in Figure 2 considering the g curve with ∆σ0/∆σ = 1.64. In this case, both 
f and g functions are tangent and meet in a single point. This ∆σ0/∆σ value is therefore associated with the 
smaller stress range ∆σ that can cause crack initiation and propagation without arrest. So, by definition, this 
specific ∆σ0/∆σ is equal to the fatigue stress concentration factor Kf. To obtain Kf, it is then sufficient to 



guarantee that both functions f and g are tangent at a single point with x = xmax. This xmax value is associated 
with the largest non-propagating flaw that can arise from fatigue alone. So, given n and k from the material 
and notch, xmax and Kf can be solved from the system of equations: 
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This system can be solved numerically for each combination of k and n values, and the notch sensitivity 
factor q is then obtained from 
 

1
1
−

≡
−

f

t

K ( k ,n )
q( k ,n )

K
      (15) 

 
 
RESULTS 
 
For several combinations of k and n, the smallest stress range necessary to both initiate and propagate a 
crack is calculated from Eq. (14), resulting in expressions for Kf and therefore q, see Fig. 3. 
 

 
 

Figure 3: Notch sensitivity factors q as a function of the dimensionless parameters k and n. 
 
Note from the figure that q is approximately linear with 1/k for q >0. This results in the proposed estimate: 
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where q0(n) and q1(n) are functions of n, and q1(n) is typically between 0.85 and 1.15. Note that if the 
estimate above results in q larger than 1, then q = 1. This will happen at holes with a very large radius ρupper 
such that 
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Therefore, it is impossible to generate a non-propagating crack under constant amplitude loading in notches 
with a very large radius, regardless of the stress level. The stress gradient is so small in this case that any 
crack that initiates will cut through a long region still influenced by the stress concentration, preventing any 
possibility of crack arrest. Equation (14) will not have a solution for xmax > 0, because ∂g/∂x in this case will 
be more negative than ∂f/∂x at x = 0. 
 
On the other hand, it is possible to obtain a value of q smaller than zero, down to q = −0.2 for a circular hole, 
see Fig. 3. This can indeed happen for holes with a very small radius ρlower such that 
 

2
0 0 0

0 1 1 0
      

∆ ⎛ ⎞∆
< ⇒ < ⋅⎜ ⎟∆ ∆⎝ ⎠

lower
lower

q ( n ) q ( n ) K
K q ( n ) q ( n )

σ ρ
ρ

σ
0    (18) 

 
The physical meaning of a negative q is that it is easier to initiate and propagate a fatigue crack at a notchless 
border of the plate than at a very small hole inside the plate. The ∆KI of a crack at the small hole will soon 
tend to Eq. (8) due to the large stress gradient, without the 1.1215 factor, while the stress intensity solution 
for an edge crack will be larger since it includes the 1.1215 factor. In addition, for most materials, the size of 
this critical radius ρlower is just a few micrometers. This leads to the conclusion that internal defects with 
equivalent radius smaller than such ρlower of a few micrometers are harmless, since its Kf will be smaller than 
1, and the main propagating crack will initiate at the surface. 
 
Note that several estimates, such as Peterson’s, assume that the notch sensitivity is only a function of ρ and 
the ultimate strength Su. Equation (16), however, suggests that q depends basically on ρ, ∆σ0 and ∆K0, in 
addition to n. Even though there are reasonable estimates relating ∆σ0 and Su, there is no clear relationship 
between ∆K0 and Su. This means, e.g., that two steels with same Su but very different ∆K0 would have 
different behaviors that Peterson’s equation would not be able to reproduce. Therefore, notch sensitivity 
experiments should always include a measure of the ∆K0 of the material. 
 
Finally, data on 450 steels and aluminum alloys with fully measured Su, ∆σ0 and ∆K0 are collected from the 
ViDa software database [12]. The average values of ∆σ0 and ∆K0 are evaluated for steels with Su near the 
ranges 400, 800, 1200, 1600 and 2000MPa, and aluminum alloys near 225MPa. Equation (16) is then plotted 
as a function of the notch radius ρ, using the above averages and assuming n = 6, see Fig. 4. Note that 
Peterson’s equations, which were originally fitted to notch sensitivity experiments, can be reasonably 
predicted and reproduced using the proposed analytical approach. 
 
 
CONCLUSIONS 

 
A generalization of El Haddad-Topper-Smith’s parameter was presented to model the crack size dependence 
of the threshold stress intensity range for short cracks. The proposed expressions were used to calculate the 
behavior of non-propagating cracks. New estimates for the notch sensitivity factor were obtained and 
compared with Peterson’s results. It was found that the q estimates obtained from this generalization 
correlate well with crack initiation data. 
 
 
 



 
 

Figure 4: Predicted and experimentally fitted notch sensitivity factors as a function of notch radius for 
several materials. 
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