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Summary. In this work, an information-based iterative algorithm is proposed to 
plan a mobile robot’s visual exploration strategy, enabling it to most efficiently 
build a graph model of its environment. The algorithm is based on determining the 
information present in sub-regions of a 2-D panoramic image of the environment 
from the robot’s current location using a single camera fixed on the mobile robot. 
Using a metric based on Shannon’s information theory, the algorithm determines 
potential locations of nodes from which to further image the environment. Using a 
feature tracking process, the algorithm helps navigate the robot to each new node, 
where the imaging process is repeated. A Mellin transform and tracking process is 
used to guide the robot back to a previous node. The set of nodes and the images 
taken at each node are combined into a graph to model the environment. By trac-
ing its path from node to node, a service robot can navigate around its environ-
ment. Experimental results show the effectiveness of this algorithm. 

1 Introduction 

In the past decade, mobile service robots have been introduced into various 
non-industrial application areas such as entertainment, building services, 
and hospitals. The market for medical robots, underwater robots, surveil-
lance robots, demolition robots, cleaning robots and many other types of 
robots for carrying out a multitude of services has grown significantly 
(Thrun 2003). The algorithm complexity of personal and service robots has 
grown as a result from increased computational performance (Khatib 
1999). This growth in algorithm complexity has been in conjunction with 
growth in hardware costs, a discouraging factor when aiming for large 
markets. Although hardware costs have declined with respect to their so-
phistication, this economic trend will still require the replacement of com-
plex hardware architectures by more intelligent and cost-effective systems. 
Of particular interest here are the environment sensing abilities of the ro-
bot, thus algorithms must be developed to facilitate this behavior. 



Mobile robot environment mapping falls into the category of Simulta-
neous Localization and Mapping (SLAM). In SLAM, a robot localizes it-
self as it maps the environment. To achieve the localization function, land-
marks and their relative motions are monitored with respect to the vision 
systems. Although novel natural landmark selection methods have been 
proposed (Simhon et al. 1998), most SLAM architectures rely on identify-
ing distinct, recognizable landmarks such as corners or edges in the envi-
ronment (Taylor et al. 1998). This often limits the algorithms to well-
structured environments, with poor performance in highly textured envi-
ronments. 

These algorithms have been implemented for several different sensing 
methods, such as stereo camera vision systems (Se et al. 2002), laser range 
sensors (Tomatis et al. 2001), and ultrasonic sensors (Anousaki et al. 
1999). Sensing uncertainties have been investigated for single or multi-
robot systems (Roumeliotis et al. 2004). However, such relatively expen-
sive sensor suite is not suitable for many commercial applications for ser-
vice robots in large scale, which would require simplifications in hardware 
resources, lower setup costs, maintenance costs, computational resources 
and interface resources. The basic sensor suite of a typical large-scale ser-
vice robot should include only a single monocular camera fixed to the 
base, contact (bump) switches around its periphery, and an odometer sen-
sor such as wheel encoders, subject to dead reckoning errors. 

In this work, an unknown environment exploration and modeling algo-
rithm is developed to accurately map and navigate a robot agent in a flat-
floored environment, subject to the above hardware limitations - using 
only information from a single monocular camera, wheel encoders and 
contact switches. 

2 Technical Approach 

The environment exploration and modeling algorithm proposed here con-
sists of 3 primary components. The overall process is shown in Fig. 1. The 
mobile robotic agent models the environment as a collection of nodes on a 
graph. The first component of the algorithm is to identify potential child 
nodes from a given location, see Fig. 2. At each node the robot conducts a 
panoramic scan of the environment. This scan is done as a series of 2-D 
image snapshots using in-place rotations of the base by known angles. 
Next, an information theoretic metric is used to divide the panoramic im-
age into regions of interest. Using a metric based on Shannon’s informa-
tion theory (Reza 1994), the algorithm determines potential locations of 



nodes from which to further image the environment. If any region of inter-
est contains sufficient information, then it is identified as a potential child 
node, which would then need to be explored. 
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Fig. 1. Algorithm overview 

After the list of child nodes is collated, each one is explored sequen-
tially, traversing the graph in a depth-first manner. The second component 
of the algorithm is to traverse to a child node from the current node. This is 
achieved by tracking the target node using a simple region growing tracker 
and a visual servo controller. Heading accuracy is improved using an Ex-
tended Kalman Filter. If the node cannot be reached by a straight line due 
to an obstruction, then the point of obstruction is defined as the new child 



node. The process of panoramic image development and child node identi-
fication and exploration continues. 
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Fig. 2. Key components of the environment exploration and modeling algorithm 

The third component of the algorithm is to traverse to a parent node 
from the current one. To return to a parent node, the robot must first iden-
tify the direction of such node. This is done using a Mellin transform (Ru-
anaidh et al. 1997) to determine if the image that the robot currently sees is 
what it would expect to see if it were pointed in the correct direction to-
ward the parent node. The expected image is derived from the panoramic 
scan previously taken at the parent node. Once this direction is established, 
the robot moves toward the parent node. Visual servo control, based on the 
correlation between the current image and the one it would see if it were at 
the parent node pointed in the same direction, governs if the robot has 
reached the parent node. 

An alternative approach to find the parent node direction is done using 
Scale-Invariant Feature Transforms, SIFT (Se et al. 2002). The features are 
invariant to image translation, scaling, rotation, and partially invariant to 
illumination changes and affine or 3D projection. SIFT features from the 



current and expected views are selected to verify whether the mobile agent 
has reached the previously explored parent node. 

3 Experimental Results 

The proposed algorithm is applied to the exploration of an apartment by a 
single mobile robot agent, adapted from an ER-1 commercial system 
(Evolution Robotics 2006), see Fig. 3. The system consists of a two-
wheeled differential system driven by step motors, equipped with wheel 
encoders (for odometry), three bump switches for measuring contact, and a 
single monocular camera mounted to its base. Three infrared sensors are 
used just as on-off bump switches for measuring contact, without 
providing any range data. The robot is controlled by a 1.5GHz Pentium IV 
notebook mounted on its structure. 
 

  
Fig. 3. Mobile robot experimental system and resulting environment map with 
node locations 

 
Figure 4 shows two steps in guiding the mobile robot to an unexplored 

child node, validating the second component of the algorithm. The node is 
tracked using a simple region growing method. In addition to the primary 



target (+), two redundant fiducials are selected and tracked (O). Since a 
single camera cannot provide 3-D data, these two fiducials are automati-
cally selected based on their apparent closeness to the primary target in a 
2-D sense. This permits fewer re-identifications of fiducials. 

 

  
Fig. 4. Robot view tracking to child node (+) with the aid of fiducials (o) 

Figure 5 shows an example of a raw image taken by the robot to search for 
child node candidates, the first component of the algorithm. This image is 
trimmed and simplified using the proposed information-based quadtree de-
composition process. Several key areas in the image have been determined 
to have high quantities of information present. These areas are further 
processed to determine the coordinates of the child nodes, see Fig. 5. The 
identification process has selected nodes that are both useful - such as the 
ones near the doorway - but has also picked up nodes that may not be very 
useful - such as the one on the carpet. These latter nodes are often elimi-
nated with low pass filtering in image pre-processing steps. 

The process to return to a previously explored node can be seen in Fig. 
6. The panoramic image previously taken at the target node is cropped to 
show the expected view when the robot reaches the target. SIFT features 
are then automatically chosen and used to correlate the current robot view 
to the expected one, successfully guiding the robot without the need of ste-
reo vision. A different method, based on invariant Mellin transforms, is 
also investigated experimentally. 



  
Fig. 5. Raw and processed images taken by the onboard camera, showing infor-
mation-based quadtree decomposition and identified child node candidates (+) 

 

 
Fig. 6. SIFT features used to reach a parent node, correlating the current view 
(right) from a child node to the expected view when reaching the parent node 
(left) 

Figure 7 shows the resulting graph obtained from the experimental ex-
ploration of the flat-floored apartment. Each node is marked and linked to 
its parent/child nodes. This graph model is essentially the causal map de-
scribed by Kuipers (2000), where the panoramic images correspond to 
views, navigation methods correspond to actions, and nodes correspond to 
distinctive states. Finally, by tracing its path from node to node, a service 
robot can then continue to navigate from one node to another through the 
environment. This map may then be used for navigation by the robot 
within its environment. Note that the walls and furniture were later added 
to the figure, since the absence of range sensors or stereo vision prevents 



the robot from identifying their exact location. However, the robot is able 
to recognize its environment, including walls and furniture, from the set of 
panoramic images taken at each landmark. 
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Fig. 7. Mobile robot experimental system and resulting environment map with 
node locations. 

From the performed experiments it is found that the robot is able to 
successfully map the environment as well as localize itself, arriving at any 
specified node. Note that the error in reaching a desired node is not a 
function of how far down the graph the node is, because the Mellin 
transform or the SIFT features only need to consider the image that the 
target node has in memory. It has been found that the positioning error of 
the robot is directly proportional to its average distance to the walls and 
obstacles in its field of view, and inversely proportional to the camera 
resolution. For several test runs on our experimental system in indoor 
environments such as the one in Fig. 7, with distance from walls ranging in 



average between one and ten meters, and with a (limited) camera 
resolution of 176 × 144 pixels, an average positioning error of 60mm 
(RMS) has been obtained. This positioning accuracy can certainly be 
improved with a better camera resolution. 

4 Conclusions 

An information-based iterative algorithm has been presented to plan the 
visual exploration strategy of an autonomous mobile robot using a single 
base-mounted camera. Experimental studies have been conducted to 
demonstrate the effectiveness of the entire algorithm. It was found that this 
algorithm allows a mobile robot to efficiently localize itself using a limited 
sensor suite, consisting of a single monocular camera, contact sensors, and 
an odometer, reduced memory requirements - only enough to store one 2-
D panoramic image at each node of a graph - as well as modest processing 
capabilities. Therefore, the presented approach has a potential benefit to 
significantly reduce the cost of autonomous mobile systems such as indoor 
personal and service robots. 
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