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ABSTRACT 
The notch sensitivity factor q can be associated with the presence of non-propagating fatigue 

cracks. Such cracks are present when the nominal stress range ∆σn is between ∆σ0/Kt and ∆σ0/Kf, 
where ∆σ0 is the fatigue limit, Kt is the geometric and Kf is the fatigue stress concentration factors 
of the notch. Therefore, in principle it is possible to obtain expressions for q if the propagation be-
haviour of small cracks emanating from notches is known. 

Several expressions have been proposed to model the dependency between the threshold value 
∆Kth of the stress intensity range and the crack size a for very small cracks. Most of these expres-
sions are based on length parameters, estimated from ∆Kth and ∆σ0, resulting in a modified stress 
intensity range able to reproduce most of the behaviour shown in the Kitagawa-Takahashi plot. Pe-
terson-like expressions are then calibrated to q based on these crack propagation estimates. How-
ever, such q calibration is found to be extremely sensitive to the choice of ∆Kth(a) estimate. 

In this work, a generalization version of El Haddad-Topper-Smith’s equation is used to evaluate 
the behavior of cracks emanating from circular and elliptical holes. For several combinations of 
notch dimensions, the smallest stress range necessary to both initiate and propagate a crack is calcu-
lated, resulting in expressions for Kf and therefore q. It is found that the q estimates obtained from 
this generalization better correlate with experimental crack initiation data. Expressions for the 
maximum admissible flaw sizes at a notch root are also obtained. 
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1. Introduction 

The empirical notch sensitivity factor q, widely used in the classical SN design methodology, is 
caused by small non-propagating fatigue cracks found at notch roots when ∆σ0/Kt < ∆σn < ∆σ0/Kf, 
where ∆σn is the nominal stress range, ∆σ0 is the fatigue limit, Kt is the geometric and Kf is the fa-
tigue stress concentration factors of the notch. Therefore, it should be possible to analitically predict 
q values based on the propagation behavior of small cracks emanating from notches. 

Several expressions have been proposed to model the influence of the size a of very small fa-
tigue cracks on their stress intensity range propagation threshold value, ∆Kth(a) [1]. Most of these 
expressions are based on length parameters such as El Haddad-Topper-Smith’s a0 [2], estimated 
from ∆K0, the ∆Kth(a → ∞) of long cracks and ∆σ0, resulting in a modified stress intensity range 
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These equations reproduce the Kitagawa-Takahashi plot trend [3], one of the most used tools to 
qualitatively understand the behavior of short cracks, as well as to design for infinite life. A very 
good review of near-threshold fatigue can be seen in [4]. Yu et al. [5] and Atzori et al. [6] used a 
geometry factor α to generalize the above equation to any specimen, resulting in 
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Ciavarella and Monno [7] have used such length parameters to design not only for infinite life, 
but also for finite lives using an interpolation between the Basquin/Wöhler equations and the Paris 
law, with or without corrections for the near-threshold ∆K regime. Their resulting expressions can 
be seen as SN curves which are a function of the initial (small) crack size. 

Alternatively, the stress intensity range can retain its original equation [8-13], while the thresh-
old expression is modified by a function of the crack length a, namely ∆Kth(a), resulting in  

∆
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            (3) 

 Peterson-like [14] expressions can then be calibrated to q based on these crack propagation es-
timates. However, such q calibrations are found to be extremely sensitive to the choice of ∆Kth(a) 
estimate. 

In the following section, a generalization of El Haddad-Topper-Smith’s equation is used to bet-
ter model the crack size dependence of ∆Kth(a). This expression is then applied to a single crack 
emanating from circular and elliptical holes, resulting in improved estimates of q. 
 
2. Propagation of Short Cracks 

The El Haddad-Topper-Smith’s equation can be seen as one possible asymptotic match between 
the short and long crack behaviors. Bazant [15] proposed a more general equation involving a fit-
ting parameter n, which can be written as 
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In the above equation, n is typically found to be between 1.5 and 8.0. Clearly, Eqs. (1), (2) and 
(3) are obtained from Eq. (4) when n = 2.0. Also, the bi-linear estimate is obtained as n tends to in-
finity. The adjustable parameter n allows the ∆Kth estimates to better correlate with experimental 
crack propagation data collected from Tanaka et al. [16] and Livieri and Tovo [17], see Fig. 1. 

 

 
Figure 1 – Ratio between short and long crack propagation thresholds as a function of a/a0. 



 
2.1. Short Cracks from Circular Holes 

Equation (4) is now used to evaluate the behavior of short cracks emanating from circular holes 
in large plates loaded by a nominal normal stress range ∆σ. The stress intensity range of a single 
crack with length a emanating from a circular hole with radius r is expressed, within 1%, by [18] 
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Note that when the crack size a tends to zero, Eq. (5) becomes 

I
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as expected, since the above equation combines the solution for an edge crack in a semi-infinite 
plate with the stress concentration factor of a circular hole, Kt equal to 3. Note also that the other 
limit, when a tends to infinity, results in 

I 2
→∞

∆ = ∆σ π
a
lim K a /             (8) 

which is the solution for a crack with length a in an infinite plate, where one of its edges is far 
enough from the circular hole not to suffer its influence in the stress field (in fact, the equivalent 
crack length would be a + ρ, however as a tends to infinity the ρ value disappears from the equa-
tion). Therefore, it follows that for a circular hole f(x = 0) = 3 and f(x → ∞) = 1/1.1215√2 ≅ 0.63. 

From Eqs. (4-6), it follows that the crack will propagate when 
12

0
01 1215 1

−
⎡ ⎤⎛ ⎞ ⎛ ⎞∆ = ⋅∆ ⋅ > ∆ = ∆ ⋅ +⎢⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦
σ π

ρ

/ nn /

I th
aaK . a f K K
a

⎥     (9) 

Using α = 1.1215 and ∆Kth ≡ ∆K0 for a long crack, then the crack length parameter from the 
above equation is 
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Therefore, the crack propagation criterion based on the dimensionless functions f and g is: 
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 If x a ρ≡  and 0 0k K σ ρ≡ ∆ ∆ , then the crack grows whenever ( ) ( )0f x g x, ,k ,nσ σ> ∆ ∆ . 
Figure 2 plots f and g, assuming a material/notch combination with k = 1.5 and n = 6, as a func-

tion of the normalized crack length x. For a high applied ∆σ, the ratio ∆σ0/∆σ becomes small, and 
the function g is always below f, meaning that a crack of any length will propagate. The lower curve 
in Fig. 2 shows the function g obtained from a ratio ∆σ0/∆σ = 1.4, never crossing f. On the other 
hand, for a ∆σ small enough such that ∆σ0/∆σ ≥ Kt = 3, then g is always above f and no crack will 
initiate nor propagate, as shown by the top curve in the figure. 



 
Figure 2 – Calculation of the fatigue stress concentration factor Kf from the plots of the functions 

f(x) and g(x, ∆σ0/∆σ, k, n), where x ≡ a/ρ and 0 0k K σ ρ≡ ∆ ∆ . 
 

But three other cases must be noted. The first one, illustrated by the g curve with ∆σ0/∆σ = 2 in 
Figure 2, has only one intersection point with f. This means that such stress levels cause a crack to 
initiate at the notch, however it will only propagate until a size a = x⋅ρ obtained from the x value at 
the intersection point. Therefore, non-propagating cracks will appear at the notch root. 

The second case, illustrated by the g curve with ∆σ0/∆σ = 1.75 in Figure 2, has two intersection 
points with f. Therefore, non-propagating cracks will also appear, with maximum sizes obtained 
from the first intersection point (on the left). Interestingly, cracks longer than the value defined by 
the second intersection will re-start propagating until fracture. However, crack growth between the 
two intersections should be caused by a different mechanism, e.g. corrosion or creep. 

Finally, in the third both f and g functions are tangent, thus meet in a single point (such as the 
curve with ∆σ0/∆σ = 1.64 in Figure 2). This ∆σ0/∆σ value is therefore associated with the smaller 
stress range ∆σ that can cause crack initiation and propagation without arrest. So, by definition, this 
specific ∆σ0/∆σ is equal to the fatigue stress concentration factor Kf. To obtain Kf, it is then suffi-
cient to guarantee that both functions f and g are tangent at a single point with x = xmax. This xmax 
value is associated with the largest non-propagating flaw that can arise from fatigue alone. So, 
given n and k from the material and notch, xmax and Kf can be solved from the system of equations: 
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This system can be solved numerically for each combination of k and n values, and the notch 
sensitivity factor q is then obtained from 
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2.2. Short Cracks from Elliptical Holes 
The behavior of short cracks emanating from elliptical holes can be evaluated in the same way. 

The stress intensity range of a single crack with length a emanating from an elliptical hole with 
semi-axes b and c (where b is in the same direction as a) is expressed, within 1%, by [18] 
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 This expression is valid for c/b = 3. Similar expressions have been fitted to Finite Element data 
for several c/b ratios. The same procedure used to evaluate the notch sensitivity in circular holes is 
adopted using the fitted equations. The results are presented next. 
 
3. Results 

For several combinations of k and n, the smallest stress range necessary to both initiate and 
propagate a crack is calculated from Eq. (12), resulting in expressions for Kf and therefore q, see 
Fig. 3. 

 
Figure 3 – Notch sensitivity factors q as a function of the dimensionless parameters k and n. 

 
Note from the figure that q is approximately linear with 1/k for q > 0. This results in the pro-

posed estimate: 
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where q0(n) and q1(n) are functions of n, and q1(n) is typically between 0.85 and 1.15. Note that if 
the estimate above results in q larger than 1, then q = 1. This will happen at holes with a very large 
radius ρupper such that 

2
0 0 0

0 1 1

1 1      
∆ ⎛ ⎞+ +

> ⇒ > ⋅⎜∆ ∆⎝ ⎠

σ ρ
ρ

σ
upper

upper
q ( n ) q ( n ) K

K q ( n ) q ( n )
0

0

∆
⎟      (16) 

Therefore, it is impossible to generate a non-propagating crack under constant amplitude load-
ing in notches with a very large radius, regardless of the stress level. The stress gradient is so small 
in this case that any crack that initiates will cut through a long region still influenced by the stress 
concentration, preventing any possibility of crack arrest. Equation (14) will not have a solution for 
xmax > 0, because ∂g/∂x in this case will be more negative than ∂f/∂x at x = 0. 

On the other hand, it is possible to obtain a value of q smaller than zero, down to q = −0.2 for a 
circular hole, see Fig. 3. This can indeed happen for holes with a very small radius ρlower such that 
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The physical meaning of a negative q is that it is easier to initiate and propagate a fatigue crack 
at a notchless border of the plate than at a very small hole inside the plate. The ∆KI of a crack at the 
small hole will soon tend to Eq. (8) due to the large stress gradient, without the 1.1215 free surface 
factor, while the stress intensity solution for an edge crack will be larger since it includes the 1.1215 
factor. In addition, for most materials, the size of this critical radius ρlower is just a few micrometers. 
This leads to the conclusion that internal defects with equivalent radius smaller than such ρlower of a 
few micrometers are harmless, since its Kf will be smaller than 1, and the main propagating crack 
will initiate at the surface. 

Note that Peterson’s [14] and similar estimates assume that the notch sensitivity q is only a 
function of notch radius ρ and the ultimate strength of the material Su. Equation (15), however, sug-
gests that q depends basically on ρ, ∆σ0 and ∆K0, in addition to n. Even though there are reasonable 
estimates relating ∆σ0 and Su, there is no clear relationship between ∆K0 and Su. This means, e.g., 
that two steels with same Su but very different ∆K0 would have different behaviors that Peterson’s-
like equation would not be able to reproduce. Therefore, notch sensitivity experiments should al-
ways include a measure of the ∆K0 of the material. 

Finally, the ViDa software database [19] was used to collected data on 450 steels and aluminum 
alloys with fully measured Su, ∆σ0 and ∆K0. Their average values of ∆σ0 and ∆K0 are evaluated for 
steels with Su near the ranges 400, 800, 1200, 1600 and 2000MPa, and for aluminum alloys near 
225MPa. Equation (17) is then plotted as a function of the notch radius ρ, using the above averages 
and assuming n = 6, see Fig. 4. Note that Peterson’s equations, which were originally fitted to notch 
sensitivity experiments, can be reasonably predicted and reproduced using the proposed analytical 
approach. 

Notch sensitivity factors are also evaluated for elliptical holes. As expected, the results depend 
on ρ, ∆σ0 and ∆K0, in addition to n. In addition, a significant dependency is observed with respect 
to the aspect ratio c/b. Therefore, the entire notch geometry, not only its radius, is an important fac-
tor when evaluating its sensitivity. 

 
Figure 4 – Notch sensitivity factors as a function of notch radius for several materials. 

 



For holes with aspect ratio greater than 1 (leading to Kt smaller than 3 at the uncracked notch), 
the notch sensitivity is found to be dependent mainly on the semi-axis c, independent of the notch 
radius, see Figure 5. This result is found for c/b ratios between 1 and 3. 

For holes with larger aspect ratios (c/b between 3 and 10), another interesting dependence is 
found, with the square root of the product between the semi-axes, see Figure 6. This dependency is 
in agreement with Murakami’s factor, which states that the notch sensitivity associated with internal 
defects depend on the square root of the area. 
 
4. Conclusions 

A generalization of El Haddad-Topper-Smith’s parameter was presented to model the crack size 
dependence of the threshold stress intensity range for short cracks. The proposed expressions were 
used to calculate the behavior of non-propagating cracks. New estimates for the notch sensitivity 
factor were obtained and compared with results in the literature. It was found that the q estimates 
obtained from this generalization correlate well with crack initiation data. 
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Figure 5 – Notch sensitivity factors of elliptical holes as a function of the semi-axis c (1 < c/b < 3). 
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Figure 6 – Notch sensitivity factors of elliptical holes as a function of the Murakami factor (c/b be-

tween 3 and 10). 
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