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Abstract. Principal stress directions may vary when the loading is induced by several independent forces, such as out-
of-phase bending and torsion. Uniaxial damage models cannot be reliably applied in this case. Besides the need for 
multiaxial damage models, another key issue is how to calculate the elastic-plastic stresses from the multiaxial strains. 
Hooke’s law cannot be used to correlate stresses and strains for short lives due to plasticity effects. Ramberg-Osgood 
cannot be used either to directly correlate principal stresses and strains under multiaxial loading, because this model 
has been developed for the uniaxial case. The purpose of this work is to critically review and compare a few classical 
fatigue crack initiation models under multiaxial loading. The studied models include stress-based ones such as Sines, 
Findley and Dang Van, and strain-based ones such as Brown-Miller, Fatemi-Socie and Smith-Watson-Topper. 
Modified formulations of the strain-based models are presented to incorporate Findley’s idea of using critical planes 
that maximize damage. To incorporate plasticity effects, four models are studied and compared to correlate stresses and 
strains under proportional loading: the method of the highest Kt, the constant ratio model, Hoffmann-Seeger’s and 
Dowling’s models. 
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1. INTRODUCTION 
 

Real loads can induce combined bending, torsional, axial and shear stresses, which can generate bi- or tri-axial 
variable histories at the critical point (in general a notch root), causing the so-called multiaxial fatigue. The load history 
is said to be proportional when it generates stresses with principal axes with a fixed orientation, while non-proportional 
loading is associated with principal directions changing in time. 

For periodic loads with same frequency, one can also define the concept of in-phase and out-of-phase loading. In-
phase loading always leads to proportional histories, however the opposite is not true: e.g., the stresses σx = σI and σy = 
σII induced on a plate by perpendicular (⊥) forces Fx and Fy are always proportional, because the principal axes have a 
fixed direction even if Fx and Fy are out-of-phase. 

On the other hand, out-of-phase axial and torsional stresses always generate non-proportional (NP) loading (Socie 
and Marquis, 1999). A non-proportionality factor Fnp of the applied loads can be obtained from the shape of the ellipsis 
that encloses the history of normal and shear strains, ε and γ. Considering a and b (b ≤ a) as the semi-axes of the ellipsis 
which encloses the strain path in the Mises diagram ε × γ/√3, then the non-proportionality factor Fnp is defined as b/a (0 
≤ Fnp ≤ 1), see Fig. 1. A further discussion on enclosing ellipses and hyper-ellipsoids is found in (Zouain et al., 2006). 

 

 
 

Figure 1. Diagram ε × γ/√3, and associated non-proportionality factors (Socie and Marquis, 1999). 
 
All proportional loadings have shear strains γ proportional to the normal strains ε, with Fnp = 0 and a straight-line 

trajectory in the ε × γ/√3 diagram. Any loading history with positive Fnp is NP. Note e.g. that the loading 
(σasinωt + τacosωt) with τa = σa√3/2(1 + ν), caused by traction and torsion 90o out of phase, has Fnp = 1, therefore the 
maximum possible non-proportionality. 

Predictions with NP histories can be very complex, because they involve at least three potential problems: 



1. NP hardening: the cyclic hardening coefficient Hc and the ratio ∆σ/∆ε of a few materials increase under NP 
loading, which significantly decreases the fatigue life of parts subject to a constant ∆ε; 

2. Damage calculation: the SN and εN curves, measured under proportional loading, cannot be directly used 
when principal directions vary, because in this case the crack propagation plane in general does not match the 
one from the tests; and 

3. Cycle counting: the traditional rain-flow counting techniques cannot be applied to variable amplitude NP 
loading, because the peaks and valleys of ε in general do not match with the ones of γ, becoming impossible to 
decide a priori which points should be accounted for. 

The first two problems will be addressed in this work. A NP hardening model will be presented, to allow for the 
correct calculation of the equivalent stresses, and multiaxial models based on stress or strain measurements will be used 
to calculate the damage generated both by proportional and NP loadings. 

 
2. NON-PROPORTIONAL LOADING

 
A few materials under NP cyclic loading harden much more than it would be predicted from the traditional cyclic σε 

curve. This phenomenon, called NP hardening, depends on the load history (through the NP factor Fnp) and on the 
material (through a constant αnp of NP hardening, where 0 ≤ αnp ≤ 1). The NP hardening can be modeled in general 
using the same Ramberg-Osgood plastic exponent hc from the uniaxial cyclic σ-ε curve, and using a new coefficient 
Hcnp = Hc⋅(1 + αnp⋅Fnp), where Hc is the uniaxial Ramberg-Osgood plastic coefficient. Note that the NP hardening can 
multiply by up to 2 the value of Hc. The largest NP hardening occurs when Fnp = 1, e.g. under a traction-torsion loading 
90o out of phase which generates a circle in the ε × γ/√3 Mises diagram. 

Typically, the NP hardening effect is high in austenitic stainless steels at room temperature (αnp ≅ 1 in the stainless 
steel 316), medium in carbon steels (αnp ≅ 0.3 in the 1045 steel) and low in aluminum alloys (αnp ≅ 0 for Al 7075). Note 
that proportional histories do not lead to NP hardening. 

The NP hardening happens in materials with low fault stacking energy (which in austenitic stainless steels is only 
23mJ/m2) and well spaced dislocations, where the slip bands generated by proportional loading are always planar. In 
these materials, the NP loads activate crossed slip bands in several directions (due to the rotation of the maximum shear 
planes), therefore increasing the hardening effect (αnp >> 0) with respect to the proportional loadings. But in materials 
with high fault stacking energy (such as aluminum alloys, with typical value of 250mJ/m2) and with close dislocations, 
the crossed slip bands already happen naturally even under proportional loading, therefore the NP histories do not cause 
any significant difference in hardening (αnp ≅ 0). 

But the Coffin-Manson or the Morrow crack initiation equations cannot account for the influence of NP hardening. 
This implies that the use of traditional εN equations, which were developed to model uniaxial fatigue problems, can be 
non-conservative when the loading histories are NP. In the following sections, the multiaxial models to predict NP 
damage are studied. 

 
3. STRESS-BASED MULTIAXIAL FATIGUE DAMAGE MODELS

 
It is well known that Tresca or Mises equivalent stresses must be used to predict crack initiation lives, which depend 

on the cyclic movement of dislocations. However, crack initiation can and should be divided into: 
• formation of microcracks, which is almost insensitive to mean stresses and hydrostatic pressure in metals, 

because it only depends on dislocation movement; followed by 
• propagation of the dominant microcrack, which also depends on the crack face opening and the friction 

between the faces, becoming increasingly sensitive to the applied mean stress σm as the microcrack grows. 
Microcracks are cracks with dimensions up to the order of the metal grain sizes. Their modeling using classical 

fracture mechanics is questionable, as opposed to long cracks (typically larger than 1 or 2mm), which have crack 
propagation rates controlled by ∆K. 

However, SN and εN tests bring test specimens to fracture, or to the generation of a small, but easily detectable 
crack, therefore they include both microcrack initiation and propagation phases. Thus, since the shear stress ∆τ controls 
the initiation of a microcrack, while the normal stress σ⊥ perpendicular to its plane (or the hydrostatic stress σh, 
invariant defined as the mean of the normal stresses) controls its opening, both are important to predict the fatigue lives 
of SN and εN specimens. 

In fact, a component under uniaxial traction σx = σ and another under torsion τxy = σ/2 work under the same Tresca 
equivalent stress, but the microcracks on the plane of τmax in the first component are subject to a normal stress σ⊥ 
perpendicular to that plane that tends to keep their mouth open, exposing the crack tips and decreasing the crack face 
friction. Therefore, the fatigue damage generated by ∆σ can be greater than the one caused by the torsion ∆τ = ∆σ/2. 

The Mises equivalent stress is able to, at least in part, consider such effect, because the component under torsion 
would have σMises = τxy√3 = 0.866⋅σx < σ, however σMises is insensitive to the hydrostatic stress σh. The Mises shear 
strain τMises, which acts on the octahedric planes, does not consider as well the effects of σh, relating with σMises through: 
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Sines (1959) has proposed a fatigue failure criterion under proportional multiaxial stresses, based on ∆τMises and on 

σhm = (σxm+σym+σzm)/3, the hydrostatic component of the mean stresses (insensitive to the shear stresses): 
 

(3 )2 m

Mises
S h S

τ α σ β∆
+ ⋅ ⋅ =         (2) 

 
where αS and βS are adjustable constants for each material, and 
 

2 2
1 2 1 3 2 3

1 ( ) ( ) (
3Misesτ σ σ σ σ σ∆ = ∆ − ∆ + ∆ − ∆ + ∆ − ∆ 2)σ         (3) 

 
On the other hand, the Findley (1959) criterion, which is also applicable to NP multiaxial loadings, assumes that the 

crack initiates at the critical plane of the critical point. On the critical plane, the damage caused by the combination ∆τ/2 
+ αF⋅σ⊥ is maximum, where ∆τ/2 is the shear stress amplitude on that plane and σ⊥ is the normal stress perpendicular to 
it. Thus, according to Findley the fatigue failure criterion (at the critical plane of the critical point) is 
 

2 max FF( )⊥
∆τ + α ⋅σ = β         (4) 

 
where αF and βF are constants that must be fitted by measurements in at least two types of fatigue tests, e.g., under pure 
traction and under pure torsion.The critical plane can vary at each i-th event of the NP loads, even when the critical 
point remains the same, but Findley predicts fatigue failure based on the assumptiom that it ocours in the plane where 
the sum of the damages associated with [∆τi(θ)/2 + αF⋅σ⊥i(θ)] is maximum, where θ is the angle of such plane with 
respect to a reference direction. The resulting Findley criteria for special cases such as pure torsion and uniaxial 
traction-compression for a given R-ratio are shown in (Meggiolaro et al., 2007). 

From the principle that the damage associated with the initiation of fatigue microcracks cannot be detected from 
macroscopic measurements, Dang Van (1999) proposed a model that considers the variable micro stresses that act 
inside a characteristic volume element (VE) of the material, where the macroscopic stresses and strains are supposedly 
constant. The VE is the unit used in structural analysis to represent the material properties, such as its Young modulus 
and its several strengths. Thus the VE must be small compared to the component’s dimensions, but large compared to 
the parameter that characterizes the intrinsic anisotropy of the material. For instance, a VE of only 1mm3 is sufficient 
for most structural metal alloys, which have a grain size g (which, being a monocrystal, is intrinsically anisotropic) 
typically between 10 and 100µm.  

The local micro stresses [σij]µ = σµ and strains [εij]µ = εµ acting between grains, or between them and small 
imperfections such as inclusions, e.g., can significantly differ from the macro stresses [σij]M = σM and strains [εij]M = εM, 
assumed constant in the macroscopic analysis normally used in mechanical design. Therefore, these micro quantities 
can significantly influence crack initiation. Note that if the term “microscopic” is reserved to the scale associated with 
interatomic stresses, domain of solid state physics, then its is recommended to use the term “mesoscopic” to describe 
the intra or intergranular stresses. Thus, the macroscopic stresses reflect the average of the mesoscopic stresses in a VE: 
σM = ∫σµdV/V, where V is the volume of the VE. Similarly, εM = ∫εµdV/V. 

The macroscopic stresses and strains are assumed constant at the characteristic volume element VE of the material, 
however the mesoscopic intergranular stresses can vary a lot within the VE, influencing crack initiation. 

Since the microcracks initiate at persistent slip bands, Dang Van assumed that fatigue damage was caused by the 
mesoscopic shear strain history τµ(t) and influenced by the mesoscopic hydrostatic stress history σµh(t). The simplest 
failure criterion involving these components is the linear combination given by: 
 

hDV DV( t ) ( t )µ µτ + α ⋅σ = β         (5) 
 
Other similar criteria can be found in (Socie and Marquis, 1999) and (Gonçalves et al., 2005). 

 
4. STRAIN-BASED MULTIAXIAL FATIGUE DAMAGE MODELS 

 
The three multiaxial failure criteria presented above are based on macroscopic stresses that are supposedly elastic, 

therefore they are only applicable when σMises is much smaller than the cyclic yielding strength Syc. Thus, as in the case 
of the SN method, they can only be used to predict very long fatigue lives. 



Otherwise, it is imperative to use fatigue damage criteria based on applied strains instead of stresses (Socie and 
Marquis, 1999), using the principles studied in the so-called εN method. 

One of the simplest models is the one based on the γN curve, similar to Coffin-Manson’s equation, which uses the 
largest shear strain range ∆γmax acting on the specimen (γij ≡ 2εij, i ≠ j) to predict fatigue life 
 

2 22
bmax c

c( N ) ( N )G
γ cγ∆γ τ

= + γ         (6) 

 
where τc, bγ, γc and cγ are parameters similar to the ones from Coffin-Manson, G = E/[2(1 + ν)] is the shear modulus, ν 
being Poisson’s coefficient. If no experimental data is available, the γN curve can at least in principle be estimated 
assuming τc ≅ σc/√3, bγ ≅ b, γc ≅ εc√3 and cγ ≅ c. 

The γN curve is only recommended to model fatigue damage in materials that are more sensitive to shear strains 
(which have small α in the Mohr models, see Meggiolaro et al., 2007), if the mean loads are zero. It would be expected 
that such materials would have a shorter torsional fatigue life than similar materials more sensitive to normal stresses. 

The Brown-Miller (1973) model can consider the mean stress effects, combining the maximum range of the shear 
strain ∆γmax to the range of normal strain ∆ε⊥ (through the term ∆γmax/2 + αBM⋅∆ε⊥) and the mean normal stress σ⊥m 
perpendicular to the plane of maximum shear strain, to obtain the fatigue life N: 
 

1 2
2 2

2
b cmax c m

BM c( N ) ( N )
E

⊥
⊥

∆γ σ − σ
+ α ⋅∆ε = β + β ε 2         (7) 

 
where αBM is a fitting parameter (αBM ≅ 0.3 for ductile metals in lives near the fatigue limit), β1 = (1 + ν) + (1 − ν)⋅αBM, 
and β2 = 1.5 + 0.5⋅αBM. 

This equation was adapted from Morrow mean load εN model to fit uniaxial traction test data, where the mean stress 
σm is equal to 2σ⊥m (because σ⊥m acts perpendicularly to the plane of γmax, therefore it is worth half of σm). 

The values of β1 and β2 are obtained assuming uniaxial traction: 
 

1
1 121 2 2

max max
BM BM

( )
[( ) ( )]

( ) / ⊥
⊥

∆γ = + ν ∆ε ⎫ ∆γ ∆ε⇒ +α ∆ε = +ν +α −ν⎬∆ε = − ν ∆ε ⎭
        (8) 

 
From Eq. (8), the coefficients β1 = (1 + ν) + (1 − ν)⋅αBM and β2 = 1.5 + 0.5⋅αBM are obtained, because ν = 0.5 for 

plastic strains, which preserve volume. The original Brown-Miller model assumes that the elastic strains have ν = 0.3, 
therefore β1 ≅ (1 + 0.3) + (1 − 0.3)⋅αBM = 1.3 + 0.7⋅αBM. 

The Brown-Miller model is frequently used in multiaxial fatigue, even though it is not reasonable to assume that ∆ε⊥ 
can control the opening and closure of microcracks, because the range ∆ε does not include information about maximum 
stresses or strains. E.g., two microcracks with the same ∆γmax and ∆ε⊥ can have very different fatigue lives if one is 
opened (under traction) and the other is closed (under compression) due to the mean load effect. The use of σ⊥m 
compensates in part for this model flaw, however the mean stress effect is only considered in the elastic part. 

Fatemi and Socie (1988) suggested replacing ∆ε⊥ by the maximum normal stress σ⊥max perpendicular to the plane of 
maximum shear strain, applying it to the γN curve: 
 

1 22
b cmax cmax

FS c
yc

( N ) ( N )GS
γ γ⊥

⎛ ⎞σ∆γ τ
+ α = + γ⎜ ⎟⎜ ⎟

⎝ ⎠
2         (9) 

 
Note that the value of αBM and αFS indicates whether the material is more sensitive to τ (αBM or αFS << 1) or to σ 

(αBM or αFS >> 1). 
If the propagation phase of the microcracks (more sensitive to σ) is dominant over initiation, the Smith-Watson-

Topper (SWT) multiaxial model can be used (Smith et al., 1970): 
 

2
21

1 2 2
2

b bc
c cmax

( N ) ( N )
E

+
⊥

∆ε σσ⋅ = + σ ε c
      (10) 

 
where ∆ε1 is the range of the maximum principal strain and σ⊥1max is the stress peak in the direction perpendicular to ε1. 
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Figure 2 summarizes the parameters used in the above strain-based models. In addition, there are several other 
models based on the plastic energy dissipated by the hysteresis loops, and other combining energy with critical planes, 
see (Socie and Marquis, 1999).  

 

 
 

Figure 2. Parameters which affect the strain-based multiaxial models. 
 
It is important to note that the plane of maximum shear strain amplitude ∆γmax/2 (used in Brown-Miller’s and 

Fatemi-Socie’s models) is in general different from the planes that would maximize the respective damage parameters 
(∆γ/2 + αBM⋅∆ε⊥ for Brown-Miller, and ∆γ⋅(1 + αFS⋅σ⊥max/Syc)/2 for Fatemi-Socie). But if these are the parameters that 
cause damage, it is reasonable to argue that fatigue life should be calculated on the critical plane that maximizes them 
(in a similar way as done in Findley’s model), and not on the plane of ∆γmax. In this way, it is a good idea to modify the 
Brown-Miller and Fatemi-Socie models introducing subtle but important changes: 
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  (11) 

 
The use of critical planes that maximize the damage parameters in each model has the advantage of predicting not 

only the fatigue life but also the dominant planes where the crack will initiate. However, these calculations are not 
simple and require the use of sofisticated numerical methods. 

This idea can also be applied to the SWT model, calculating the critical plane where the product between the normal 
strain range ∆ε⊥ and the normal stress peak σ⊥max is maximized, adopting the modification 
 

1
12 2max max

max

⊥
⊥ ⊥

⎛∆ε ∆ε⇒σ σ⋅ ⋅⎜
⎝ ⎠

⎞
⎟       (12) 

 
A great advantage of the Fatemi-Socie (or SWT) model is to be able to consider the effect of NP hardening from the 

peak of normal stress σ⊥max (or σ⊥1max). In stainless steels, e.g., a NP history leads to a much higher damage than a 
proportional one with the same ∆γmax and ∆ε⊥, because the NP hardening increases the value of σ⊥max (or σ⊥1max). Note 
that Brown-Miller would wrongfully predict the same damage in both histories (because ∆γmax and ∆ε⊥ would be the 
same), and only the Fatemi-Socie and SWT models would be able to correctly account for the greater damage of the NP 
loading (assuming that Hcnp would be used to obtain σ⊥max and σ⊥1max). 

 
5. MULTIAXIAL STRESS-STRAIN RELATIONS 

 
Hooke’s law cannot be used to correlate stresses and strains for short multiaxial fatigue life predictions, due to 

plasticity effects. The hookean stresses and strains, σ  and ε , defined as the values of σ and ε obtained assuming that 
the material would be linear elastic (using Hooke’s law and, at the notches, considering elastic stress Kσ and strain Kε 
concentration factors), can only be applied for long life predictions. 

In addition, Ramberg-Osgood cannot be used either to directly correlate principal stresses and strains σi and εi (i = 1, 
2, 3) of a multiaxial history, because this model has been developed for the uniaxial case. 

However, if the elastic nominal stress range ∆σn is caused by in-phase loading, then it is trivial to calculate the 
elastic-plastic stresses and strains at the notch root using the “highest Kt method”. In this approximate method, the 
equivalent nominal stress range ∆σn calculated from Tresca or Mises is used to obtain ∆σ and ∆ε at the notch root using 
Ramberg-Osgood and (for safety, because the method is conservative) the highest Kt in Neuber’s rule. Remember that 
the multiaxial loadings can result, at the same notch root, in different values of Kt for traction, bending, torsion and 
shear loadings, but only the maximum one is used. To generate more accurate predictions for notches under combined 
stresses, it is recommended to use multiaxial σ-ε relations. 



Several models have been proposed to correlate σi and εi in proportional histories, e.g.: the constant ratio model 
(Socie and Marquis, 1999), Hoffmann-Seeger’s model (Hoffmann and Seeger, 1985), and Dowling’s model (Dowling 
et al., 1977). To present these three models, it is necessary to define a few variables involved in their formulation: 

• : hookean principal stresses and strains at the notch root (elastically calculated using 
Hooke’s law and elastic K

1 2 3 1 2,  ,  ,  ,  ,  σ σ σ ε ε ε3

σ and Kε); 
• Mises Mises,  σ ε : hookean Mises stress and strain (at the notch root), calculated using the above variables; 
• σ1, σ2, σ3, ε1, ε2, ε3: elastic-plastic principal stresses and strains (notch root); 
• σMises, εMises: Mises stress and strain (notch root); 
• λ2, λ3: ratios between pairs of principal stresses, where λ2 = σ2/σ1 and λ3 = σ3/σ1, both between −1 and 1; 
• φ2, φ3: ratios between pairs of principal strains, where φ2 = ε2/ε1, φ3 = ε3/ε1, both between −1 and 1; and 
• λMises, φMises: Mises ratios λMises = σMises/σ1 and φMises = εMises /ε1. 
From the above definitions, it is possible to obtain 
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The three models are described next. 
 

5.1. Constant Ratio Model 
 
The constant ratio model (Socie and Marquis, 1999) assumes that, under a proportional history, the bi-axial ratios 

λ2, λ3, φ2 and φ3 remain constant even after yielding has occurred. Since the elastic Poisson coefficient νel is typically 
between 1/4 and 1/3 in most metal alloys, significantly different than the plastic νpl = 0.5, these ratios are in fact not 
constant, but for small plastic strains this is a good approximation. These ratios can be estimated from the elastic 
stresses and strains, obtained from Hooke’s law using elastic Kσ and Kε: 
 

3 32 2
2 3 2 3

1 1 1

,  ,  ,  σ εσ ε
λ ≅ λ ≅

1

φ ≅ φ ≅
σ σ ε ε

      (15) 

 
Therefore, λMises is also a constant, leading to 
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σ
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and, similarly, φMises can be calculated from φ2 and φ3. The cyclic σ-ε relation is then defined using Mises and the 
Ramberg-Osgood uniaxial parameters 
 

1 c/ hMises Mises
Mises

c
( )

E H
σ σε = +       (17) 

 
If no notches are present, then the above equation is used together with the estimates for λMises, φMises, λ2, λ3, φ2 and 

φ3 to obtain σi from εi (i = 1, 2, 3), or vice-versa. In notched components, Misesσ  (elastically calculated including the 
Kts) is applied to a variation of Neuber’s rule to calculate the elastic-plastic σMises and εMises, σi and εi (i = 1, 2, 3): 
 

22 1 c/ hMisesMisesMises
MisesMises Mises

c

( ( )) ( )
HEE

σσ σ σ ⋅+=σ ⋅ε =       (18) 

 
After calculating σMises and εMises, the constant ratio model obtains the principal stress and strain using: 

 
1 Mises Mises 2 2 1 3 3 1
1 Mises Mises 2 2 1 3 3 1

/ ,  ,  
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σ = σ λ σ =λ σ σ =λ σ⎧
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      (19) 
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5.2. Hoffmann-Seeger’s Model 
 
Hoffmann-Seeger’s model (Hoffmann and Seeger, 1985) uses the same cyclic σ-ε relation and the same variation of 

Neuber’s rule presented above to calculate σMises and εMises, but it assumes that: 
• the critical point happens at the surface, with principal stresses σ1 and σ2; 
• σ3 is defined normal to the surface, therefore σ3 = 0 (and then λ3 = 0); and 
• only the ratio  is estimated using the linear elastic (hookean) values. / φ = ε ε2 2 1

After calculating σMises and εMises, σi and εi are estimated from: 
 

1 Mises Mises 2 2 1 3

2 Mises 21 2 2 1 3 1
Mises 2
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(1 ) 1,  ,  
1
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      (20) 
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5.3. Dowling’s Model 

 
The model proposed in (Dowling et al., 1977) also assumes that the principal stresses σ1 and σ2 act on the surface of 

the critical point (therefore σ3 is zero), and it considers λ2 and φ2 constant, estimating them from their hookean values 
 

2 2 2 2 2 2
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σ σ φ + ν ε ε λ − ν
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σ σ + φ ν ε ε − λ ν
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Exceptionally, σ2 is defined here as the lowest principal stress at the surface, even if σ2 is smaller than σ3 (i.e. the 

convention σ3 ≤ σ2 ≤ σ1 is violated if λ2 < 0). 
The greatest difference between the previous two models and Dowling’s is that the latter correlates σ1 and ε1 

directly using effective Ramberg-Osgood parameters E* and Hc
*
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In notched components, another variation of Neuber’s rule must be used to calculate σ1 (and then ε1) from Misesσ : 
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The other principal stresses and strains are obtained from σ1 and ε1: 
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      (25) 

 
The largest shear strain γmax can then be calculated from the maximum difference between the principal strains εi (i = 

1, 2, 3), obtaining not only its magnitude but also the plane where this maximum occurs. 
It is important to note that the three presented models (formulated using the cyclic σ-ε curve) can also be applied to 

the hysteresis loops equations, by replacing in each equation ε with ∆ε/2 and also σ with ∆σ/2. The presented models 
are compared next. 

 
6. COMPARISON AMONG THE MULTIAXIAL MODELS 

 
The presented multiaxial models are compared considering a notched 1020 steel shaft with diameter d equal to 

60mm under alternate bending moment Ma of 2kNm and torsion Ta of 3kNm, in phase, with stress concentration factors 
in bending KtM equal to 3.4 and in torsion KtT equal to 2.4. 



Assuming the alternate nominal stress σna as elastic, then 
a

32 2
n a a

155MPad( 32M ) 3(16T ) / =πσ = + . This stress is 

lower than the cyclic yielding strength Syc = 241MPa, therefore the hypothesis of σna elastic is valid. 
Using the “highest Kt method” through the highest Kt = 3.4, σa and εa are calculated using Mises and Neuber 
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     (26) 

 
and then the life N of the shaft is 
 

0.12 0.51
a

896 ( 2N ) 0.41( 2N ) N 5871 cycles
2 203000

− −∆ε
= ε = + ⇒ =       (27) 

 
To use the multiaxial stress-strain models, the hookean stresses at the notch root are calculated considering KtM = 3.4 

and KtT = 2.4 as purely elastic: 
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Thus, the hookean stresses are aMisesσ = 435MPa, 

1aσ = 394MPa, 
2aσ = −73MPa and = 0, which can be 

correlated to the principal hookean strains from Hooke’s law (considering ν = 0.3): 
3aσ
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From the constant ratio and Hoffmann-Seeger models, 
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From the constant ratio model, the hookean stresses and strains are used to estimate λMises = 1.105, λ2 = −0.185, λ3 = 

0, φMises = 1.046, φ2 = −0.460 and φ3 = −0.231, so the alternate principal stresses and strains are 
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On the other hand, Hoffmann-Seeger’s model predicts 
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resulting in alternate principal stresses and strains 
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Dowling’s model uses the elastic ratios λ2 = −0.185 and φ2 = −0.460 to calculate the effective parameters of the 

hardening curve,  and , resulting in  *E 192GPa= *
cH 700MPa=
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For all considered models, the maximum shear strain amplitude is calculated from γamax = εa1 − εa2, assuming that the 

directions 1 and 2 are respectively the ones with maximum and minimum principal strains. The maximum normal 
strains and stresses in the plane of γamax are 
 

εa⊥ = (εa1 + εa2)/2    and    σa⊥ = (σa1 + σa2)/2      (38) 
 
Since in this problem the mean stresses and strains are zero, the values used by the Brown-Miller, Fatemi-Socie and 

SWT strain-life models are respectively ∆ε⊥ = 2εa⊥ , σ⊥max = σa⊥ and σ⊥1max = σa1. 
Table 1 summarizes the stresses and strains obtained from the hookean values (obtained assuming elastic stresses, 

which must not be used in life predictions in the presence of significant plasticity), from the “highest Kt method”, and 
from the three presented multiaxial stress-strain models: the constant ratio, Hoffmann-Seeger’s and Dowling’s. 
 

Table 1. Stresses (in MPa) and strains predicted from the studied models. 
 

 hookean values highest Kt method constant ratio Hoffman-Seeger Dowling 

σaMises
435 279 259 259 265 

εaMises
0.214% 0.488% 0.360% 0.360% 0.418% 

σa1
394 253 235 254 240 

σa2
−73 −47 −44 −10 −45 

σa3
0 0 0 0 0 

εa1
0.205% 0.466% 0.344% 0.359% 0.388% 

εa2
−0.094% −0.215% −0.158% −0.165% −0.179% 

εa3
−0.047% −0.108% −0.080% −0.146% −0.127% 

γamax
0.299% 0.681% 0.502% 0.524% 0.567% 

∆ε⊥ 0.111% 0.251% 0.186% 0.194% 0.209% 

σ⊥max
160 103 95 122 98 

 
Note from Tab. 1 that the “highest Kt method” is conservative, especially for the calculated strains, but not too 

much, therefore it could be used in practice. The three multiaxial models are in theory more accurate, predicting 
approximately the same values. 

Now, using the above results, the fatigue life N can be obtained from the several damage models. 
Considering the εN curve, the Mises strain εaMises can be used to calculate N. If, instead of the εN curve, the γN 

curve is considered, estimating its coefficients from τc ≅ σc/√3, bγ ≅ b, γc ≅ εc√3 and cγ ≅ c, then γamax is used. 
Considering Brown-Miller’s model, with its constants estimated from αBM ≅ 0.3, β1 = 1.3 + 0.7⋅αBM = 1.51 and β2 = 1.5 
+ 0.5⋅αBM = 1.65, then ∆ε⊥ is the needed parameter. Fatemi-Socie’s model can also be used, estimating αFS ≅ Syc/σc = 
241MPa/896MPa ≅ 0.27 and the γN curve above. And, finally, considering SWT’s model, uses ∆ε1/2 = εa1 and, since 
the mean loads are zero, σ⊥1max = σa1 to obtain the fatigue life. These calculations are performed considering each of the 
columns of Tab. 1. The results are shown in Tab. 2. 

Except from the results obtained from the hookean values (which are significantly non-conservative), all 
combinations of multiaxial damage models with multiaxial stress-strain relations resulted in similar lives, varying 
between 5900 and 20300 cycles. Therefore, it is reasonable to consider in proportional histories the use of 
simplifications such as the “highest Kt method” and the εN curve applied to ∆εMises/2, despite the conservative 
predictions. 



Table 2. Fatigue lives (in cycles) predicted from the studied multiaxial models. 
 

 Mises + εN curve γN curve Brown-Miller Fatemi-Socie SWT 

hookean values 59500 94300 63000 56200 18300 
highest Kt method 5900 9120 6440 6940 8470 

constant ratio 13000 20300 14100 15500 18300 
Hoffmann-Seeger 13000 18100 12600 12900 14200 

Dowling 8770 14700 10300 11200 13600 
 
The hookean values result in poor estimates, overestimating σa1 and underestimating εa1, but it interestingly 

estimates quite well the product σa1εa1 (because, according to Neuber, 
1 1 1 1a a a aσ ε ≅ σ ε ), therefore they resulted in good 

predictions when combined with SWT’s model, based on this product. But in NP histories, the NP hardening can have a 
significant effect in the fatigue life. In addition, none of the presented σ-ε models is valid in the NP case (because they 
assumed φ2 constant). In the NP case, incremental plasticity models must be used (Socie and Marquis, 1999).

 
7. CONCLUSIONS 

 
In this work, the multiaxial damage models of Sines, Findley and Dang Van, applicable to long fatigue lives, and 

Brown-Miller, Fatemi-Socie and Smith-Watson-Topper (SWT), which consider plasticity, were reviewed. Among the 
strain-based models, Fatemi-Socie’s and SWT’s can consider the effects of NP hardening. In order to generate more 
realistic models, it is important to modify these criteria to calculate fatigue life in the critical plane where the damage 
parameters of each model are maximized. The main multiaxial stress-strain models were also reviewed and compared. 
The analysis showed that multiaxial stress-strain relations must be used instead of uniaxial ones, even though a few 
simplifications are adequate, such as the “highest Kt method” for notched components. Since the critical point of a 
structure is usually in its surface, in general a 2D analysis (under plane stress) is enough for multiaxial fatigue design. 
The best predictions should be the ones from multiaxial models that use the critical plane idea, where the damage 
parameters are maximized.  
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