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ABSTRACT 

Proper calculation of the linear stress field in an Inglis plate with a very sharp notch, or in a 
cracked infinite plate using the Westergaard function, shows that the traditional estimates for 
size and shape of the plastic zone pz ahead of a crack tip, obtained after assuming that they 
are controlled only by the crack stress intensity factor, significantly underestimate pz.  

KEYWORDS 

Plastic zone estimates, nominal stress effects, Inglis and Westergaard stress functions. 

INTRODUCTION 

The plastic zone pz(θ) size and shape ahead of a crack tip are traditionally estimated using 
simplified linear elastic (LE) stress fields, which depend only on the stress intensity factor 
(SIF) KI and on the distance from the tip. E.g., the Mises elastic-plastic frontier is given by [1]: 
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where SY is the yielding strength, θ is the angle measured from the crack plane, ν is Pois-
son’s coefficient, and x and y are Cartesian coordinates whose origin is the crack tip. But the 
Irwin solution obtained from the Westergaard stress function is only valid very near to the tip: 

σy = σ⋅(x + a)/√[(x + a)2 − a2] ≅ σa/√(2ax) = σ√(πa)/√(2πx) = KI /√(2πx) if x → 0  (2)  

Thus, the complete stress field in a cracked piece cannot be generated form KI only. E.g., a 
cracked infinite plate tensioned by a nominal stress σn obviously has σy(x → ∞, y = 0) = σn, 
not σy(x → ∞, 0) = 0, as it would be wrongly predicted assuming that σy depends only on KI. 
If κ = KI/√(2πr), a first estimate for the σn effect on the pz shape and size in the cracked plate 
can be obtained forcing the Williams stress to obey σy(x → ∞, 0) = σn, to obtain e.g.: 

σ− σ σ + κσ θ = κ + κ + − κ κ + 2 1/22 2
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where fx, fy and fxy describe respectively the σx, σy and τxy angular θ-dependence in mode I. 
Making σMises, σ-pl = SY, and repeating this process for plane strain, the plastic zones pz(θ)σ-pl 
and pz(θ)ε-pl can be finally estimated. The results plotted in Fig.1 show that the σn influence 
on pz can be indeed quite large, since it is not uncommon to find yielding safety factors as 
low as φY = SY/σn = 1.25 (or nominal stresses as high as σn = 0.8SY) in practical structures.  

PLASTIC ZONE ESTIMATES BY INGLIS 

Equation (3) gives an idea of the error associated with the classical pz(KI) estimates, but it is 
not a mathematically sound solution for this problem. A better estimate can be generated by 
the Inglis stress field in an infinite plate with a sharp elliptical notch whose semi-axis a >> b is 
perpendicular to σn, where b is the smaller ellipsis semi-axis. In elliptical coordinates (α, β), 
the notch is simply described by α = α0, where: 



x = c⋅coshα⋅cosβ, y = c⋅sinhα⋅sinβ, a = c⋅coshα0, b = c⋅sinhα0, and c = a/cosα0 (4) 

  
Fig.1: Estimates for pz(θ)σ-pl and pz(θ)ε-pl obtained by summing σn to the Williams σy(KI) 
stress, to force σy → σn far from the crack tips in an infinite plate, where KI = σn√(πa). 

The linear elastic stresses in the Inglis plate loaded by a general bi-axial nominal stress field 
are given by [2]: 

− + α− α
α

− + α − α − α − + α

− + α − α − +

+ − − β −σ = + + β
α − β

− + + + β + ++ − − β

+ + β + + − β − + +

∑ (n 1)(1 n)
n2

n
(n 1) (3 n) (1 n) (n 3)

(n 1) (1 n) (n 3
n

1 (n 1)e cos(n 3)A {(n 1)e cos(n 3)
(cosh2 cos2 )
[4e (n 3)e ]cos(n 1) }[4e (3 n)e ]cos(n 1)

B {e [ncos(n 3) (n 2)cos(n 1) ] [(n 2)e ne α

− + α− α
β

− + α − α − α − + α

− + α

+ β

− β −σ = − + β − +
α − β

−− − − + β+ + + − β

− + β + + − β − +

∑
)

(n 1)(1 n)
n2

n
(n 1) (3 n) (1 n) (n 3)

(n 1) (
n

}]cos(n 1)
1 (n )e cos(n 3)A {(3 n)e cos(n 3) 3

(cosh2 cos2 )
}[4e (n 1)e ]cos(n 1) [4 e (n 1)e ]cos(n 1)

B {e [ncos(n 3) (n 2)cos(n 1) ] [(n 2)e − α − + α

− + α− α
αβ

− α − + α

− + α − α

+ + β

− β −τ = − + β + +
α − β

−− + + β −− − β

− + β + + − β − + +

∑
1 n) (n 3)

(n 1)(1 n)
n2

n
(3 n) (n 3)

(n 1) (1 n)
n

}ne ]cos(n 1)
1 (n )e (n 3)A {(n 1)e sin(n 3) 1 sin

(cosh2 cos2 )
}(n 1)e ]sin(n 1) sin(n 1)e ] (n 1)

B {e [nsin(n 3) (n 2) (n 1) ] [(n 2)e nsin − + α

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ + β⎩ (n 3) }sine ] (n 1)

 (5) 

Fortunately, only 5 constants of these series are non-zero if the plate is loaded by a uniaxial 
tensile nominal stress σn perpendicular to the semi-axis a of its elliptical hole:  

A1 = −σn(1 + 2e2α0)/16, A−1 = σn/16, B1 = σne4α0/8, B−1 = σn(1 + cosh2α0)/4 and B−3 = σn/8  (6) 

Assuming that in this case the plate has a very sharp elliptical notch that is similar to a crack 
whose tip radius is given by ρ = b2/a = CTOD/2 = 2KI

2/πE’SY, where CTOD is the crack tip 
opening displacement, KI = σn√(πa), and E’ = E in plane stress or E’ = E/(1 − ν2) in plane 
strain, then: 
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Using the semi-axis ratio given by (7) in (4) to obtain α0 = tanh−1(b/a) and substituting this 
value in (6), the stress in the cracked plate can be calculated by (5). This task may be tedi-
ous, but it is not particularly difficult. Using the resulting stresses σα, σβ and ταβ, the elastic-
plastic frontier of the plane stress plastic zone can be estimated by: 

σ− α α ββ αβσ = σ + σ − σ σ + τ =2 2 2
Mises, pl Y3 S        (8) 

This equation can be numerically solved for α and β by first fixing one of the variables and 
then finding the other that makes σMises = SY. To obtain these points in polar coordinates, as 
shown in Fig.2, they can be first transformed into Cartesian coordinates (x, y) using (4) and 
then to polar coordinates (r, θ). In this way, the effect of σn on the size and shape of the cal-
culated plastic zone can be visually evaluated by plotting pz(θ)/pz0, where = π2 2

0 I Ypz K (2 S )  
is the traditional LEFM estimate obtained by equating the yield strength to the stress normal 
to the crack in its plane, σy(r, θ = 0) = KI/√(2πr) = SY.  
This exercise can be repeated for the plane strain case by calculating: 

ε− α β α β αβσ = σ − σ + σ − σ + σ − σ + τ =2 2 2 2
Mises, pl z z Y0.5[( ) ( ) ( ) ] 3 S    (9) 

where σz = ν(σα + σβ). As shown in Fig. 2, the effect of the nominal stress σn on the Inglis 
plastic zone, although a little less than that estimated by the approximation shown in Fig.1, is 
indeed significant. It is worth to emphasize that this so-called Inglis pz has been rigorously 
calculated using the Mises yield criterion and the exact Inglis solution for the linear elastic 
stress in a cracked plate, when the crack is modeled by an elliptical sharp notch of tip radius 
ρ = CTOD/2, a quite reasonable hypothesis.   

  
Fig.2: Plastic zones calculated using Mises and the Inglis stress field in an infinite cracked 
plate tensioned by a nominal stress σn perpendicular to the crack, modeling the crack as a 

very sharp elliptical notch of tip radius ρ = CTOD/2, in plane stress and in plane strain. 

PLASTIC ZONE ESTIMATES BY WESTERGAARD 

The Westergaard stress function provides an alternate way to rigorously estimate the size 
and the shape of the plastic zones ahead of the crack tips in an infinite plate loaded by a ten-
sile stress σn perpendicular to the crack whose length is 2a. However, since the elastic-
plastic pz frontier is not adjacent to the crack tip, its size and shape should not be calculated 



supposing, as usual, that the Irwin simplification used to obtain KI = σn√(πa) can also be used 
to obtain pz. If i = √−1 and z = x + iy, the Westergaard stress function Z(z) is given by: 

Z(z) = zσn/√(z2 – a2) ⇒ Z’(z) = dZ/dz = −a2σn/(z2 – a2)3/2            (10) 

This function can be used to analytically solve the linear elastic stress analysis problem when 
the cracked infinite plate is loaded by a uniform bi-axial nominal stress state whose contour 
conditions are given by σx(z → ∞) = σy(z → ∞) = σn. But it can be easily adapted to also ob-
tain the stresses in the uniaxially tensioned plate, whose contour conditions are σx(z → ∞) = 
0 and σy(z → ∞) = σn, simply by [3]: 
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A constant term −σn has been summed to σx in order to obey the contour condition σx(∞) = 0 
in this uniaxial case, in the same way that it can be done when the stresses are generated 
from the Williams’ series. This simple trick can be used to solve the uniaxial problem be-
cause a constant σx does not affect the stress field near the crack tip or, in other words, be-
cause the crack concentration effect does not affect the stresses parallel to its (x) direction.  
To calculate and to visualize the pz elastic-plastic frontier, it is worth to rewrite Z and Z’ in po-
lar coordinates centered at the crack tip: 
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It is now possible to obtain an equation to describe the pz elastic-plastic frontier around the 
crack tip by Mises in plane stress: just substitute (12) into (11), crank the algebra to obtain 
σx, σy and τxy, superpose these values by Mises and equate the result to the yield strength: 
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This equation can be solved by numerical methods using the same techniques discussed 
above: for each θ value, the corresponding r is calculated to obey (13), localizing in this way 



the desired pz frontier. This same process can be easily repeated to obtain the so-called 
Westergaard pz in plane strain. Some results of these long calculations are shown in Fig.3. 

  
Fig.3: Plastic zones ahead a crack tip in an infinite plate calculated using Mises yielding crite-
rion and the stresses generated by the complete Westergaard stress function, when it is ten-
sioned by a nominal stress σn perpendicular to the crack, in plane stress and in plane strain. 

COMPARING THE PLASTIC ZONES ESTIMATED BY INGLIS AND BY WESTERGAARD 

Fig.4 compares pzs calculated by Inglis (assuming that the crack is an elliptical notch of tip 
radius ρ = CTOD/2), and by Westergaard (but without using the simplification expressed in 
(2) required to generate the classical KI = σ√(πa) Inglis solution). As these curves were gen-
erated from completely different equations, their near coincidence is certainly not fortuitous. 
Therefore, the large σn effect on the size and the shape of the plastic zone predicted by 
these rigorous solutions should not be neglected in practice. 

  
Fig.4: Inglis with ρ = CTOD/2 and Westergaard pzs under plane stress and plane strain. 

This point must be emphasized. It is convenient to assume that the plastic zone depends 
only on KI, neglecting thus the σn effect, but it is the pz size that validates LEFM predictions. 



Therefore, underestimated pzs can be a practical problem, since nominal stresses as high as 
0.8⋅SY are common in real structures. Under such a high load, the σn effect on pz can be, 
and in general it probably is, very significant. Moreover, the nominal stress σn depends also 
on the structure shape, a possible reason for some specimen shape problems in fracture and 
fatigue testing.  
To finalize this short note, it is interesting to point out that: (i) the Inglis and Westergaard pzs 
can visually coincide with each other simply by using b = CTOD/2 instead of ρ = CTOD/2 in 
the elliptical notch crack model, see Fig.5; and (ii) still better pz estimates can be obtained 
applying the Inglis equilibrium trick to correct the estimates presented here, see [4]. 

  
Fig.5: Inglis with b = CTOD/2 and Westergaard pzs in plane stress and in plane strain. 

CONCLUSIONS 

The nominal stress σn significantly affects the size and the shape of the plastic zones ahead 
of crack tips, as illustrated by the rigorous solution of the Irwin crack problem. Therefore, con-
trary to what is usually accepted and taught in the traditional LEFM literature, the plastic 
zones do not depend only on the magnitude of the stress intensity factor KI. This fact has 
important consequences, as it can be used to seriously question the similitude principle, one 
milestone in the practice of mechanical design against fracture. Thus, it should be better ex-
plored and understood. 
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