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Abstract⎯ The detection of artifacts from electroencephalogram (EEG) signals is necessary for a suitable analysis of its proper-
ties, being able to identify pathologies related with the nervous system. This paper describes the application of a method based on 
the decomposition of the EEG signal through the wavelet transform, extracting then high-order statistics as the entropy of Renyi 
and the kurtosis. With these measures, two neural networks are trained for the detection of ocular and muscular artifacts, one for 
each kind. The methodology is validated through experiments on an EEG implemented in this work, with hit rates of up to 94.6% 
for 300 trials. 
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Resumo⎯ A detecção de artefatos (artifacts) nos sinais de eletro-encefalograma (EEG) é necessária para uma correta análise de 
suas propriedades, podendo assim identificar patologias relacionadas ao sistema nervoso. Neste trabalho se descreve um método 
baseado na decomposição do sinal EEG mediante a transformada wavelet, extraindo logo medidas estatísticas de alta ordem, co-
mo a entropia de Renyi e a curtose. Com estas medidas, duas redes neurais foram treinadas para a detecção de artefatos oculares e 
musculares, uma para cada tipo. A metodologia é validada através de experimentos em um EEG implementado em este trabalho, 
obtendo taxas de acerto de até 94,6% para 300 amostras. 
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1    Introduction 

Electroencephalography (EEG) is the neuro-
physiologic measurement of the electrical activity of 
the brain recorded through electrodes placed on the 
scalp (Inuso et al., 2007). The signal is the endoge-
nous brain activity measured as voltage changes at 
the scalp, while a perturbation is any voltage change 
generated by other sources. The perturbation sources 
include: electromagnetic interferences, eye blinks, 
eye movements, and muscular activity (particularly 
head muscles). In this paper, the term noise is used 
for external perturbations (e.g. power line noise) and 
artifact for subject related perturbations (e.g. muscu-
lar and eye movement artifacts). 

Eye blink artifacts are very common in EEG 
data; they produce low-frequency high-amplitude 
signals that can be quite greater than EEG signals of 
interest. Indeed, while regular EEG amplitudes are in 
the range of −50 to 50 micro volts, eye blink artifacts 
have amplitudes up to 100 micro volts (Garcia, 
2004). 

Eye movement artifacts are caused by their ori-
entation of the retinocorneal dipole. They are recog-
nized by their quasi square shape and their amplitude 
in the same range of regular EEG (Overton & Sha-
gass, 1969). 

Eye blink and eye movement artifacts (hence-
forth called ocular artifacts) are mainly reflected at 
frontal sites (e.g. electrodes Fp1 and Fp2, denomi-

nated according to the International System 10-20, 
see Garcia, 2004). However, they can corrupt data on 
all electrodes, even those at the back of the head. 

Muscular movement artifacts (muscular arti-
facts) can be caused by activity in different muscle 
groups. However, the activity in neck and facial 
muscles has more influence in EEG recordings. 
Muscular artifacts are characterized by their wide 
frequency content. Depending on the location of the 
source muscles, they can be distributed across differ-
ent sets of electrodes. They mainly appear in tempo-
ral and parietal electrodes (Garcia, 2004).  

Even if muscular and ocular artifacts are not cor-
related with the mental activities that the subject is 
executing, they make it difficult to extract useful 
information from the data. 

Furthermore, artifacts can lead to erroneous 
conclusions about the Brain Computer Interface 
(BCI) controlling performance of a subject. Indeed, 
the BCI could be responding to muscular or ocular 
activity instead of genuine EEG (Garcia, 2004). To 
prevent these errors, this paper describes the applica-
tion of a method based in the decomposition of the 
EEG signal through the wavelet transform, until 
achieving the frequency ranges of the brainwaves. 
High-order statistics is then extracted as the entropy 
of Renyi and the kurtosis in the wavelet coefficients 
that evidence the existence of artifacts. With these 
measures, two neural networks were trained for the 
detection of ocular and muscular artifacts, one for 
each kind.  



The detection system was tested with two kinds 
of neural networks as classifiers, multilayer percep-
tron (MLP) and radial basis function (RBF).  

2   Wavelet Analysis 

Wavelet transform is rapidly surfacing in fields 
as diverse as telecommunications and biology. Be-
cause of their suitability to analyze nonstationary 
signals, those whose statistical properties change 
over time, they have become a powerful alternative 
to Fourier methods in many medical applications, 
where such signals abound. In addition to helping in 
the recognition and detection of key diagnostic fea-
tures, they provide a powerful means for compress-
ing medical images with little loss of valuable infor-
mation (Akay, 1997).. 

The familiar Fourier transform expands time-
domain signals onto orthogonal basis functions (sine 
and cosine waves), thereby revealing the frequency 
content of the signals. But this method can not local-
ize the observed frequency components in time. It is 
therefore best suited to describe and analyze station-
ary signals (Akay, 1997). 

Most biomedical signals, however, do not tend 
to be stationary. On the contrary, they typically have 
highly complex time-frequency components closely 
spaced in time, accompanied by long-lasting, low-
frequency components closely spaced in frequency. 
Any appropriate analysis method for dealing with 
them should therefore exhibit good frequency resolu-
tion with fine time resolution, the first to localize the 
low-frequency components, and the second to re-
solve the high-frequency components (Akay, 1997). 

An alternative way to analyze nonstationary 
biomedical signals is to expand them onto basis 
functions created by expanding, contracting, and 
shifting a single prototype function, specifically se-
lected for the signal under consideration. This wave-
let method acts as a sort of mathematical microscope 
through which different parts of the signal may be 
examined by adjusting the focus. In wavelet par-
lance, the prototype function is known as the "ana-
lyzing wavelet" or "mother wavelet" of the signal. 

Wavelet transforms can provide both very good 
time resolution at high frequencies and good fre-
quency resolution at low frequencies. Interestingly, 
they can do so even in the absence of continuous 
time and frequency parameter information, thanks to 
the redundancies inherent in continuous wavelet sig-
nal representations. In fact, in practical applications, 
to reduce memory requirements and speed up nu-
merical computation, it is usually desirable to elimi-
nate much of this redundancy, usually by sampling 
the time and frequency parameters on a dyadic form 
(basis 2, the widely used choice) in the time-
frequency plane (Akay, 1997)..  

Even without the efficiencies of sampling, their 
excellent combination of time and frequency resolu-
tion makes wavelets potentially invaluable in numer-

ous applications, many of which fall into the realm of 
medical research and diagnostics. Among them, it 
may be found the early discovery of precursors of 
heart disease, studies of fetal breathing, the extrac-
tion of speech from background noise in digital hear-
ing aids, the detection of breast cancer, and medical 
image compression (Akay, 1997). 

The key feature of wavelets is the time-
frequency localization. It means that most of the en-
ergy of the wavelet is restricted to a finite time inter-
val (Jahankhani et al., 2006). 

The wavelet technique applied to the EEG signal 
will reveal features related to the transient nature of 
the signal. All wavelet transforms can be specified in 
terms of a low-pass filter g, which satisfies the stan-
dard quadrature mirror filter condition      
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where G(z) denotes the z-transform of the filter g. Its 
complementary high-pass filter can be defined as 
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with the initial condition G0(z) = 1. It is expressed as 
a two-scale relation in time domain 
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where the subscript m↑[.] indicates the up-sampling 
by a factor of m and k is the equally sampled discrete 
time (Jahankhani et al., 2006).  

 The procedure of the discrete wavelet transform 
(DWT) is schematically shown in Figure 1. Each 
stage of this scheme consists of two digital filters and 
two down-samplers by 2. The first filter h[.] is the 
discrete mother wavelet, high-pass in nature, and the 
second, g[.], is its mirror version, low-pass in nature.  

 

  
The down-sampled outputs of first high-pass and 

low-pass filters provide the detail D1 and the ap-
proximation A1, respectively. The first approxima-
tion A1 is further decomposed and this process is 
continued as shown in Figure 1 (Jahankhani et al., 
2006). 

 
Figure 1. Sub-band decomposition of DWT implementation. 

(1)

(2)

(3)

(4)



In this work, an EEG was implemented having 
some problems with the noise, these problems are 
treated digitally. The EEG signal is previously fil-
tered to guarantee that only has frequency compo-
nents in the EEG band through a low-pass Butter-
worth filter of order 4, with a frequency cut of 100 
Hz, and then through a Filter Notch centered in the 
frequency of 60 Hz. The EEG signal is decomposed 
through the DWT until achieving the frequency 
ranges of the brainwaves. The signal decomposition 
is shown in Figure 2, the decomposition begin in 500 
Hz due to the sample rate of 1 KHz. 

 
The DWT is applied in seven levels, according 

to Figure 2, in order to approximately form the four 
principal frequency ranges of the brainwaves (Gar-
cia, 2004): 

• Delta Band [0 – 4 Hz]: (n). 
• Theta Band [4 – 8 Hz]: (o). 
• Beta Band [13 – 30 Hz]: (q) and (k). 
• Alpha Band [8 – 13 Hz]: (p). 
 
Ocular artifacts have large amplitudes. Their 

spectral content is mainly concentrated in the theta 
band. They are more prominent at frontal pole elec-
trodes, i.e. Fp1 and Fp2 (Garcia, 2004). 

Muscular artifacts have amplitudes in the order 
of that of regular EEG, but their spectral content is 
concentrated in the beta band. These artifacts are 
more noticeable in central temporal and parietal elec-
trodes, i.e. electrodes T3, T4, T5, P3, P4 and T6, 
denominated according to the International System 
10-20 (Garcia, 2004). 

For our analysis, the beta and theta bands are 
processed to obtain their respective wavelet coeffi-
cients using the electrodes Fp1, Fp2, P3 and P4, see 
Figure 3. 

3   Feature Extraction 

The feature extraction is done through high-
order statistics such as the entropy of Renyi and the 
kurtosis. 

Wavelet coefficients for artifactual activity are 
supposed to be “odd” with respect to other ones 
when an unexpected event occurs and involves its 
frequency range, or when it carries information about 
a noisy background activity. Thus, a measure of ran-
domness might help to detect them. EEG artifacts 
such as eye blinks and heartbeat are typically charac-
terized by a peaky distribution and could be detected 
by a measure of peakyness (Inuso et al., 2007). 

The parameters that can measure the randomness 
and the peakyness are entropy and kurtosis, respec-
tively (Delorme et al., 2005).  

3.1 Kurtosis. 

Given a scalar random variable x , kurtosis has 
the following expression: 
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where mn is the n-order central moment of the vari-
able and m1 is its mean. 

If the kurtosis is highly positive, the activity val-
ue distribution is highly peaked (usually around 
zero) with a sparse appearance of extreme values, 
and the identified data is likely to contain an artifact 
(Ghandeharion & Erfanian, 2004).  

3.2 Renyi’s Entropy. 

The definition of the Renyi’s entropy is shown 
in Equation (7), where α (α ≥ 1) is the order of the 
entropy. Equations (8-9) come from the application 
of the kernel estimators. The order of the entropy is 
set at 2, in order to equally emphasize the sub-

 
Figure 2. Decomposition of the frequency ranges. 

 
Figure 3. Electrodes position according to the International System 

10-20. 
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Gaussian and the super-Gaussian components (Er-
dogmus et al., 2002). 
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Entropy can be interpreted as a measure of ran-
domness. 

Before computing the entropy and the kurtosis 
of the wavelet coefficients, they are normalized with 
zero-mean and unit-variance. After computing the 
statistic data, it is observed that a simple threshold is 
not enough to discriminate the occurrence of arti-
facts. Thereby, a few measurements are selected be-
low as patterns for training a neural network.  

4   Detection of Artifacts 

The detection system is tested with two kinds of 
neural networks as classifiers: multilayer perceptron 
and radial basis function. The detection system con-
sists of two neural networks, of the same class, 
joined through a logic operation OR. 

The MLP has the ability to learn and generalize 
with smaller training set requirements. It has a fast 
operation, ease of implementation and therefore it is 
the most commonly used neural network architec-
ture. It has been adapted to discriminate between the 
occurrence and the non occurrence of artifacts. The 
classic gradient descending learning scheme is used 
here for the training of this particular network. 

The second kind of classifier is an RBF scheme. 
The RBF network is rapidly trained; it is usually 
faster than MLP, while exhibiting none of its training 
pathologies such as paralysis or local minima prob-
lems (Jahankhani, 2006). 

After of analyzing the variations of the statistics, 
the detection of ocular artifacts is achieved using the 
wavelet coefficient kurtosis of the four electrodes 
(Fp1, Fp2, P3 and P4) in the frequency ranges beta 
(o) and theta (k); while the detection of muscular 
artifacts is achieved using the wavelet coefficient 
entropy and kurtosis of three electrodes (Fp1, Fp2 
and P4) in the frequency range theta (k), see Figure 
2. 

The experience is performed considering 300 
trials: 100 trials without artifacts, 100 trials with ocu-
lar artifacts, and 100 trials with muscular artifacts. 
To produce artifacts, the user was asked to generate 
artifacts voluntarily; and for the trials without arti-
facts, the user stay in relax condition with the open 
eyes.  

The training of the neural networks is done as 
follows. Neural network 1 (net1) is trained using 100 
trials without artifacts, and 100 trials with ocular 
artifacts, taking 20% of the trials for the test of the 

neural network. Neural network 2 (net2) is trained in 
the same way, however using muscular instead of 
ocular artifacts. 

5   Results 

The union of the neural networks (netf), made 
through a logic operation OR as discussed before, is 
tested for the total of the trials. The results of the test 
of the neural networks are shown in Tables 1 and 2. 

Tables 3 and 4 show the confusion matrices of 
the detection system using MLP and RBF respec-
tively. 

The tables show that the approach for the proc-
essing of the EEG signals and for the detection of the 
artifacts is suitable. The better hit rate is 94.6%, ob-
tained by the detection system using RBF classifiers, 
closely followed by the hit rate using MLP classifi-
ers, with 94.3%. This last network can increase the 
hit rate to an even higher value depending on the 
training. On the other hand, the RBF classifiers 
would maintain the same hit rate. 

 

Table 1. Test of the MLP neural networks (individually and unit-
ed). C: Correct. I: Incorrect.   

 C I Total Hit Rate 
(%) 

net1 35 5 40 87.5 
net2 27 13 40 67.5 
netf 283 17 300 94.3 

 
Table 2. Test of the RBF neural networks (individually and 

united). C: Correct. I: Incorrect.    

 C I Total Hit Rate 
(%) 

net1 24 16 40 60.0 
net2 27 13 40 67.5 
netf 284 16 300 94.6 

 
Table 3. Confusion Matrix of the Classification with MLP neural 

networks. S: Signal without artifact. SA: Signal with artifact. 

 S SA 
S 87 13 

SA 4 196 

 
Table 4. Confusion Matrix of the Classification with RBF neural 

networks. S: Signal without artifact. SA: Signal with artifact. 

 S SA 
S 88 12 

SA 4 196 
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6   Conclusions 

In this work, a technique was used to detect arti-
facts using only four electrodes Fp1, Fp2, P3 and P4, 
and trials of 2000 samples recorded during two sec-
onds. In comparison with other techniques from the 
literature, the union of neural networks through a 
logic operation resulted in a considerable increase in 
performance. The specialization of the neural net-
works demonstrates that the system could increase 
even more its hit rate. Thereby, this method leaves 
the EEG signals free of artifacts for a more elabo-
rated analysis. 

Others techniques as independent component 
analysis (ICA) (Delorme et al., 2005) were ap-
proached to prepare the data of the EEG signal to 
discriminate the artifacts occurrence. The high order 
statistics and wavelet transform were used to deter-
mine thresholds to detect the presence of artifacts; 
but simulating the behavior of these (Inuso et al., 
2007).  

The inconvenient of several methods ap-
proached to detect artifacts is that they do not follow 
a pattern; from which can be compared between 
them. 
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