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Abstract—This work presents the development of a brain 

computer interface as an alternative communication channel to 
be used on the robotic field. It contemplates the implementation 
of an electroencephalograph, the computational methods and 
techniques necessary to accomplish this interface. 
An electroencephalograph is designed to acquire brain signals; 
basically conform by a triple amplification, a low-pass filter, 
high-pass filters and an analog-digital converter. 

The processing of the digitized signal is composed by two 
stages, the preprocessing; in which, the electric noise is filtered 
and the artifacts are detected. The second stage is the processing 
strictly speaking; in which, the feature extraction that define to 
five kinds of chosen mental activities according to the brain 
specialization and brain computer interface references are 
computed; with these measures, a probabilistic neural network is 
trained to classify the kind of mental activity presented. 

The training protocol is defined by three stages: the first 
stage is the training of a neural network to detect artifacts, a 
second stage is the training of a probabilistic neural network to 
classify the kind of mental activity, and the third stage is the 
mutual adaptation between the user and the system through the 
feedback of the classified mental activity and the updating of the 
neural network parameters. 
 

Index Terms—Brain Computer Interface;  
Electroencephalograph; Neural Networks; Wavelet Transform; 
Robotic.  
 

I. INTRODUCTION 
he development of interfaces between humans and 
machines has been an expanding field in the last decades 
including several interfaces using voice, vision, haptics, 

electromyography (EMG) signals, electroencephalography 
(EEG) signals, and combinations between those as 
communication support [1]. 
Recent studies show the possibility to analyze brainwaves to 
derive information about the subjects’ mental state that is then 
mapped into some external action such as selecting a letter 
from a virtual keyboard or moving a robotics device. A system 
that utilizes these brainwaves is called Brain Computer 
Interface (BCI) [2]. 
People who are partially or totally paralyzed (e.g., by 
amyotrophic lateral sclerosis (ALS) or brainstem stroke) or 
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have other severe motor disabilities, they can find a BCI as an 
alternative communication and control channel that does not 
depend on the brain’s normal output pathway of peripheral 
nerves and muscles. A BCI makes it possible that these 
persons enhance their life quality [3]. 

Non-invasive BCIs are based on the analysis of EEG 
phenomena associated with various aspects of brain function 
[1]. Thus, Birbaumer [4] measure slow cortical potentials 
(SCP) over the vertex (top of the scalp). SCP are shifts in the 
depolarization level of the upper cortical dendrites and 
indicate the overall preparatory excitation level of a cortical 
network. Other groups look at local variations of the EEG 
rhythms. The most used of such rhythms are related to the 
imagination of movements and are recorded from the central 
region of the scalp overlying the sensorimotor cortex. In this 
respect, there are two main paradigms. Pfurtscheller’s team 
works with event-related desynchronization (ERD) computed 
at fixed time intervals after the subject is commanded to 
imagine specific movements of the limbs [5]-[6]. 
Alternatively, Wolpaw [7] and coworkers analyze continuous 
changes in the amplitudes of the mu (8-12 Hz) or beta (13-28 
Hz) rhythms. 
Finally, in addition to motor-related rhythms, Anderson [8] 
and Millán [9] analyze continuous variations of EEG rhythms, 
but not only over the sensorimotor cortex and in specific 
frequency bands. The reason is that a number of 
neurocognitive studies have found that different mental 
activities (such as imagination of movements, arithmetic 
operations, or language) activate local cortical areas at 
different extents. The insights gathered from these studies 
guide the placement of electrodes to get more relevant signals 
for the different tasks to be recognized. In this latter case, 
rather than looking for predefined EEG phenomena as in the 
previous paradigms, the approach aims at discovering EEG 
patterns embedded in the continuous EEG signal associated 
with different mental states.  
These different BCI systems are used to operate a number of 
brain-actuated applications that augment people’s 
communication capabilities, provide new forms of education 
and entertainment, and also enable the operation of physical 
devices [2]. The subject controls active devices by carrying 
out mental activities, which are associated with actions 
depending on the BCI application [1]. 
BCI applications include control of the elements in a 
computer-rendered environment (e.g. cursor positioning [3], 
[1]), visit of a virtual apartment [10]-[11]), spelling programs 
(e.g. virtual keyboard [12]), and command of an external 
device (e.g. robot [13], prosthesis [14]).  
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Recent applications into the robotic field are the control of a 
wheelchair [15] and the control of the robot Khepera [16]; 
these applications could be the basis for the implementation of 
an external skeleton to return the total mobility of a 
quadriplegic person. 
In this work, the hardware and the software for a BCI system 
is developed. The hardware for the acquisition of EEG signals 
is implemented in two stages; an amplification stage and an 
analogical-digital conversion (ADC) stage. The software of 
the BCI system is developed in C# language at Visual Studio 
2005 environment linking developed functions in the 
MATLAB program for the EEG signal processing and the 
recognition of mental activities.     

 

II. IMPLEMENTATION OF AN ELECTROENCEPHALOGRAPH 
 

An electroencephalograph is a device that records the brain 
activity through electrodes placed on the scalp. The 
acquisition encompasses different kinds of waves that depend 
on the position of the electrodes. 

Electroencephalography has an invaluable support to the 
diagnostic of diseases of the central nervous system (CNS) 
that compromise the structure of the neurons. One of the 
pathologies where the electroencephalography is most useful 
is in the study of epilepsy, featuring unusual excitability of the 
neurons [17]. 

The block diagram of the implementation of the 
electroencephalograph is presented in Fig. 1. 

 
 

Fig. 1.  Block diagram of the implementation of the electroencephalograph.  
 

A.  Protection Circuit 
The protection circuit is connected to external electrodes. It 

is the first stop for the EEG signal entering the amplifier box.  
This initial stage suppresses RF signals that enter the system 
through the electrode cables and limits the input voltage [18]. 

B.  Instrumental Amplification 
An instrumental amplifier controls the differential input and 

determine the common-mode rejection ratio (CMRR). It will 
remove noise of the input signals [18]. 

C. Right-Leg Driver 
The Right Leg Driver is used to raise the common-mode 

rejection ratio of the instrumentation amplifier. With this 
higher signal-to-noise ratio (SNR), the differential signal 
obtained is ensured to possess only relevant information and a 
minimum of interference currents or irrelevant data [18]. 

D. Amplification 
The amplification circuit is achieved in two stages: two 

high-pass first order filters are included between the 
amplifications, with a cutoff frequency of 0.16 Hz to remove 
DC-voltage offsets. The second amplification contains a low-
pass second order Butterworth filter, with a cutoff frequency 
of 100 Hz. This bandwidth is due to the range of frequencies 
of the brainwaves, which is from 0 to 100 Hz. 

E. Analog-Digital Converter 
The analog-digital conversion is the means by which the 

signals are digitalized for the subsequent processing. The 
digitalization is carried out through the data acquisition 
system CompactDAQ from National Instruments; this system 
covers the components NI 9205 analog input module and the 
NI cDAQ-9172 chassis [19]. 

 
The components of the electroencephalograph implemented 

are shown in Fig. 2. 
 

 
 

Fig. 2.  Components of the electroencephalograph implemented. 
 

III. PREPROCESSING 
 
The extraction of information from EEG data is hindered by 

external noise and subject-generated artifacts. Most sources of 
external noise can be avoided by appropriately controlling the 
environment in which the measurement takes place. Thus, 
power line noise can be easily filtered since it occupies a 
narrow frequency band that is located beyond the EEG band 
[1]. 

Subject-generated artifacts (eye movements, eye blinks and 
muscular activity) can produce voltage changes of much 
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higher amplitude than the endogenous brain activity. Even 
when artifacts are not correlated with tasks, they make it 
difficult to extract useful information from the data. In this 
situation the data is discarded and the subject is notified by a 
special action executed by the BCI. If the data containing 
artifacts were not discarded they could lead to misleading 
conclusions about the controlling performance of a subject 
[1]. 

The preprocessing removes external noise from EEG trials 
and detects the presence of artifacts. The power line noise is 
considered as external noise; eye blinks and eye movements 
are defined as ocular artifacts, while muscular activity is 
referred to as muscular artifact. 

The block diagram of the preprocessing is presented in Fig. 
3. 

 

 
 
Fig. 3.  Block diagram of the preprocessing. 
 

A.  Electrical noise 
 

A Butterworth fourth order digital filter, with passband edge 
of 30 Hz and stopband edge of 100 Hz [20]; and notch filter 
centered in 60 Hz [21]-[22], guarantee the elimination of the 
electrical noise. 

 

 
 

Fig. 4.  Frequency response of the Butteworth and notch filters. 
 

B. Artifact Detection 
 

The presence of eye movements, eye blinks and muscular 
artifacts in EEG signals can be easily detected from simple 
observation. As a matter of fact, each type of artifact has 
characteristics in time and frequency that make it 
distinguishable from regular EEG [1]. 

Ocular artifacts have large amplitudes; their spectral content 
is mainly concentrated in the theta band and they are more 
prominent at frontal pole electrodes, i.e. Fp1 and Fp2 (from 
the International System 10-20), see Fig. 5.  

Muscular artifacts have amplitudes in the order of that of 
regular EEG, but their spectral content is concentrated in the 
beta band. These artifacts are more noticeable in central 
temporal and parietal electrodes, i.e. electrodes T3, T4, T5, 
P3, P4 and T6 [23], see Fig 5. 

 
 

 
 
Fig. 5. Electrodes positions from the International System 10-20. 
 

Artifacts can be considered as singular events in the time-
frequency plane that appear randomly in EEG signals. To 
detect the presence of artifacts in an EEG trial, the EEG 
signals are acquired in segments of two seconds; after the 
application of the filters, the digital wavelet transform (DWT) 
is applied to decompose the signal frequency band to extract 
the EEG bands. 
 

1) Wavelet Analysis 
 
The EEG signal is decomposed through the DWT until 

achieving the frequency ranges of the brainwaves; the DWT is 
applied in seven levels, according to Fig. 6, in order to 
approximately form the four principal frequency ranges of the 
brainwaves [24]: 
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• Delta Band [0 – 4 Hz]: (n). 
• Theta Band [4 – 8 Hz]: (o). 
• Alpha Band [8 – 13 Hz]: (p). 
• Beta Band [13 – 30 Hz]: (q) and (k). 

The sample rate ( SF ) is 1000 Hz; then, the decomposition 
of frequency ranges begins in the range of 0 to 500 Hz.  

 

 
 

Fig. 6. DWT decomposition of the frequency range. 
 

The beta and theta bands are processed to obtain their 
respective wavelet coefficients using the electrodes Fp1, Fp2, 
P3 and P4.  

 
2) High-Order Statistics 

 
Wavelet coefficients with artifactual activity are supposed 

to be “odd” with respect to other ones when an unexpected 
event occurs and involves its frequency range, or when it 
carries information about a noisy background activity. Thus, a 
measure of randomness might help to detect them. EEG 
artifacts such as eye blinks and heartbeat are typically 
characterized by a peaky distribution and could be detected by 
a measure of peakyness [25]. 

The parameters that can measure the randomness and the 
peakyness are entropy and kurtosis, respectively [26].  

Given a scalar random variable x, kurtosis ( k ) has the 
following expression: 

2
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where nm  is the n-order central moment of the variable and 

1m  is its mean. 
The definition of the Renyi’s entropy is shown in Eq. (3), 

where α (α ≥ 1) is the order of the entropy. Equations (4-5) 
come from the application of the kernel estimators. The order 
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Before computing the entropy and the kurtosis of the 
wavelet coefficients, they are normalized with zero-mean and 
unit-variance. After computing the statistic data, it is observed 
that a simple threshold is not enough to discriminate the 
occurrence of artifacts [27].  
 

3) Neural Networks 
 
The detection system is tested with two kinds of neural 

networks as classifiers: multilayer perceptron (MLP) and 
probabilistic neural network (PNN). The detection system 
consists of two neural networks, of the same class, joined 
through a logic operation OR, see Fig. 7. 

 

 
 
Fig. 7. Neural network block to detect artifacts. 
 

The MLP has the ability to be an universal approximator, it 
learns and generalizes with smaller training set requirements. 
It has a fast operation, ease of implementation and therefore it 
is the most commonly used neural network architecture. It has 
been adapted to discriminate between the occurrence and the 
non-occurrence of artifacts [24]. 

The second kind of classifier is a PNN scheme. The PNN 
network is rapidly trained; it is usually faster than the MLP, 
while exhibiting none of its training pathologies such as 
paralysis or local minima problems [24]. 

Detection of ocular artifacts is done using the wavelet 
coefficient kurtosis of the four electrodes (Fp1, Fp2, P3 and 
P4) in the frequency ranges beta (o) and theta (k), see Fig. 6, 
where XO is a feature vector of occurrence of an ocular 
artifact, see Fig. 7.  

Detection of muscular artifacts is done using the wavelet 
coefficient entropy and kurtosis of three electrodes (Fp1, Fp2 
and P4) in the frequency range theta (k), see Fig. 5, where XM 
is a feature vector of occurrence of a muscular ocular artifact, 
see Fig. 7. 

An experiment is developed to validate the procedure, 
considering 300 trials: 100 trials without artifacts, 100 trials 
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with ocular artifacts, and 100 trials with muscular artifacts. 
The training of the neural networks is described next. 

Neural network 1 (net1) is trained using 100 trials without 
artifacts, and 100 trials with ocular artifacts, taking 80% of the 
trials for the training data and 20% for the validation data.  

Neural network 2 (net2) is trained in the same way, 
however using muscular instead of ocular artifacts.  

Cross-validation is applied to determine the neural network 
with the better performance in the classification, the 20% of 
the trials for the validation data of the networks is taken 
through all the samples, resulting in five possible neural 
networks [28]. 

The union of the neural networks (netf) made through a 
logic operation OR as mentioned before, is then tested for the 
total of the trials. The results of the tests of the neural 
networks are shown in Tables I and II. 

 

 
Tables III and IV show the confusion matrices of the 

detection system using MLP and PNN, respectively. 
 

 

 

IV. PROCESSING 
 

The BCI developed in this work is based in operant 
conditioning. The mental activities defined specifically are the 
motor imagery of the forefinger movement of the right hand to 
the right and to the left side, imagination of the 3D rotation of 
a cube, arithmetic operation of subtraction by a constant 
number and the mental state of relax. 

After the application of the wavelet transform, the wavelet 
coefficients contain useful information in the time and 
frequency domain. The next step is the feature extraction, 
which consists on computing a few measurements from which 
it is possible to determine the different mental activity kinds.  

In this case, the chosen measurement is the mean of the 
wavelet coefficients in the principal frequency bands of the 
brainwaves; where Xµ is the feature vector of the means of the 
wavelet coefficients. 

Pattern recognition consists in determining an algorithm to 
classify the signal’s features according to the corresponding 
mental task. A probabilistic neural network is used as 
classifier, obtaining a high hit rate; the classifier must be able 
to recognize five different mental activities. 

To train the neural network, 500 trials are taken where the 
user is asked to carry out 100 trials of the chosen mental 
activities: motor imagery of the forefinger movement to the 
right side (RM), motor imagery of the forefinger movement to 
the left side (LM), 3D rotation of a cube (CR), arithmetic 
operation of subtraction (AS), and the mental state of relax 
(RX). 

After computing the mean of the wavelet coefficients, the 
dimension of the feature vector is 50; using the knowledge of 
the specialization of the brain activity and the position of the 
electrodes it is possible to discard the electrodes Fp1, Fp2, P3 
and P4, achieving a reduction of the dimensionality to 30. 
Then, the brain activity principal concentration is observed in 
the delta band [0 – 4 Hz], reducing the dimensionality to 6.  

Validation of the classifier allows discarding the electrodes 
C4 and Pz, then the final dimension of the feature vector is 4. 
The reduction of the dimensionality eases the training and 
application of the neural network. Therefore, the processing 
time is reduced too, which is an important requirement for 
applications in real time (see Fig. 8, where MA is the 
recognized mental activity). 
 

 
 

Fig. 8. Pattern recognition of the five mental activities. 
 

The trials with their reduced feature vector are divided in 
the following way: 80% of the trials are taken for the training 
data and 20% for the validation data. Cross-validation is 
applied in the same way that in the artifact detection, to 
determine the neural network with better performance in the 
classification [28]. 

TABLE I 
TEST OF THE MLP NEURAL NETWORKS.  

 C I Total Hit Rate 
(%) 

net1 35 5 40 87.5 
net2 27 13 40 67.5 
netf 283 17 300 94.3 

C: Correct. I: Incorrect. 

TABLE III 
CONFUSION MATRIX OF THE CLASSIFICATION WITH MLP NEURAL NETWORKS.  

 S SA 
S 87 13 

SA 4 196 
S: Signal without artifact. SA: Signal with artifact. 

TABLE II 
TEST OF THE PROBABILISTIC NEURAL NETWORK. 

 C I Total Hit Rate 
(%) 

net1 24 16 40 60.0 
net2 27 13 40 67.5 
netf 284 16 300 94.6 

C: Correct. I: Incorrect. 

TABLE IV 
CONFUSION MATRIX OF THE CLASSIFICATION WITH MLP NEURAL NETWORKS.  

 S SA 
S 88 12 

SA 4 196 
S: Signal without artifact. SA: Signal with artifact. 
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Table V shows the confusion matrix from the classification 
in the stage of validation of the neural network. The obtained 
hit rate is 83%.  

V. APPLICATION 
 

The stages of training and application of the BCI must be 
automatic processes; the development of a graphic interface 
that can link all the subsystems in different programming 
environments, and interact with the available hardware is 
necessary. 

The graphic interface is developed in the programming 
environment Visual C#, adding libraries to run routines in 
Matlab to control data acquisition through the 
“CompactDAQ” and to send commands for the mobile robot 
by the radiofrequency (RF) interface. This interface offers to 
the user a friendly environment to develop the skill of 
controlling his/her brain activity while the system can adapt 
with him/her. 

The validation of the BCI is made through of an application 
which consists on the activation of the movements of a mobile 
robot associating the mental activities to commands that can 
be sent to the robot by the radiofrequency interface. This 
application is tested with five users, evaluating the 
performance of the BCI with different measurements that 
explain the accuracy and speed of the integrated system. 

 

A. Training Protocol 
 

The first stage consists on the artifact detection through the 
training of two neural networks, which detect the occurrence 
of ocular and muscular artifacts.  

The second stage consists on the mental activity recognition 
through the training of a PNN, which is achieved classifying 
the five kinds of mental activities. 

The third stage consists on the mutual adaptation between 
the system and the user, providing to the user visual feedback 
(biofeedback). In such feedback, the mental activity to be 
developed is shown randomly on the screen. If the classifier 
point out a different mental activity; then, the acquisition is 
discarded.  

This procedure is repeated so much as to complete 10 trials 
of each kind of mental activity. The trials are added to the 
PNN neural network, where the obtained data in the section 
4.4 is used to validate this procedure. 10% of the trials are 

taken for the stage of the mutual adaptation, while another 
10% of the trials are taken for validation data.  

The hit rate of the network of the second stage is 82%, while 
that the hit rate of the network of the third stage is 92%. 

 

 
 
Fig. 9. Training protocol applied to a user 
 

B. Mobile Robot 
 
To validate the proposed methodology, the developed BCI 

is applied to a 120 pound mobile robot. The chosen mobile 
robot, named “Touro” (see Fig. 5.5), was already available at 
PUC-Rio’s Robotic Laboratory, setup to respond to RF 
commands, therefore no further development was necessary. 
In addition, this system is analogous to a powered wheelchair, 
one of the possible applications of the BCI: it is driven by 
only two active wheels (see Fig. 10) using “tank steering”, and 
it has enough torque to carry an adult.  

The BCI commands are translated to five different 
commands: turn right, turn left, move forward, move 
backward, and stop. 
 

 
 
Fig. 10. Differential traction configuration of the mobile robot “Touro”. 
 

TABLE V 
CONFUSION MATRIX OF THE CLASSIFICATION OF THE MENTAL ACTIVITIES 

WITH A PNN NEURAL NETWORK. 

 RM LM CR AS RX 
RM 16 4 0 0 0 
LM 0 15 5 0 0 
CR 1 5 14 0 0 
AS 1 1 0 18 0 
RX 0 0 0 0 20 
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The training protocol take approximately two hours, the 
graphical interface was programmed to accomplish the three 
stages of the training automatically and sequentially. The 
application to activate the robot is contained in the graphical 
interface, each processing of a command take approximately 
thirty seconds; therefore, the rate is two commands/minute. 
The hit rate obtained of the application is 60 %. 

 

VI. CONCLUSION 
 

An asynchronous operant conditioning BCI was developed, 
which operates with five mental activities in the activation 
framework of a mobile robot, the BCI sends commands each 
thirty seconds. 

An efficient algorithm to detect ocular and muscular 
artifacts was developed based on the training and composition 
of two neural networks. The parameters of this artifact 
detection system were set during a first training stage. 

It was found that the selected features to train the neural 
networks in the artifact detection stage and the recognition 
stage represent suitably the behavior of the EEG signals in the 
frequency-time domain in each band of the EEG analysis. 

The BCI can evolve to a Brain Machine Interface (BMI), 
which is implemented in an embedded system. The BMI will 
offer portability and improved user friendliness. 
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