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Abstract 

The notch sensitivity factor q used to quantify the influence of notches on fatigue strength has 
been associated with tiny non-propagating cracks at their roots, but the q plots used in practice 
are based on semi-empirical simplistic estimates which do not recognize such cracks. By 
modeling the influence of the notch tip stress gradient on the fatigue propagation of mechani-
cally short cracks, it is shown that those traditional q plots are only applicable to semicircular 
notches. Elongated semi-elliptical slits, on the other hand, can have very different q values 
which depend on the notch shape, not only on its tip radius. These predictions are supported 
by measuring the fatigue crack re-initiation lives after drilling a hole at the tip of deep pre-
cracks on modified SE(T) specimens, to force them to behave like an elongated notch.  
 
Keywords: notch sensitivity, short cracks, fatigue life prediction, non-propagating cracks, fa-
tigue resistance of notched materials 

1. Introduction  

The notch sensitivity factor 0 ≤ q ≤ 1 is widely used in structural design to quantify the dif-
ference between Kt, the linear elastic stress concentration factor (SCF) of a notch, and Kf, its 
corresponding fatigue SCF, used to quantify the actual notch effect on the fatigue strength [1]. 
In this way, if Kt = σmax/σn, where σmax is the maximum (linear elastic) stress at the notch 
root, and if σn is the nominal stress that would act at that point if the notch did not affect the 
stress field around the notch, the fatigue SCF is defined by   

Kf = 1 + q⋅(Kt – 1) = ntL LS S′         (1) 

where LS ′  and SLnt are the fatigue limits (or else the fatigue strengths at a given life) measured 
on smooth and on notched SN specimens, respectively.  

It is well known that, at least in undamaged compact materials, q can be associated with 
the relatively fast generation of tiny non-propagating fatigue cracks at notch roots, see Fig. 1. 
Indeed, according to Frost [2], early evidence that small non-propagating fatigue cracks are 
found at notch roots when L t n L f2S K 2S KΔσ′ ′< < (at least in metallic alloys) goes back as 
far as 1949. Therefore, it is certainly reasonable to expect that such cracks can quantitatively 
explain why Kf ≤ Kt and, consequently, that the notch sensitivity can be analytically predict-
able from the fatigue propagation behavior of short cracks emanating from its tip. The pur-
pose of this work is to demonstrate that in fact this can be done using relatively simple but 
sound mechanical principles, which do not require heuristic arguments.  

To achieve this task, first the influence of the stress field gradient ahead the notch roots on 
the propagation of short fatigue cracks is studied, in order to associate the notch sensitivity to 



the transition between their non-propagating and propagating states. Knowing that for stress 
analysis purposes notches of depth b and tip radius ρ can be supposed elliptical with semi-axis 
b and c and tip radius ρ = c2/b, it is shown that for a given material q depends not only on ρ, 
but also very much on the ratio c/b [3-4]. It is also shown that the material influence on the 
notch sensitivity depends on its propagation threshold for (long) fatigue cracks ΔK0 and on its 
fatigue limit for crack initiation ΔS0 measured under pulsating loads at R = σmin/σmax = 0. Fi-
nally, the predicted q values are verified by fatigue testing several Al 6082 T6 notched speci-
mens. It should be noted that “short crack” here means “mechanically short crack” not “mi-
crostructurally short crack”, since material isotropy is assumed in their modeling, a simplified 
hypothesis corroborated by the measured experimental results.  

 
Fig. 1: Classical data showing that non-propagating fatigue cracks are generated at the notch 

roots if L t n L f2S K 2S KΔσ′ ′< <  [2]. 

2. The propagation of (mechanically) short fatigue cracks 

The fatigue crack propagation (FCP) threshold of short cracks must be smaller than ΔK0, 
otherwise the stress range Δσ required to propagate them would be higher than ΔS0. Indeed, as 
the stress intensity factor (SIF) range ΔK ≈ Δσ√(πa) controls the FCP process, if short cracks 
with a→ 0 had the same ΔK0 threshold of the long cracks, then their propagation by fatigue 
would require Δσ → ∞, a physical non-sense. For a good review of near-threshold FCP see 
e.g. Lawson et al [5]. 

The crack size influence on the propagation threshold ΔKth(a) of short fatigue cracks can 
be modeled using El Haddad-Topper-Smith’s (ETS) short crack characteristic value a0, esti-
mated from ΔS0 and ΔK0 [6]. This clever trick reproduces well the Kitagawa-Takahashi [7] 
plot trend, see Fig. 2, using a modified SIF range KΔ ′  to describe the fatigue propagation of 
any crack, where 

0K (a a )Δ Δσ π′ = + , where ( )( )2
0 0 0a 1 K Sπ Δ Δ=      (2) 

Using this a0 trick, it is indeed possible to reproduce the expected limits ΔKth(a→ ∞) = ΔK0 
and Δσ(a → 0) = ΔS0, see Fig. 2. Knowing that steels typically have 6 < ΔK0 < 12MPa√m, 
ultimate tensile strength 400 < SU < 2000MPa and fatigue limit 200 < LS ′  < 1000MPa (as 
very clean high-strength steels tend to maintain the usual L US S 2′ ≅  trend measured in lower 
strength steels under fully alternated loads, at an R-ratio R = −1) - and estimating by Good-



man ( )0 U L U L 0S 2S S S S 260 S 1300 MPaΔ Δ′ ′= + ⇒ < < - it can be expected that the maxi-
mum ETS a0 range for steels is given by 

 ( )( ) ( )( )min max max min
2 2

0 0 0 0 01 K S 7 a 700 m 1 K Sπ μ πΔ Δ ≅ < < ≅ Δ Δ   (3) 

This a0 range is probably overestimated, since the minimum threshold ΔK0min is not neces-
sarily associated with the maximum fatigue crack initiation limit ΔS0max, nor ΔK0max is associ-
ated with ΔS0min. But it nevertheless justifies the “short crack” denomination used for cracks 
of a similar small size, and highlights the short crack dependence on the FCP threshold and on 
the fatigue limit of the material.  

 
Fig. 2: Kitagawa-Takahashi plot describing the fatigue propagation of short and long cracks 

under R = 0 in a HT80 steel with ΔK0 = 11.2MPa√m and ΔS0 = 575MPa [6]: long 
cracks with a >> a0 stop when Δσ ≤ ΔK0/√(πa), very short cracks with a << a0 stop 
when Δσ ≤ ΔS0, and the ETS curve predicts crack stop when Δσ ≤ ΔK0/√π(a + a0).  

As the typical strengths of aluminum alloys are 70 < SU < 600MPa, 30 < LS ′  < 230MPa, 
40 < ΔS0 < 330MPa and 1.2 < ΔK0 < 5MPa√m, their maximum a0 (over)estimated range, and 
thus their short crack influence scale, is wider than the steels range, 1μm < a0 < 5mm.  

Since equation (2) is deduced using the SIF ΔK = Δσ√(πa) of the Irwin’s plate, Yu et al 
[8] and Atzori et al [9] used the geometry factor α of the general expression ΔK = Δσ√(πa)⋅α  
to deal with other geometries, defining 

I 0K (a a )Δ α Δσ π′ = ⋅ + ,   where ( ) ( ) 2
0 0 0a 1 K Sπ Δ α Δ⎡ ⎤= ⋅⎣ ⎦    (4) 

This expression implies that Δσ tends to the fatigue limit ΔS0 if a → 0, which is only true 
when Δσ is the notch root stress range, instead of the nominal stress. However, in most cases 
the geometry factor α found in SIF tables already includes the effects of the notch root SCF, 
defining Δσ  ≡ Δσn as the nominal stress. Hence, a clearer way to define the short crack length 
parameter a0 when the crack departs from a notch is to follow this practice considering as 
usual Δσ to be the nominal stress range and separating the geometry factor α into two parts: 
ϕ(a), which tends to the notch root SCF as the crack length a tends to zero, and η, which only 
encompasses the remaining terms, such as the free surface correction: 

0K ( a ) (a a )Δ η ϕ Δσ π′ = ⋅ ⋅ + ,   where ( ) ( ) 2
0 0 0a 1 K Sπ Δ η Δ⎡ ⎤= ⋅⎣ ⎦    (5) 

Note that the first factor ϕ(a) does not appear in this expression for a0, because for very 
small cracks (a → 0) the notch root stress range ϕ(0)⋅Δσ should be equal to ΔS0.   



Alternatively, the short crack problem can be probably more clearly modeled by letting the 
SIF range ΔK retain its original equation, while the threshold expression is modified to be-
come a function of the crack length a, namely ΔKth(a), resulting in  

( )th 0 0K ( a ) K a a aΔ Δ = +         (6) 

The El Haddad-Topper-Smith’s equation can be seen as one possible asymptotic match be-
tween the short and long crack behaviors. Following Bazant’s [10] reasoning, a more general 
equation can be used introducing an adjustable parameter γ  to fit experimental data  

( )
1/ 2

th 0 0K ( a ) K 1 a a
γγΔ Δ

−
⎡ ⎤= +⎢ ⎥⎣ ⎦

       (7) 

Equations (2-6) are obtained from (7) when γ = 2.0, and the bi-linear limit estimate given 
by Δσ(a ≤ a0) = ΔS0 for short cracks and ΔKth( a ≥ a0) = ΔK0 for long ones shown in Fig. 2 is 
obtained if η⋅ϕ(a) = 1 and γ → ∞. The fitting parameter γ allows this ΔKth(a) estimate to bet-
ter fit short crack propagation data from Tanaka et al [11] and Livieri and Tovo [12], see Fig. 
3. Most data in this figure is bounded by the curves obtained using γ  =1.5 and γ  = 8.  

 
Fig. 3: Ratio between short and long crack propagation thresholds as a function of a/a0. 

In the following sections, these ideas are first applied to predict the propagation behavior 
of short cracks emanating from circular holes, and then extended to describe the behavior of 
cracks which depart from semi-elliptical notches, resulting in improved estimates of the notch 
sensitivity q and of the largest non-propagating crack size tolerated at such notch tips. 

3. The behavior of short cracks which depart from circular holes 
The FCP behavior of short cracks emanating from circular holes in Kirsch (infinite) plates 

is now evaluated. The SIF of a single crack with length a emanating from a circular hole with 
radius ρ in an infinite plate loaded by a tensile stress range Δσ is expressed, within 1%, by  

( )K 1.12 a aΔ ϕ ρ Δσ π= ⋅ ⋅         (8) 

where the factor ϕ(a/ρ) ≡ ϕ(x), related to the hole stress concentration, is given by [13] 
2 3

6
0.2 0.3 x x x( x) 1 2 2.354 1.2056 0.2211

(1 x) 1 x 1 x 1 x(1 x)
ϕ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + ⋅⎜ − + − ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + ++ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
, ax

ρ
≡   (9) 



Note that when the crack size a tends to zero, equation (8) becomes 

a 0
lim K 1.12 3 aΔ Δσ π
→

= ⋅ ⋅         (10) 

as expected, since it combines the solution for an edge crack in a semi-infinite plate with the 
SCF of a circular Kirsch hole, which has Kt = ϕ(0) = 3. Note also that the other limit, for the 
long cracks with a >> a0, results in 

a
lim K a 2Δ Δσ π
→∞

=          (11) 

which is the SIF for a long crack with length a in an infinite plate, where the crack tip is so far 
from the hole that it does not suffer its influence in the stress field (note the equivalent crack 
length is a + 2ρ, however as a → ∞ the ρ value disappears from the equation). Thus, the SIF 
of a long crack which departs from a Kirsch hole has ϕ(x → ∞) = 1/1.12√2 ≅ 0.63. 

Using equation (7) to express the FCP threshold, it can then be stated that any crack de-
parting from a Kirsch hole will propagate when  

( ) ( )
12

th 0 0K a a K ( a ) K 1 a a
γγη ϕ ρ σ π

−
⎡ ⎤Δ = ⋅ ⋅ Δ > Δ = Δ ⋅ +⎢ ⎥⎣ ⎦

   (12) 

where η = 1.12 is the free surface correction. Knowing that ΔKth ≡ ΔK0 for a long crack, the 
crack length parameter a0 from the above equation is 

( ) ( ) 2
0 0 0a 1 K 1.12 Sπ Δ Δ⎡ ⎤= ⋅⎣ ⎦         (13) 

Note that, as discussed before, the factor ϕ(a/ρ) does not appear in the definition of a0. 
Therefore, the crack propagation criterion can be based on dimensionless functions ϕ(a/ρ) and 
g(a/ρ, ΔS0/Δσ, ΔK0/ΔS0√ρ, γ) [14], and re-written as  

( ) ( )

( ) ( )
0 0 0 0 0

1
0

0 0

K S S S Ka ag , , ,
Sa K S

γγ γ

Δ Δ ρ Δ Δσ Δ Δϕ γ
ρ ρ Δσ Δ ρη π ρ Δ Δ ρ

⋅ ⎛ ⎞⎛ ⎞ > ≡ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎡ ⎤+⎢ ⎥⎣ ⎦

    (14) 

In other words, if x ≡ a/ρ and κ ≡ ΔK0/ΔS0√ρ, a fatigue crack departing from a Kirsch hole 
grows whenever ϕ(x) > g(x, ΔS0/Δσ, κ, γ) ⇒ ϕ /g > 1. Fig. 4 plots some ϕ /g functions for sev-
eral fatigue strength to loading stress range ratios ΔS0/Δσ as a function of the normalized 
crack length x ≡ a/ρ, assuming a material/notch combination with κ = 1.5 and γ = 6 [15].  

For high applied stress ranges Δσ, the strength to load ΔS0/Δσ ratio is small, and the corre-
sponding ϕ /g curve is always higher than 1, meaning that cracks will initiate and propagate 
from the Kirsch hole border, without stopping during this process. One example of such a 
case is the upper curve in Fig. 4, which shows the function ϕ /g1.4 obtained for ΔS0/Δσ = 1.4. 
On the other hand, small stress ranges Δσ  with load ratios ΔS0/Δσ ≥ Kt = 3 have ϕ /g func-
tions which are smaller than 1, meaning that no crack will initiate from the Kirsch hole, and 
that small enough cracks will not propagate from it at such lo loads. This is illustrated by 
curves ϕ /g3, associated with the limit case ΔS0/Δσ = 3, and ϕ /g4, associated with ΔS0/Δσ = 4.  

But three other cases must be noted in Fig. 4. The first crosses once the ϕ /g = 1 line, see 
the ϕ /g2.3 curve, meaning such an intermediate load range can initiate and propagate a fatigue 
crack from the notch border until the decreasing ϕ /g2.3 value reaches 1, where the crack stops. 
Thus, this loading level generates a non-propagating fatigue crack at the notch border due to 
the crack tip stress gradient effect, with a size given by the corresponding a = x⋅ρ abscissa.  



 
Fig. 4: The fatigue stress concentration factor Kf can be obtained by finding the function ϕ /g 

which is tangent to the ϕ /g =1 line, thus in this case Kf = 1.64. 

The second, illustrated in Fig. 4 by the ϕ /g1.85 curve, intersects the ϕ /g =1 line twice. 
Therefore, this load level will also generate a fatigue crack at the Kirsch hole border, which 
will propagate until reaching the maximum size obtained from the abscissa of the first inter-
section point (on the left), where the crack stops. Moreover, cracks longer than the size de-
fined by the abscissa of the second intersection point will re-start propagating by fatigue un-
der Δσ = ΔS0/1.85 until eventually fracturing the Kirsch plate. However, the crack initiated by 
fatigue under such load cannot propagate between these two intersection points by fatigue 
alone (assuming Δσ remains constant). Hence, it can only grow in this region if driven by a 
different mechanism, such as corrosion or creep, for example.  

These two cases seem different, yet they are similar: the ϕ /g2.3 curve will cross the ϕ /g =1 
line twice if the graph is extended to larger x ≡ a/ρ values, because a sufficiently long crack 
can always propagate by fatigue under a given (even if small) Δσ range whenever its SIF 
range ΔK = α⋅Δσ√(πa) grows with the crack size a, as in this Kirsch plate. In fact, all ϕ /g 
curves start at KtΔσ/ΔS0 and a = 0, and become higher than 1 for sufficiently large a/ρ values. 

Finally, the ϕ /g1.64 curve is tangent to the ϕ /g =1 line, meaning that this Δσ = ΔS0/1.64 is 
the smallest stress range that can cause crack initiation and propagation without arrest from 
the notch border. In other words, by definition, the Fig. 4 Kirsch hole fatigue SCF is given by 
Kf = ΔS0/Δσ = 1.64. Moreover, the abscissa xmax of the tangency point between the ϕ /g1.64 
curve and the ϕ /g =1 line gives the largest non-propagating crack that can arise from it by fa-
tigue alone, amax = xmax⋅ρ. Therefore, the Kf and amax can be found by solving the system  

( )
( ) ( )

( ) ( )
1

0
max max f

max max f

x g x ,K , ,g
g x x x g x ,K , , x

ϕ κ γϕ
ϕ ϕ κ γ

⎧ ==⎧ ⎪⇒⎨ ⎨∂ ∂ = ∂ ∂ = ∂ ∂⎩ ⎪⎩
    (15) 

This system can be solved numerically for each combination of κ ≡ ΔK0/ΔS0√ρ and γ val-
ues, and the notch sensitivity factor q is then obtained from 

( )( ) ( )1 1f tq( , ) K , Kκ γ κ γ≡ − −         (16) 



Thus, the notch sensitivity q can be calculated using appropriate analytical procedures, 
without appealing to semi-empirical heuristic arguments, by quantifying how the stress gradi-
ent at the notch root affects the short crack propagation, including the material-dependent data 
fit parameter γ influence on ΔKth(a). Moreover, this approach can be easily extended to semi-
elliptical notches, which can be analyzed in the same way, as shown in the following section.  

4. The physical behavior of short cracks which depart from elongated notches 
Before jumping into more elaborated mechanical procedures, it is worth to present a simple 

and unambiguous explanation for why a crack can start from a sharp notch root and propagate 
for a while before stopping and becoming non-propagating (under fixed loading conditions), 
in order to enhance the advantages of the model proposed here. 

A very reasonable estimate for the SIF of a small crack a << b which departs from the tip 
of an elliptical notch with semi-axes b and c and root radius ρ = c2/b in an Inglis plate, with 
the 2b axis centered at the x coordinate origin, is KI(a) ≅ σn⋅√(πa)⋅f1(a, b, c)⋅f2(free surface), 
where σn is the nominal stress (perpendicular to a and b); f1(a, b, c) ≅ σy(x)/σn; σy(x) is the 
stress that acts at the point (x = b + a, y = 0) in front of the notch root when there is no crack; 
and f2 = 1.12. The more slender the elliptical notch, meaning the smaller their c/b ratio and tip 
radius ρ, the higher are its Kt and the stress gradient near its tip, thus the faster the σy(x)/σn ra-
tio drops. The distribution of the σy(x) is given by [16]: 

2 2 22 2 2 22y
1 2 2 22 2 2 2n

( x b a, y 0 ) ( b 2bc )( x x b c )( x b c ) bc ( b c )xf 1
( b c ) ( x b c ) x b c

σ
σ

= + = − − − + − + + −
= = +

− − + − +
 (17)  

The peculiar growth of short cracks which depart from elliptical notch roots is caused by 
the usually sharp stress gradient there: the linear elastic stress concentration induced by any 
elliptical hole with b ≥ c drops from Kt = 1 + 2b/c = 1 + 2√(b/ρ) = σy(1)/σn ≥ 3 at its tip sur-
face to a value 1.82 < K1.2 = σy(1.2)/σn < 2.11 at a point just b/5 ahead of it, see Fig. 5. Thus, 
when the notch is slender and has a high Kt, the SIF of those short cracks, which in principle 
should tend to increase with their length a = x − b, may instead decrease after they grow for a 
while, since the Kt affected stress in KI ≅ 1.12⋅σn√(πa)⋅f1 may decrease sharply due the high 
stress gradient there, overcompensating the crack growth effect, see Fig. 6. 

 
Fig. 5: The ratio K1.2 = σy(x/b = 1.2, 0)/σn at just b/5 ahead of the tip of elliptical Inglis holes 

is almost independent of its linear elastic SCF Kt = 1+ 2b/c = 1+ 2√(b/ρ). 



 
Fig. 6: The estimate KI ≅ 1.12⋅σn√(πa)⋅f1(Kt, a) for the cracks which depart from the tips of an 

Inglis elliptical hole with b = 10mm illustrate how the derivative ∂KI/∂a may decrease 
sharply just after the cracks initiate there.  

This KI(a) estimate can be used to evaluate the non-propagating fatigue cracks tolerable at 
notch roots, using the short crack propagation behavior. A simple numerical example clarifies 
this point: if a large steel plate with SU = 600MPa, SL = 200MPa and ΔK0 = 9MPa√m works 
under an alternated load range Δσn = 100MPa at R = −1, KI(a) let verify if it is possible to 
change an originally circular d = 20mm central hole by an elliptical one with 2b = 20mm 
(perpendicular to σn) and 2c = 2mm, without inducing the plate to fail by fatigue. 

Neglecting the buckling problem, which can be important in a thin plate, the circular hole 
is safe, since it has a fatigue crack initiation safety factor φF = SL/Kf⋅σn = 200/150 ≅ 1.33, as 
this large hole has Kf ≅ Kt = 3, σn = Δσn/2, and SL includes the necessary modification factors 
to consider surface roughness and similar effects on the plate fatigue limit. But by traditional 
SN procedures the elliptical hole would not be admissible, as it has a high Kt = 1 + 2b/c = 21 
and a small tip radius ρ = c2/b = 0.1mm, thus a notch sensitivity estimated from the usual Pe-
terson q plot [1] q ≅ 0.32, which would induce Kf  = 1 + q⋅(Kt – 1) = 7.33, and therefore a 
maximum load amplitude Kf⋅σn = 376MPa > SL. However, as this Kf value is considerably 
higher than typical values reported in the literature [15-18], it is worth to re-study this simple 
problem considering the short crack propagation behavior. 

Supposing ΔKth(R < 0) ≅ ΔK0, assuming as usual that a fatigue crack does not propagate 
while closed, and estimating ΔKth(a) = ΔK0/[1 + (a0/a)]−0.5 (by ETS), L RS 0.5S′ =  (the material 
fatigue limit, as FCP modeling does not require the modifying factors necessary to estimate 
SL), ΔS0 = SR/1.5 (by Goodman) and a0 = (1/π)(1.5ΔK0/1.12⋅SR)2 ≅ 0.13mm, the SIF ranges 
ΔKI(a) for the two holes are compared to the propagation threshold ΔKth(a), see Fig. 7. 

This figure shows that the SIF range ΔKI(a) curve for cracks departing from the 20mm di-
ameter circular notch remains below the ΔKth(a) FCP threshold curve which considers the 
short crack behavior up to a ≅ 1.54mm. Thus, if a small superficial scratch locally augments 
the maximum stresses at that hole border under Δσn = 100MPa and R = −1 up to the point it 
initiates a tiny crack, this crack would have no tendency to propagate under this (fixed) load, 
confirming its “safe” prediction made above by traditional SN fatigue design procedures. 



However, if a crack with a > 1.54mm is introduced at this Kirsch hole border by any other 
means, it would then propagate by fatigue under those otherwise safe loading conditions, as 
ΔKI(a) values are greater than the material FCP resistance ΔKth(a) after this intersection point. 

 
Fig. 7: Cracks do not initiate at the circular hole, which tolerates cracks a < 1.54mm, while 

the crack which initiates at the elliptical notch tip stops after reaching a ≅ 0.33mm.  

On the other hand, under these same Δσn = 100MPa and R = −1 loading conditions, the 
ΔKI(a) curve for the elliptical hole starts above ΔKth(a), meaning that a crack should initiate at 
its tip, as expected from its high Kt. However, as this tiny crack propagates through the high 
stress gradient ahead of the notch root, it sees fast diminishing stresses at its tip during its 
early growth. This decreasing stress field overcompensate the increasing crack size effect on 
ΔKI(a) until it eventually becomes smaller than ΔKth(a) at a ≅ 0.33mm, when the crack stops, 
becoming non-propagating (if the nominal Δσn and R loading remains fixed), see Fig. 7. 

Since a terminal fatigue failure includes crack initiation and growth up to fracture, in this 
sense both the circular and the elliptical notches could be considered safe for the assumed 
plate service loading. However, the non-propagating crack at the elliptical notch tip, a clear 
evidence of fatigue damage, renders it much less robust than the circular one. For example, a 
small 10% increment in Δσn could make the crack initiate and propagate from the elliptical 
notch until the plate fractures, while the circular notch would remain safe, still tolerating a 
crack a ≅ 1mm, as shown in Fig. 8. 

These conclusions are quite interesting, but they are based on estimates and thus cannot of 
course be used for design purposes. Nevertheless, as these estimation procedures are reasona-
bly based on clear and sound mechanical hypothesis, which do not require heuristic argu-
ments such as ill defined material dependent characteristic distances, they do justify the de-
velopment of the more precise calculations presented in the following section. 

5. The analysis of short cracks which depart from elongated notches 
The logical reasoning used to model the notch sensitivity of the circular Kirsch hole can 

now be extended to model elliptical notches, which in turn can be used to model most elon-
gated notches which have the same depth and tip radius. The SIF range of a single crack with 
length a emanating from a semi-elliptical notch with semi-axes b and c (where b is in the 
same direction as a) at the edge of a very large plate can be written as 

( )IK F a b ,c b aΔ η Δσ π= ⋅ ⋅         (18) 



 
Fig. 8: The circular hole is much more robust than the elliptical notch: if the load is increased 

by just 10%, the crack initiated at the elliptical notch tip does not stop anymore, while 
the circular hole still tolerates a crack of size a < ~1mm departing from its border.  

where η = 1.12 is the free surface correction, and F(a/b, c/b) is a geometry factor associated 
with the notch stress concentration, which can be expressed as a function of the dimensionless 
parameter s = a/(b + a) and of the notch SCF  

( )
t 2.5

b 0.12K 1 2 1
c 1 c b

⎡ ⎤ ⎡ ⎤= + ⋅ +⎢ ⎥ ⎢ ⎥⎣ ⎦ +⎣ ⎦
       (19) 

To obtain expressions for F, Finite Element (FE) calculations were performed using the 
Quebra2D program [19] considering several cracked semi-elliptical notch configurations. The 
numerical results, which agreed well with standard solutions [13], were fitted within 3% using 
empirical equations, resulting in 

( ) ( ) ( )2
t

t t 2
t

1 exp K s
F a b ,c b f K ,s K

K s
− − ⋅

≡ = ⋅
⋅

, c ≤ b    (20) 

( ) ( ) ( ) ( )2s 2 t2
t t t 2

t

1 exp K s
F a b ,c b f K ,s K 1 exp K

K s

− − − ⋅⎡ ⎤′≡ = ⋅ − − ⋅⎣ ⎦ ⋅
, c ≥ b (21) 

where s = a/(a + b). Fig. 9 shows how well equation (20) fits the F(a/b, c/b) generated by the 
FE calculations. Similar results are found for equation (21) [14].  

Traditional notch sensitivity estimates assume that q depends only on the notch root ρ and 
on the material ultimate strength SU. Thus, similar materials with the same SU but different 
ΔK0 should have identical notch sensitivities, according to these estimates. The same should 
occur with shallow and deep or elongated notches of identical tip radii. However, it must be 
mentioned that well established empirical relations relate the fatigue limit ΔS0 to SU, but there 
is no such relation between the FCP threshold ΔK0 and SU. Moreover, it is also important to 
point out that the q estimation for elongated notches by the traditional procedures can gener-
ate questionable Kf values, as discussed above. 

The proposed model, on the other hand, recognizes that q values of semi-elliptical notches, 
besides depending on ρ, ΔS0, ΔK0 and γ, are also strongly dependent on the c/b ratio, see Fig. 



10. The curves shown in this figure are calculated for typical aluminum alloys which have 
mean SU = 225MPa, fatigue limit SL = 90MPa ⇒ ΔS0 = 2SLSR/(SL + SR) = 129MPa, propaga-
tion threshold ΔK0 = 2.9MPa√m, γ = 6, and short crack length parameter a0 = 0.26mm. Their 
corresponding Peterson’s curve is well approximated by the semi-circular c/b = 1 notch, but 
this curve is not applicable for high c/b ratios. Therefore, the proposed predictions indicate 
that these old estimates should not be used for elongated notches, a prediction experimentally 
verifiable, as discussed in the following section. 

 
Fig. 9: Finite Element calculations and proposed fit for the geometry factor of semi-elliptical 

notches with c ≤ b. 

 
Fig. 10: Notch sensitivity q as a function of the semi-elliptical notch root radius ρ = c2/b for 

aluminum alloys having a0 = 0.26mm (Su ≅ 225MPa). 

6. Experimental verification of the elongated notch sensitivity predictions 

Fatigue tests were carried out on modified SE(T) specimens of thickness B = 8 mm and 
width W = 80 mm to find the number of cycles required to re-initiate the crack after drilling a 
stop-hole of radius ρ centred at its tip, generating an elongated slit with b = 27.5mm, as de-



tailed in [3,4]. Such tests can confirm the q model proposed here. The tested material was an 
Al alloy 6082 T6, with yielding strength SY = 280MPa, SU = 327MPa and Young’s modulus 
E = 68GPa. The fatigue tests were performed at 30Hz under constant load range at R = 0.57, 
to avoid any crack closure influence on the FCP behavior. The fatigue crack re-initiation lives 
at the tip of the resulting elongated notch can be modeled by εN procedures using (i) Coffin-
Manson’s parameters σ’f = 485MPa, b = −0.0695, ε’f = 0.733 and c = −0.827, and Ramberg-
Osgood’s coefficient and exponent of the cyclic stress-strain curve, K’ = 443MPa, n’ = 0.064; 
(ii) the nominal stress range and R-ratio; and finally (iii) the stress concentration factor Kt of 
the notches generated after repairing the cracks by a stop-hole at their tips, which can be esti-
mated by Inglis, giving for a stop-hole radius ρ =1⇒ Kt ≅ 1 + 2√(a/ρ) = 11.49. 

The elongated slit can be modeled by first calculating the stress and strain maxima and 
ranges at its root by Neuber’s stress/strain concentration rule, and by using them to calculate 
the crack re-initiation lives by an appropriate Δε×N rule, considering the influence of the 
mean load. Neglecting this effect could lead to severely non-conservative predictions, as the 
R-ratio used in the tests was high (and indeed the Coffin-Manson predictions are highly non-
conservative, thus absolutely useless in this case). Fig. 11 shows that the lives predicted by 
the elastic and by the elastic-plastic versions of Morrow’s equation (Morrow El and Morrow 
EP) and by Smith-Topper-Watson (SWT) equation are similar in this case, but too conserva-
tive in comparison to the measured data. However, it is worth to emphasize that such a simi-
larity cannot be assumed beforehand, since in many other cases these rules can predict very 
different fatigue lives! 

 
Fig. 11: Predicted and measured crack re-initiation lives after introducing the stop-holes with 

radii ρ = 1.0mm at the tip of the crack in a SE(T) specimen, using the Kt of the result-
ing b = 27.5mm elongated slit, modeled by the semi-elliptical notch which has the 
same length and tip radius. 

However, when using Kf instead of Kt on the εN rules, calculating the elongated notch sen-
sitivity q by the procedures discussed above, the predictions reproduce quite well the meas-
ured results, see Figure 12. The Al 6082 T6 fatigue limit and fatigue crack propagation 
threshold under pulsating loads required to calculate Kf are estimated as ΔK0 = 4.8 MPa√m 



and as ΔS0 = 110MPa, following traditional structural design practices. The Bazant’s expo-
nent was chosen as γ = 6, as recommended by [14]. 

 
Fig. 12: Predicted and measured crack re-initiation lives after introducing the stop-holes with 

radii ρ = 1.0mm at the tip of the crack in a SE(T) specimen, using the Kf of the result-
ing b = 27.5mm elongated slit, estimated using the procedures proposed in this paper. 

7. Conclusions 
A generalized El Haddad-Topper-Smith’s parameter was used to model the crack size de-

pendence of the threshold stress intensity range for short cracks, as well as the behavior of 
non-propagating fatigue cracks. This dependence has been used to estimate the notch sensitiv-
ity factor q of semi-elliptical notches, from studying the propagation behavior of short non-
propagating cracks that may initiate from their tips. The predicted notch sensitivities repro-
duce well the classical Peterson’s q estimates for circular holes or approximately semi-
circular notches, but it is found that the notch sensitivity of elongated slits has a very strong 
dependence on the notch aspect ratio, defined by the ratio c/b of the semi-elliptical notch that 
approximates the slit shape having the same tip radius. These predictions are confirmed by 
experimental measurements of the re-initiation life of long fatigue cracks repaired by intro-
ducing a stop-hole at their tips, using their calculated Kf and appropriate εN procedures. 

8. Acknowledgements 
CNPq has provided research scholarships for the Brazilian authors. 

9. References 

[1] Peterson RE (1974) Stress Concentration Factors, Wiley. 
[2] Frost NE, Marsh KJ, Pook LP (1999) Metal Fatigue, Dover. 
[3] Wu H, Castro JTP, Imad A, Meggiolaro MA, Nourredine B (2009) in Mattos & Alves ed. 

Solid Mechanics in Brazil 2009, ABCM, ISBN 978-85-85769-43-7. 



[4] Wu H, Imad A, Nourredine B, Castro JTP, Meggiolaro MA (2009) On the prediction of 
the residual fatigue life of cracked structures repaired by the stop-hole method, Int J Fa-
tigue, in press.  

[5] Lawson L, Chen EY, Meshii M (1999) Near-threshold fatigue: a review, Int J Fatigue 
21:15-34. 

[6] El Haddad MH, Topper TH, Smith KN (1979) Prediction of non-propagating cracks, Eng 
Fract Mech 11:573-584. 

[7] Kitagawa H, Takahashi S (1976) Applicability of fracture mechanics to very small crack 
or cracks in the early stage, in Proceedings of 2nd International Conference on Mechani-
cal Behavior of Materials, ASM. 

[8] Yu MT, Duquesnay DL, Topper TH (1988) Notch fatigue behavior of 1045 steel, Int J 
Fatigue 10:109-116. 

[9] Atzori B, Lazzarin P, Meneghetti G (2003) Fracture mechanics and notch sensitivity, Fa-
tigue Fract Eng Mater Struct 26:257-267. 

[10] Bazant ZP (1977) Scaling of quasibrittle fracture: asymptotic analysis, Int J Fract 83:19-
40. 

[11] Tanaka K, Nakai Y, Yamashita M (1981) Fatigue growth threshold of small cracks, Int J 
Fract 17:519-533. 

[12] Livieri P, Tovo R (2004) Fatigue limit evaluation of notches, small cracks and defects: an 
engineering approach, Fatigue Fract Eng Mater Struct 27:1037-1049. 

[13] Tada H, Paris PC, Irwin GR (1985) The Stress Analysis of Cracks Handbook, Del Re-
search. 

[14] Meggiolaro MA, Miranda ACO, Castro JTP (2007) Short crack threshold estimates to 
predict notch sensitivity factors in fatigue, Int J Fatigue 29:2022–2031. 

[15] Castro JTP, Meggiolaro MA (2009) Fatigue v.2, ISBN 978-1449514709 (in Portuguese)  
[16] Schijve J (2001) Fatigue of Structures and Materials, Kluwer.  
[17] Shigley JE, Mischke CR, Budynas RG (2004) Mechanical Engineering Design, 7th edn, 

McGraw-Hill. 
[18] Dowling NE (2007) Mechanical Behavior of Materials, 3rd edn, Prentice Hall. 
[19] Miranda ACO, Meggiolaro MA, Castro JTP, Martha LF (2003) Fatigue life prediction of 

complex 2D components under mixed-mode variable loading, Int J Fatigue 25:1157-
1167. 


