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Abstract. Fatigue crack bifurcation is a mechanism that can quantitatively explain retardation effects even when plas-
ticity induced crack closure is not observed. Analytical solutions have been obtained for the reduction in the SIF of 
some bifurcated cracks, however numerical methods are the only means to predict the subsequent curved propagation 
behavior. Empirical equations have been proposed by the authors to calculate the process zone size and SIF along the 
curved crack branches, based on extensive FE calculations on a CT specimen. The equations are a function of the bi-
furcation angle, ratio between the branch sizes, and material crack growth exponent. The equations can also include 
the interaction with other retardation mechanisms through the use of the limiting value Kmax* (or any other propaga-
tion threshold quantity KPR) of the Unified Approach. In this work, the increase in fatigue life associated with bifur-
cated cracks under near-threshold conditions is studied. The equations presented in are re-evaluated for other speci-
men geometries using a specially developed FE program, validated from 4340 steel ESE(T) specimens. This program 
calculates the path and associated SIF along the bifurcated crack path. The results show a competition between the ef-
fects of bifurcation and other retardation mechanisms under near-threshold conditions. Even though a higher Kmax* or 
KPR level would lead to a slower crack growth rate, the smaller SIF range can lead to a premature arrest of the shorter 
branch, resulting in a smaller bifurcation process zone. The presented fatigue life calculation methodology can be used 
to predict the propagation behavior of bifurcated cracks in an arbitrary structure.  
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1. INTRODUCTION  

 
Fatigue cracks can significantly deviate from their Mode I growth direction due to the influence of overloads, multi-

axial stresses, micro structural inhomogeneities (such as inclusions, grain boundaries and interfaces), or environmental 
effects, generating crack kinking or branching (Lankford and Davidson, 1981). A fatigue crack deviated from its nomi-
nal Mode I plane induces mixed-mode near-tip conditions even if the far-field stress is pure traction. For instance, a 
pure Mode I stress intensity factor (SIF) KI locally induces Modes I and II SIF k1 and k2 near the longer branch b of a 
bifurcated crack and k1’ and k2’ near the shorter c one. The equivalent SIF Kb and Kc of the longer and shorter branches, 
calculated respectively from (k1, k2) and (k1’, k2’) using e.g. the σθmax criterion (Erdogan and Sih, 1963), can be consid-
erably smaller than that of a straight crack with the same projected (on the original crack plane) length. Therefore, such 
branching can retard or even arrest subsequent crack growth (Suresh, 1983). 

Some analytical solutions have been obtained for the SIF of kinked and branched cracks, but it is generally recog-
nized that it is very difficult to develop accurate analytical solutions for their complex propagation behavior (Karihaloo 
, 1982). Therefore, numerical methods such as Finite Elements (FE) and Boundary Elements (BE) are the only practical 
means to predict the propagation behavior of branched cracks (Pärletun, 1979). To accomplish that, a specially devel-
oped interactive FE program named Quebra (meaning fracture in Portuguese) is used (Miranda et al., 2002). 

 
2. PROPAGATION OF BRANCHED CRACKS 

 
The growth of branched cracks is studied using the Quebra program to model a C(T) specimen with width w = 

32.0mm, crack length a = 14.9mm, and a very small bifurcation with angle 2θ ranging from 40o to 168o, initial longer 
branch length b0 = 10µm and initial shorter branch lengths ranging from c0 = 5µm to 10µm. A fixed crack growth step 
of ∆b = 3µm (or 1µm during the first propagation steps) is considered for the propagation of the longer branch b. This 
growth step is calculated in the direction defined by the σθmax criterion (Erdogan and Sih, 1963). Due to the differences 
in the SIF and crack growth rate, a growth step ∆c smaller than ∆b is expected for the shorter branch. This smaller step 
is obtained assuming a crack propagation law that models the first two growth phases, 

 
mthda = A×[∆K ∆K ( R )]dN −        (1) 
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where A and m are material constants and ∆Kth(R) is the fatigue crack propagation threshold at the R = Kmin/Kmax ratio of 
the test. If ∆Kb and ∆Kc are respectively the stress intensity ranges of the longer and shorter branches, then the growth 
step ∆c of the shorter branch c should be 

 

( )( )
( )

m
c th
b th

K K Rc b RK K
∆ −∆∆ = ∆ ⋅
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       (2) 

 
Interestingly, the ratio between the propagation rates of the two branches is independent of the material constant A. 

In this analysis, the exponent m is assumed to be 2.0, 3.0, and 4.0, which are representative for the range of the meas-
ured exponents for structural alloys. A similar expression can be obtained if other crack retardation mechanisms are 
considered, through Lang and Marci’s propagation threshold KPR (Lang and Marci , 1999) with A and m parameters fit-
ted for each considered load ratio R: 

 
max,
max,

( )−∆ = ∆ ⋅ −
c PR m
b PR

K Kc b K K        (3) 

 
where Kmax,b and Kmax,c are the maximum SIF of the longer and shorter branches respectively. Or else this threshold KPR 

can be replaced by a limiting value *
maxK , the threshold of the maximum of Sadananda and Vasudevan’s Unified Ap-

proach (Sadananda et al., 2001), which assumes that a crack can propagate only when *
thK K∆ ∆>  and *

max maxK K> , 

where *
th thK K ( R 1)∆ ∆= → . 

Both the crack path and the associated SIF along each branch are obtained using the Quebra program. Several cal-
culations were performed for different values of the exponent m, bifurcation angle 2θ, relation c0/b0, and SIF, consider-
ing or not the effect of KPR, as described next. 

 
3. BRANCHED CRACK PROPAGATION WITH KPR = 0 

 
In this section, the propagation behavior of branched cracks is studied using FE but neglecting any retardation me-

chanism other than the bifurcation itself (i.e. assuming KPR = 0). Figure 3 shows the crack paths obtained from the FE 
analyses of bifurcated cracks with 2θ = 130o and c0/b0 = {0.5, 0.8, 0.95, 1}, considering m = 2 and KPR = 0. The dashed 
lines show the theoretical propagation behavior of a perfectly symmetric bifurcation (c0/b0 = 1). In this case, the retar-
dation effect would never end because both branches would propagate symmetrically without arresting. Clearly, such 
behavior is not observed in practice, since the slightest difference between b0 and c0 would be sufficient to induce an 
asymmetrical behavior. Figure 1 also shows that lower c0/b0 ratios result in premature arrest of the shorter crack branch, 
leading to smaller retardation zones. Also, the propagation path of the longer branch is usually restrained to the region 
within the dashed lines, while the shorter one is “pushed” outside that envelope due to shielding effects. 

 

 
Fig. 1. Bifurcated crack paths for several c0/b0 ratios (KPR = 0). 

 
The size of the retardation zone can be estimated from the ratio bf/b0, where bf is the value of the length parameter b 

of the longer branch (measured along the crack path) beyond which the retardation effect ends. The ratio bf/b0 is then 
calculated through FE propagation simulations for all combinations of c0/b0 = {0.5, 0.8, 0.9, 0.95}, 2θ = {40o, 80o, 130o, 
168o} and m = {2, 3, 4}, and fitted by the proposed empirical function: 
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The FE-calculated equivalent SIF Kb and Kc of the longer and shorter branches are now evaluated along the obtained 

crack paths. Figure 2 plots the crack retardation factors (defined as the ratios between Kb or Kc and the Mode I SIF KI of 
a straight crack) for 2θ = 130o and m = 2, as a function of the normalized length (b−b0)/b0 of the longer branch. Because 
of the different crack branch lengths, the SIF at the longer one is much higher than that at the shorter branch. Assuming 
Kb and Kc to be the crack driving force, it can be seen from Figure 2 that the longer branch reaches its minimum propa-
gation rate right after the bifurcation occurs, returning to its pre-overload rate as the crack tip advances away from the 
influence of the shorter branch. As seen in the figure, the retardation behavior is misleadingly similar to closure-related 
effects, even though no closure is present in that case. 

 

 
Fig. 2. Normalized equivalent SIF for the (a) longer and (b) shorter branch of a bifurcated crack during its propaga-

tion (2θ = 130o, m = 2, KPR = 0). 
 
An empirical expression is here proposed to model the SIF Kb of the longer branch during the transition between Kb0 

(the value of Kb immediately after the bifurcation event) and the straight-crack KI (after the retardation effect ends), va-
lid for b0 ≤ b ≤ bf and 0.7 < c0/b0 < 1: 
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where bf is given in Equation (4) and Kb0 (and Kc0) by 
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It must be pointed out, however, that the presented FE results and empirical models might have some limitations, 

because actual bifurcations can be of a size comparable to the scale of the local plasticity (e.g., of the plastic zone size) 
or microstructural features (e.g., of the grain size). Moreover, possible environmental effects should be considered when 
comparing the bifurcation model predictions with measured crack growth rates (Suresh, 1983). However, one could ar-
gue that similar limitations would also apply to straight and in particular to curved crack propagation problems, since 
the crack increments (which are of the order of the CTOD, or of K2/ESY, where E is Young’s modulus and SY the yield 
strength) are at least two orders of magnitude smaller than the scale of the local plasticity (which is proportional to 
(K/SY)2) in all these cases. But nevertheless 2D LEFM concepts are highly successful in modeling those problems when 
the local plasticity is much smaller than the cracked piece dimensions (Miranda et al., 2002; Miranda et al., 2003). In 
other words, experience has validated the use of a global SIF elastic parameter to predict the direction and the amount 
of the local crack increment, which is much smaller than the size of the plastic zones that always accompany the crack 
tip. Using these same concepts to describe the path and propagation life of a bifurcated crack under similar small scale 
yielding conditions (but not to describe how it bifurcates after an overload, e.g.) thus seems a very reasonable initial 
modeling approach for such problems (pending, of course, support by proper experimental verification). The interaction 
between crack branching and other retardation mechanisms is studied next. 
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4. BRANCHED CRACK PROPAGATION UNDER NEAR THRESHOLD CONDITIONS 

 
All presented branched growth simulations so far have not included the effect of other retardation mechanisms, 

which can be significant especially under near-threshold conditions. This effect is easily accounted for in the FE calcu-
lations using Equation (3). The limiting value KPR is assumed to be the same at both branch tips and always larger than 
the minimum SIF of each branch. Further simulations are then conducted considering several KPR values, normalized by 
the maximum Mode I SIF KI of the straight crack, namely KPR/KI = {0.067, 0.08, 0.10, 0.13, 0.20, 0.25, 0.40, 0.57}. 

A generalized version of Equation (4) is then proposed to fit the calculated process zone sizes including the com-
bined effects of other mechanisms: 
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Figure 3 shows the effect of KPR at the branch tips on the retardation factor for 2θ = 130o, c0/b0 = 0.9 and m = 2. 

Note that higher KPR levels reduce the size of the retardation process zone, due to premature arrest of the shorter branch. 
In Figure 3, e.g., the normalized size of the process zone is reduced from 18 to 3.6 as KPR/KI approaches 0.74, a factor 
of 5. In this example, 0.74 is the minimum KPR/KI level that prevents the shorter branch to even start propagating. The-
refore, at any level above 0.74 the normalized process zone size will also be 3.6, because the propagation geometry will 
remain unchanged as long as the shorter branch remains arrested at c = c0. 

 

 
Fig. 3. Normalized SIF of the longer branch during its propagation as a function of the normalized length (b−b0)/b0 

for several KPR levels (c0/b0 = 0.9, m = 2). 
 
Note, however, that a smaller process zone does not necessarily mean fewer delay cycles, since the longer branch 

will also experience a reduction in the crack propagation rate due to other retardation mechanisms. Therefore, a compe-
tition between lower growth rates of the longer branch and smaller bifurcation process zone sizes will take place to de-
termine the real effect of combining bifurcation with other retardation mechanisms. 

Equations (7-10) and (6) can then be applied to Equation (5) to model the SIF Kb of the longer branch during the 
transition between Kb0 (the SIF immediately after the bifurcation event) and the straight-crack KI (the SIF after the end 
of the retardation effect), completing this analysis. 
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5. EXPERIMENTAL RESULTS 
 
Quantitative validations of the predicted bifurcated crack growth behavior are performed on Eccentrically-loaded 

Single Edge Crack Tension specimens ESE(T) made from an annealed SAE 4340 low-alloy steel with SY = 377MPa, SU 
= 660MPa, E = 205GPa, and RA = 52.7%, and with the analyzed weight percent composition: C 0.37, Mn 0.56, Si 0.14, 
Ni 1.53, Cr 0.64, Mo 0.18, S 0.04, P 0.035. The tests are performed at frequencies between 20 and 30Hz in a 250kN 
computer-controlled servo-hydraulic testing machine. The crack length is measured following ASTM E 647 procedures 
(ASTM Standard E 647). Special attention is given for crack closure measurements, made using a high speed data ac-
quisition system to obtain data and to avoid intervention during the tests. In this way, the load and Crack-Opening Dis-
placement (COD) data are used to precisely compute the crack closure load using a digital implementation of the linear-
ity subtractor circuit developed to enhance the opening load, (Paris and Hermann, 1976) (the accuracy of such careful 
closure load measurements is in the order of Kmax/100 (Castro , 1993)). 

The proposed retardation equations are implemented in a fatigue life assessment program named ViDa (Miranda et 
al., 2002; Miranda et al., 2003). This program is used to estimate the number of delay cycles associated with the ex-
perimentally obtained bifurcation on the 4340 steel ESE(T) specimen. The number of cycles spent during the propaga-
tion in the retardation region is then calculated by integrating the da/dN equation along the longer crack branch, from b 
= b0 to b = bf. 

Four tests are performed on ESE(T) specimens subject to 100% overloads, namely tests I, II, III and IV: (I) R = 0.7, 
∆K = 13.9 MPa√m, resulting in approximately 22,000 delay cycles; (II) R = 0.7, ∆K = 14.2 MPa√m, resulting in ap-
proximately 20,000 delay cycles; (III) R = 0.7, ∆K = 13.7 MPa√m, resulting in approximately 27,000 delay cycles; (IV) 
R = 0.05, ∆K = 16.2 MPa√m, resulting in approximately 32,000 delay cycles, see Figs. 4-11. 

It is found that the minimum load levels in tests I and II are always above the opening load, therefore no crack clo-
sure is present nor before nor after the overloads. For test I, the measured initial branch lengths are approximately b0 = 
9µm and c0 = 8.5µm, with a bifurcation angle 2θ = 160o, see Fig. 9(a). The material is modeled using Equation (1) with 
crack growth constants A = 9⋅10−11 m/cycle and m = 2.1, and a propagation threshold ∆Kth = 2.8MPa√m, measured un-
der R = 0.7. From Equation (6), it is found that Kb0/KI = 0.751 and Kc0/KI = 0.749, leading to ∆Kb0 = 0.751⋅∆KI = 10.437 
MPa√m and ∆Kc0 = 0.749⋅∆KI = 10.413 MPa√m. Since both ranges are greater than ∆Kth(R=0.7) = 2.8MPa√m, both 
branches are expected to start propagating, as verified experimentally. The size of the process zone can be estimated 
from Equation (4), which results in bf = 36.95 × 9µm ≅ 332µm. The number of delay cycles is then calculated by inte-
gration, nD = 9,664 cycles, which is approximately half of the measured 22,000 delay cycles (Fig. 5(a)). 

For test II, the measured initial branch lengths are approximately b0 = 10µm and c0 = 9.5µm, but with a larger bifur-
cation angle 2θ = 160o, see Fig. 9(b), resulting in 10,669 cycles, which is also about half of the measured 20,000 delay 
cycles (Fig. 5(b)). 

Figure 6(a) shows a crack retardation of approximately 27,000 delay cycles resulting from test III. However, in this 
case the external polished surfaces of the specimen did not present any signs of bifurcation. But careful inspection of 
the fracture surfaces using a scanning electron microscope revealed that not only tests I and II but also test III resulted 
in a bifurcation front along the specimen thickness, see Figs. 7-9. The bifurcation front is approximately straight and 
through-the-thickness for tests I and II, but surprisingly for test III the front is discontinuous towards the specimen 
faces, indicating an internal bifurcation. Despite its 3-D geometry, the retardation behavior is still reasonably repro-
duced by the proposed 2-D model within a factor of 2 in number of delay cycles. 

For test IV, the initial branch lengths are approximately b0 = 10µm and c0 = 9.5µm, with a bifurcation angle 2θ = 
150o, see Fig. 10. The material is modeled using Equation (1) with crack growth constants A = 9⋅10−11 m/cycle and m = 
2.2, and a propagation threshold ∆Kth = 8.1 MPa√m, all measured under R = 0.05. The size of the process zone is calcu-
lated from Equations (7-10), resulting in α = 6.97, β = 1.35, γ = 0.15, and bf = 11.6 × 10µm ≅ 116µm. Using the same 
process described previously, the delay cycles nD  = 17,316 cycles, which is about half of the measured 32,000 delay 
cycles, see Fig. 6(b). 

Note that in all tests there was no retardation induced by crack closure. The only test in which crack closure was de-
tected was test IV, however after the overload the opening load in fact decreased, see Fig. 11. The opening load re-
mained lower than before the overload along the entire process zone, only returning to its original value after the bifur-
cation effect had ended. Therefore, even if closure affected the constant amplitude growth behavior in test IV, it would 
not be able to explain the measured overload-induced retardation. This behavior has already been described in the litera-
ture (Meggiolaro and Castro, 2003). 

The errors in the predictions performed using the proposed semi-empirical equations can be explained by inaccura-
cies in the estimation of the initial branch lengths b0 and c0, since the retardation effect is highly dependent on the ratio 
c0/b0. In addition, other retardation mechanisms besides bifurcation (except for closure, as discussed above) might be 
contributing to increase the number of delay cycles, such as unmodeled unaccounted? environmental effects or further 
kinking of the branch tips due to microstructure inhomogeneities. Another factor could be a specimen thickness effect, 
where the plane strain condition assumed in the 2-D calculations would result in less retardation than the actual 3-D 
stress state. However, the retardation mechanism behind a possible thickness effect in the performed experiments could 
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not be crack closure, as shown in Fig. 11. Small differences between the actual crack growth behavior and the assumed 
crack propagation rule (particularly in the curvature of the transition from the threshold or phase I to the Paris or phase 
II regions) can also be a cause for these prediction inaccuracies. In any case, the presented predictions are of the same 
order of magnitude of the experimental scatter. Therefore, the quantitative approach presented in this work is a quite 
promising tool for modeling and calculating overload-induced retardation effects where other mechanisms have failed 
to give a satisfactory explanation. 

 
Finally, it must be noted as well that all measured bifurcations occurred throughout the thickness in an approxi-

mately uniform pattern (except near the specimen faces for test III), observed after carefully slicing and reexamining the 
specimens. Therefore, despite the inherent 3-D nature of the bifurcation problem, in these tests the presented two-
dimensional FE approach has been validated. 

 

    
(a)                                                                                (b) 

Fig. 4. Crack bifurcation experiments on SAE 4340 steel: (a) test I, (b) test II. 
 

 
(a) 

 
(b) 

Fig. 5. Fatigue crack growth retardation after a 100% overload with R = 0.7: (a) test I and (b) test II. 
 

 
(a) 

 
(b) 

Fig. 6. Fatigue crack growth retardation after a 100 % overload: (a) R = 0.7, test III; (b) R = 0.05, test IV. 
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Fig. 7. Scanning electron micrographs of fracture surfaces (test I): (a) bifurcation front through the specimen thick-

ness, and (b) detailed view indicating different height levels. 
 

 
Fig. 8. Scanning electron micrographs of fracture surfaces (test II): (a) bifurcation front through the specimen thick-

ness, and (b) detailed view indicating different height levels. 
 

 
Fig. 9. Scanning electron micrographs of fracture surfaces (test III): (a) bifurcation front through the specimen 

thickness, and (b) detailed view indicating different height levels. 
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Fig. 10. Crack bifurcation experiments on SAE 4340 steel (test IV): (a) front face of specimen (b) back face of 

specimen. 
 

 
Fig. 11. Opening load measurements, before and after the overload (test IV). 

 
 

6. CONCLUSIONS 
 
In this work, a specialized FE program was used to calculate the propagation path and associated stress intensity fac-

tors (SIF) of bifurcated cracks, which can cause crack retardation or even arrest. In particular, the bifurcation simula-
tions included several combinations of bifurcation angles 2θ = {40o, 80o, 90o, 130o, 168o}, branch asymmetry ratios 
c0/b0 = {0.5, 0.7, 0.8, 0.9, 0.95, 1.0}, crack growth exponents m = {2, 3, 4}, and even considered interaction between 
crack branching and other retardation mechanisms through the threshold ratios KPR/KI = {0.0, 0.067, 0.08, 0.10, 0.13, 
0.20, 0.25, 0.40, 0.57}. The proposed equations, besides capturing all above described phenomena, can be readily used 
to predict the propagation behavior of branched and kinked cracks in an arbitrary structure, as long as the process zone 
ahead of the crack tip is small compared to the other characteristic dimensions, exactly as in other similar fatigue propa-
gation problems such as curved crack path and life predictions. . However, these predictions probably should also be 
limited to the cases where it can be assumed that the entire crack-front bifurcates uniformly (as observed by scanning 
electron microscopy in the tests reported in this work), where the specimen thickness itself may provide the size scale 
requirements for the validity of the presented 2D LEFM-based equations, as the calculated SIF may be averaged con-
sidering the (several) grains present along the thickness. Otherwise, if the crack deflections vary significantly along the 
thickness, then 3D modeling including Mode III effects should be considered. From these results, it can be seen that 
crack bifurcation may provide an alternate mechanistic explanation for overload-induced crack retardation on structural 
components, especially to explain load interaction effects under closure-free conditions. 
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