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SYNOPSIS 
 
Most structural components are designed against fatigue crack initiation, using εN or SN pro-
cedures which do not recognize any cracks, short or long. Hence, their “infinite life” predic-
tions may become unreliable when such cracks are introduced by any means (say by an acci-
dent during manufacturing or operation) and not quickly detected and properly removed. 
Large cracks may be easily detected and dealt with, but small cracks do pass unnoticed even 
in careful inspections, if they are smaller than the detection threshold of the inspection method 
used to identify them. Thus, structural components designed for very long fatigue lives should 
be designed to avoid fatigue crack initiation AND to be tolerant to undetectable short cracks. 
However, this self-evident requirement is still not usually included in fatigue design routines, 
as most long-life designs just intend to maintain the stress range at the structural component 
critical point below its fatigue limit at the working R-ratio, SL(R), where R = σmin/σmax, gua-
ranteeing that Δσ < SL(R)/φF, where φF is a suitable fatigue safety factor. Such calculations 
can, of course, become quite involved when designing e.g. against fatigue damage caused by 
random non-proportional multiaxial loads, but their philosophy remains the same. Neverthe-
less, most long-life designs work just fine, which means that they are somehow tolerant to un-
detectable or to functionally admissible short cracks. But the question “how much tolerant” 
cannot be answered by SN or εN procedures alone. This important problem can only be solved 
by adding a proper fatigue crack propagation threshold requirement to the “infinite” life de-
sign criterion. But the tolerance to non-propagating cracks must include appropriate short 
crack corrections to be reliable. This paper evaluates the tolerance to short 1D and 2D cracks, 
and proposes a design criterion for infinite fatigue life which explicitly considers them. 
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1. INTRODUCTION  
 
The notch sensitivity factor 0 ≤ q ≤ 1 is widely used in structural design to quantify the differ-
ence between Kt, the linear elastic stress concentration factor (SCF), and Kf, its corresponding 
fatigue SCF, which quantifies the actual notch effect on the fatigue strength of structural 
components [1]. The SCF Kt is equal to σmax/σn, where σmax is the maximum (linear elastic) 
stress at the notch root caused by σn, and σn is the nominal stress that would act at that point if 
the notch did not affect the stress field around it. The fatigue SCF is usually defined by   
 

Kf = 1 + q⋅(Kt – 1) = ntcL LS S         (1) 
 

where SL and SLntc are the material fatigue limits (or else their fatigue strengths at a convenient 
very long life) measured on standard (smooth and polished) and on notched test specimens, 
respectively. But, as the fatigue process depends on two parameters, equation (1) can be gene-
ralized considering that Kf may depend e.g. on R = σmin/σmax, e.g. Kf(R) = SL(R)/SLntc(R). 
 
It is well known that q can be associated with the relatively fast generation of tiny non-
propagating fatigue cracks at notch roots, see Fig. 1. Indeed, according to Frost [2], early ex-
perimental evidence that small non-propagating fatigue cracks are found at notch roots when 
SL/Kt < σn < SL/Kf goes back as far as 1949. Hence, it is certainly reasonable to expect that 
such tiny cracks can be used to quantitatively explain why Kf ≤ Kt. Indeed, the notch sensitivi-
ty can be predicted from the fatigue behavior of short cracks emanating from notch tips, using 
relatively simple but sound mechanical principles, which do not require heuristic arguments, 
or arbitrary fitting parameters [3].  

 

 
Fig. 1: Classical data showing that non-propagating fatigue cracks are generated at the notch 

roots if SL/Kt < σn < SL/Kf [2]. 
 
The stress field gradients around notch roots controls the fatigue crack propagation (FCP) be-
havior of short cracks emanating from them. For any given material, q depends not only on 
the notch tip radius ρ, but also on its depth b, meaning that shallow and elongated notches of 
same radius ρ may have quite different sensitivities q. Note that “short crack” here means 
“mechanical” not “microstructural” short crack, since material isotropy is assumed in their 
modeling, a simplified hypothesis that has been experimentally corroborated [4].  
 



The short cracks FCP threshold must be smaller than the long crack threshold ΔKth(R), other-
wise the stress range Δσ required to propagate them would be higher than the material fatigue 
limit ΔSL(R). Indeed, assuming that the FCP process is primarily controlled by the stress in-
tensity factor (SIF) range, ΔK ∝ Δσ√(πa), if short cracks with a→ 0 had the same threshold 
ΔKth(R) of long cracks, then their propagation by fatigue would require Δσ → ∞, a physical 
non-sense [5]. The FCP threshold of short fatigue cracks under pulsating loads ΔKth(a, R = 0) 
can be modeled using El Haddad-Topper-Smith [6] or ETS characteristic size a0, which can 
be estimated from ΔS0 = ΔSL(R = 0) and ΔK0 = ΔKth(R = 0). This clever trick reproduces the 
Kitagawa-Takahashi [7] plot trend, using a modified SIF range ΔK’ to describe the fatigue 
propagation of any crack, short or long, 

 

0K (a a )Δ Δσ π′ = + , where ( )( )2
0 0 0a 1 K Sπ Δ Δ=      (2) 

 
Using this a0 trick, it is indeed possible to reproduce the expected limits ΔKth(a→ ∞) = ΔK0 
and Δσ(a → 0) = ΔS0, see Fig. 2. Knowing that steels typically have 6 < ΔK0 < 12MPa√m, 
ultimate tensile strength 400 < SU < 2000MPa, and fatigue limit 200 < SL < 1000MPa (since 
very clean high-strength steels tend to maintain the SL/SU ≅ 0.5 trend of lower strength steels 
under fully alternated loads, with R = −1); and estimating by Goodman the pulsating (R = 0) 
fatigue limit as ( )0 U L U L 0S 2S S S S 260 S 1300 MPaΔ Δ= + ⇒ < < ; it can then be expected 
that the maximum range of the ETS short crack characteristic size a0 for steels should be con-
tained in the range 
 

 ( )( ) ( )( )min max max min
2 2

0 0 0 0 01 K S 7 a 700 m 1 K Sπ μ πΔ Δ ≅ < < ≅ Δ Δ      (3) 
 

 
Fig. 2: Kitagawa-Takahashi plot describing the fatigue propagation of short and long cracks 

under R = 0 in a HT80 steel with ΔK0 = 11.2MPa√m and ΔS0 = 575MPa. 
 
Note in Fig. 2 that long cracks with a >> a0 stop when Δσ ≤ ΔK0/√(πa), that very short cracks 
with a << a0 stop when Δσ ≤ ΔS0, and that the ETS curve predicts that any crack stop when 
Δσ ≤ ΔK0/√π(a + a0). Note also that this a0 range may be overestimated, since the minimum 
threshold ΔK0min is not necessarily associated with the maximum fatigue crack initiation limit 
ΔS0max, neither is ΔK0max always associated with ΔS0min. But it nevertheless justifies the “short 
crack” denomination used for cracks of a similar small size, and highlights the short crack de-
pendence on the FCP threshold and on the fatigue limit of the material. In other words, it can 
be expected that cracks up to a few millimeters may still behave as short cracks in some 
steels, meaning they may have a smaller propagation threshold than that measured with long 



crack, which have a >> a0. The strength ranges of typical Al alloys are 70 < SU < 600MPa, 
30 < SL < 230MPa, 40 < ΔS0 < 330MPa, and 1.2 < ΔK0 < 5MPa√m, thus their maximum a0 
(over)estimated range, and hence their short crack influence scale, is wider than the steels 
range, ~1μm < a0 < ~5mm.  
 
As ETS ΔK’ has been deduced using Griffith’s plate SIF, ΔK = Δσ√(πa), Yu et al [8] used the 
non-dimensional geometry factor g(a/w) from the SIF expression ΔK =Δσ√(πa)⋅g(a/w) to 
deal with other geometries, re-defining 

 

0K g( a w ) (a a )Δ Δσ π′ = ⋅ + ,   where ( ) ( ) 2
0 0 0a 1 K g( a w ) Sπ Δ Δ⎡ ⎤= ⋅⎣ ⎦      (4) 

 
Note that the tolerable stress range Δσ under pulsating loads tends to the fatigue limit ΔS0 
when a → 0 only if Δσ is the stress range at the notch root, instead of the nominal range. But 
the geometry factors g(a/w) listed in SIF tables usually include the notch SCF, thus use Δσ in-
stead of Δσn as the nominal stress. Therefore, a clearer way to define a0 when the short crack 
departs from a notch root is to explicitly recognize this practice, separating the geometry fac-
tor g(a/w) into two parts: g(a/w) = η⋅ϕ(a), where ϕ(a) depends on the stress gradient ahead of 
the notch tip, which departs from the notch SCF as the crack length a → 0, whereas η encom-
passes all the remaining terms, such as the free surface correction: 

 

0K ( a ) (a a )Δ η ϕ Δσ π′ = ⋅ ⋅ + ,   where ( ) ( ) 2
0 0 0a 1 K Sπ Δ η Δ⎡ ⎤= ⋅⎣ ⎦    (5) 

 
However, for design and analysis applications, the short crack problem can be more clearly 
modeled by letting the SIF range ΔK retain its original equation, while the FCP threshold ex-
pression (under pulsating loads) is modified to become a function of the crack length a, name-
ly ΔK0(a), resulting in  

 
( )0 0 0K ( a ) K a a aΔ Δ= ⋅ +         (6) 

 
Moreover, the ETS equation can be seen as one possible asymptotic match between the short 
and long crack behaviors. Following Bazant’s reasoning [9], a more general equation can be 
used introducing an adjustable parameter γ to better fit experimental data  

 

( )
1/ 2

0 0 0K ( a ) K 1 a a
γγΔ Δ

−
⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦

       (7) 

 
Equations (2-6) result from (7) if γ = 2.0. The bi-linear limit, Δσ(a ≤ a0) = ΔS0 for short 
cracks, and ΔK0(a ≥ a0) = ΔK0 for long ones, is obtained if g(a/w) = η⋅ϕ(a) = 1 and γ → ∞. 
Most short crack FCP data is fitted by ΔK0(a) curves with 1.5 ≤ γ ≤ 8, but γ = 6 better repro-
duces classical Peterson q-plots [1], which are based on fatigue data obtained by testing TS 
with semi-circular notches, as discussed in [3]. Using (7) as the FCP threshold, then any crack 
departing from a free smooth or notched surface under pulsating loads should propagate if 

 

( ) ( )
12

0 0 0K a a K ( a ) K 1 a a
γγΔ η ϕ ρ Δσ π Δ Δ

−
⎡ ⎤= ⋅ ⋅ > = ⋅ +⎢ ⎥⎣ ⎦

   (8) 

 
where η = 1.12 is the free surface correction�.  



As fatigue depends on two driving forces, the stress range Δσ and its peak σmax, (8) can be ex-
tended to consider σmax (indirectly modeled by the R-ratio) influence in short crack behavior. 
First, the short crack characteristic size should be defined using the FCP threshold for long 
cracks ΔKR = ΔKth(a >> aR, R) and the fatigue limit ΔSR, both measured or properly estimated 
at the desired R-ratio, then the corresponding short crack FCP threshold should be re-written 
to consider it: 

 

( ) ( ) 2
R R Ra 1 K 1.12 Sπ Δ Δ= ⋅⎡ ⎤⎣ ⎦           (9) 

 

( )
1/ 2

R R RK ( a ) K 1 a a
γγΔ Δ

−
⎡ ⎤= ⋅ +
⎣ ⎦

       (10) 

 
All these details are important when such models are used to make predictions in real life sit-
uations, as they do influence the calculation results. In particular, neglecting the σmax effect on 
fatigue can lead to severe non-conservative life estimations, a potentially dangerous practice 
unacceptable for design or analysis purposes. 
 
2. FCP BEHAVIOR OF SHORT CRACKS WHICH DEPART FROM ELONGATED 

NOTCHES 
 
Before jumping into more elaborated mechanics, it is well worth to justify using simpler ma-
thematics why small cracks starting from sharp notch roots can propagate for a while before 
stopping and becoming non-propagating under fixed loading conditions. This fact may appear 
to be a paradox, since cracks are sharper than notches, thus it is not unreasonable to think that 
if a given fatigue load can start a crack from a notch, then it should be able to continue to 
propagate it. But life is more interesting than that. 
 
Indeed, let’s start estimating the SIF of a small crack a departing from the elliptical notch tip 
of an Inglis plate loaded in mode I, with semi-axes b >> a and c, and root radius ρ = c2/b. 
The 2b axis is centered at the x co-ordinate origin, σn is the nominal stress (perpendicular to a 
and b). In this case, KI(a) ≅ σn⋅√(πa)⋅f1(a, b, c)⋅f2(free surface), where f1(a, b, c) ≅ σy(x)/σn; 
σy(x) is the maxima stress distribution at (x = b + a, y = 0) ahead of the notch tip when there 
is no crack; and f2 = 1.12. The function f1(x = b + a, y = 0) is given by Schijve [10]: 

 
2 2 22 2 2 22y

1 2 2 22 2 2 2n

( x, y 0 ) ( b 2bc )( x x b c )( x b c ) bc ( b c )xf 1
( b c ) ( x b c ) x b c

σ
σ

= − − − + − + + −
= = +

− − + − +
  (11)  

 
The slender the elliptical notch is, meaning the smaller their semi-axes c/b and tip radius to 
depth ρ/b ratios are, the higher is its SCF. But high Kt imply in steeper stress gradients ahead 
of the notch tip, ∂σy(x, y = 0)/∂x. In fact, the linear elastic stress concentration induced by any 
elliptical hole drops from Kt = 1 + 2b/c = 1 + 2√(b/ρ) = σy(1)/σn ≥ 3 at its tip border to about 
1.82 < K1.2 = σy(1.2)/σn < 2.11 (for b ≥ c ) at a point just b/5 ahead of it. This means that their 
SCF influence is associated with their depth b, not with their tip radii ρ. Such is the cause for 
the peculiar growth of short cracks which depart from elongated notch roots. Their SIF, which 
should tend to increase with their length a = x − b, may instead decrease after they grow for a 
short while because the SCF effect in KI ≅ 1.12⋅σn√(πa)⋅f1 may diminish sharply due the high 
stress drop close to the notch tip, overcompensating the crack growth effect.  



 
This KI(a) ≅ 1.12⋅σn⋅√(πa)⋅f1 estimate can be used to evaluate the size of non-propagating fa-
tigue cracks tolerable at Inglis notch roots, using the short crack FCP behavior. A simple ex-
ample can illustrate this [11]: assuming a large steel plate with SU = 600MPa, SL =200MPa 
and ΔK0 = 9MPa√m works under Δσn =100MPa at R = −1, verify if it is possible to change a 
circular d = 20mm central hole by an elliptical one with axis 2b = 20mm (perpendicular to σn) 
and 2c =2mm, without inducing the plate to fail by fatigue.  
 
Neglecting the buckling problem (which is important in thin plates), the circular hole has a 
safety factor against fatigue crack initiation φF = SL/Kf⋅σn = 200/150 ≅ 1.33, as this large hole 
has Kf ≅ Kt = 3. But the sharp elliptical hole would not be admissible by traditional SN design 
routines, since it has ρ = c2/b = 0.1mm, thus a very high Kt = 1 + 2b/c = 21. Its notch sensitivi-
ty estimated from usual q plots [1] would be q ≅ 0.32 ⇒ Kf  = 1 + q⋅(Kt – 1) = 7.33, thus it 
would induce Kf⋅σn = 376MPa > SL. However, as this Kf value is sensibly higher than typical 
values reported in the literature [1-2, 10-14], this problem can be re-studied considering the 
short crack FCP behavior.  
 
Supposing ΔKth(R < 0) ≅ ΔK0 as usual, ΔK0(a) = ΔK0/[1+(a0/a)]−0.5 (by ETS), L US 0.5S′ =  (the 
material fatigue limit, as FCP modeling does not need modifying factors required to estimate 
SL), ΔS0 = SU/1.5 (by Goodman) and a0 = (1/π)(1.5ΔK0/1.12⋅SU)2 ≅ 0.13mm, the SIF ranges 
ΔKI(a) for the two holes are compared to the FCP threshold ΔK0(a) in Fig. 3.  

 

 
Fig. 3: According to (10), cracks should not initiate at the circular hole border, while the crack 

which initiates at the elliptical notch tip stops after reaching a ≅ 0.33mm.  
 

The SIF estimated for cracks departing from the circular notch remains below the ΔK0(a) FCP 
threshold curve (which considers the short crack behavior) up to a ≅ 1.54mm. Thus, if a small 
surface scratch locally augments the stress range and initiates a tiny crack at that hole border, 
it would not propagate under this fixed Δσn = 100MPa and R = −1 load, confirming its “safe” 
prediction made by traditional SN procedures. Only if a crack with a > 1.54mm is introduced 
at this circular hole border by any other means, it would propagate by fatigue under those oth-
erwise safe loading conditions. 
 
However, under these same loading conditions, the ΔKI(a) curve estimated for the elliptical 
hole starts above ΔK0(a), thus a crack should initiate at its border, as expected from its high 
Kt. But as this tiny crack propagates through the high stress gradient ahead of the notch root, it 



sees rapidly diminishing stresses around its tip during its early growth, which overcompensate 
the increasing crack size effect on ΔKI(a). This means that the estimated SIF becomes smaller 
than ΔK0(a) at a ≅ 0.33mm, when the crack stops and becomes non-propagating (if Δσn and R 
remain fixed), see Fig. 3. As fatigue failures include crack initiation and growth up to fracture, 
both notches could be considered safe for this service loading. But the non-propagating crack 
at the elliptical notch tip, a clear evidence of fatigue damage, renders it much less robust than 
the circular one, as discussed in Castro and Meggiolaro [11].  
 
For more elaborated analysis purposes, the SIF range of a single crack with length a emanat-
ing from a semi-elliptical notch with semi-axes b (co-linear to a) and c, located at the edge of 
a very large plate loaded in mode I, can be written as 

 
( )IK a G a b ,c bΔ η Δσ π= ⋅ ⋅         (12) 

 
where η = 1.12. The geometric function G(a/b, c/b) can be expressed as a function of the di-
mensionless parameter s = a/(b + a) and of the notch SCF, given by  
 

( )[ ] ( ){ }2.5
tK 1 2 b c 1 0.12 1 c b⎡ ⎤= + ⋅ + +⎣ ⎦       (13) 

 
To obtain expressions for G, extensive finite element calculations were performed for several 
cracked semi-elliptical notches. The numerical results, which agreed well with standard solu-
tions [15], were fitted within 3% using empirical equations [3] by 

 

( ) ( ) ( )2 2
t t t tG a b ,c b f K ,s K 1 exp sK sK⎡ ⎤≡ = − −⎣ ⎦ , c ≤ b and s = a/(b + a)  (14) 

 

( ) ( ) ( ) ( )s 22 2 2
t t t t tG a b ,c b f K ,s K 1 exp K 1 exp sK sK

−
⎡ ⎤ ⎡ ⎤′ ′≡ = − − − −⎣ ⎦ ⎣ ⎦ , c ≥ b  (15) 

 
Equation (12) includes the semi-elliptical notch effect in KI through G or G’. Indeed, as s → 0 
when a → 0, the maximum stress at its tip σmax → G(0, c/b)⋅σn = Kt⋅σn. Thus, the η-factor, but 
not the G(a/b,c/b) part of KI, should be considered in the short surface crack characteristic size 
a0, as done in equation (4). The semi-ellipsis SCF includes a term [1 + 0.12/(1 + c/b)2.5] 
which can be interpreted as a free surface correction (FSC), since as c/b → 0 and the semi-
elliptical notch tends to a crack, its Kt → 1.12⋅ 2√(b/ρ). Such 1.12 factor is the notch FSC, not 
the crack FSC η. Indeed, when c/b → 0, this 1.12 factor disappears from the G expression, 
which gives G(a/b, 0) = 1/√s, and therefore ΔKI = η⋅G⋅Δσ⋅[π⋅a]0.5 = η⋅Δσ⋅[π⋅(a + b)]0.5, as 
expected, since the resulting crack for c → 0 would have length a + b. 
 
Traditional Peterson’s q-estimates, obtained by fitting questionable semi-empirical equations 
to few experimental data points, assume q depends only on the notch root ρ and on the alloy 
ultimate strength SU. Thus, similar alloys with same SU but different ΔK0 should have identical 
notch sensitivities. The same should occur with shallow and deep elongated notches of iden-
tical tip radii. However, whereas well established empirical relations relate the fatigue limit 
ΔS0 to the tensile strength SU of many materials, there are no such relations between their FCP 
threshold ΔK0 and SU. Moreover, it is also important to point out that the q estimation for 
elongated notches by the traditional procedures can generate unrealistic Kf values, as exempli-
fied above. In conclusion, such traditional estimates should not be taken for granted.  



The proposed model, on the other hand, is based on the FCP mechanics of short cracks 
which depart from elliptical notch roots, recognizing that their q values are associated with 
their tolerance to non-propagating cracks. It shows that their notch sensitivities, besides de-
pending on ρ, ΔS0, ΔK0 and γ, are also strongly dependent on their shape, given by their c/b 
ratio. Their corresponding Peterson’s curve is well approximated by the semi-circular c/b = 1 
notch, but this curve is not applicable for much different c/b ratios. Therefore, the proposed 
predictions indicate that these traditional notch sensitivity estimates should not be used for 
elongated notches. Due to space limits, this analysis is limited to this compact discussion here, 
but it is completely developed in [3], and experimentally verified in [4]. See Castro and Meg-
giolaro [11] for further details. 

 
3. TOLERABLE SHORT CRACK SIZES 
 
The methodology presented here can be used to generate an unambiguous acceptance crite-
rion for small cracks, a potentially much useful tool for practical applications. Most structural 
components are designed against fatigue crack initiation, using εN or SN procedures which do 
not recognize cracks. Hence, their “infinite life” predictions may become unreliable when 
such cracks are introduced by any means, say by manufacturing or assembling problems, and 
not quickly detected and properly removed. Large cracks may be easily detected and dealt 
with, but small cracks may pass unnoticed even in careful inspections. In fact, if they are 
smaller than the guaranteed detection threshold of the inspection method used to identify 
them, they simply cannot be detected. Thus, structural components designed for very long fa-
tigue lives should be designed to be tolerant to such short cracks.  
 
However, this self-evident requirement is still not usually included in fatigue design routines, 
as most long-life designs just intend to maintain the stress range at critical points below their 
fatigue limits, guaranteeing that Δσ < SR/φF, where φF is a suitable safety factor. Nevertheless, 
most long-life designs work well, which means that they are somehow tolerant to undetecta-
ble or to functionally admissible short cracks. But the question “how much tolerant” cannot be 
answered by SN or εN procedures alone. Such problem can be avoided by adding equations 
(8-10) to the “infinite” life design criterion to tolerate a (small) crack of size a. Therefore, in 
its simplest version, this improved criterion should then be written as 

 

( ){ }12
R RK a g( a w ) 1 a a

γγσ Δ π ⎡ ⎤Δ < ⋅ ⋅ +⎣ ⎦ , where ( ) [ ]2
R R Ra 1 K Sπ η= ⋅ Δ Δ             (16) 

 
As fatigue limits ΔSR consider microstructural defects inherent to the material, equation (16) 
complements them by considering the component tolerance to short cracks. A simple case 
study can clarify how useful this concept can be, as discussed next.  
 
Due to a rare manufacturing problem, a batch of an important component was marketed with 
small surface cracks, causing some unexpected annoying field failures. The task was to esti-
mate how much such cracks affect the stresses those steel components could tolerate under 
uniaxial fatigue loads, knowing that their rectangular cross section has 2mm by 3.4mm; that 
their measured fatigue limit under R = −1 is SL = 246MPa; and that they have SU = 990MPa. 
Note that as SL ≅ SU/4, it probably includes surface roughness and/or similar effects which 
should not affect the cracks. But in the absence of more precise information, the only safe op-
tion is to use the measured SL value to estimate SR and aR. Therefore, by Goodman 



( ) ( ) ( )R L U U LS S S 1 R S 1 R S 1 R= − − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦        (17) 
 

The mode I stress range Δσ tolerable by this component when it has a uniaxial surface crack 
of depth a is then given by 

 

R F
12

R3

K

aa a a 2w a[a 0.752 2.02 0.37( 1 sin ) ] sec tan 1w a2w 2w 2w a

γγ

Δ ϕ
σ

π π ππ π

Δ <
⎡ ⎤⎛ ⎞+ + − ⋅ + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (18) 

 
Equation (18) includes a suitable g(a/w) geometry factor for this component (assuming it is a 
long strip,) obtained from [15]. Fig. 4-6 plot the maximum tolerable stress ranges (assuming 
φF = 1) for several R-ratios, using w = 3.4mm as its width. However, since the FCP threshold 
ΔKR was not available, it had to be estimated, a risky but unavoidable procedure, as engineer-
ing decisions must be taken even when proper data is missing.  
 
The typical threshold range for steels is 6 < ΔK0 < 12MPa√m. Moreover, it is usual to assume 
ΔKR ≅ ΔK0 for R < 0 loads (except if the load history contains severe underloads). Lower limit 
estimates for R > 0 are ΔKth(0 < R ≤ 0.17) = 6MPa√m, and ΔKth(R > 0.17) = 7⋅(1 – 0.85R) 
[11]. Using η = 1.12 and ΔK0 = 6MPa√m, the short crack characteristic value is estimated as 
a0 = 59μm. Fig. 4 shows that if this component works for example under Δσ = 286MPa and 
R = −0.12, it can tolerate cracks up to a ≅ 105μm, whereas if it works under Δσ = 176MPa 
and R = 0.44, it can sustain cracks up to a ≅ 150μm. Figure 5 present the same curve, but us-
ing semi-log coordinates to enhance this component small tolerance to short cracks. 

 

 
Fig. 4: Surface crack of size a effect in the largest stress range ΔσR(a) tolerable by a strip of 

width w = 3.4mm loaded in mode I, for various R-ratios (supposing ΔK0 = 6MPa√m 
and γ = 6, thus a0 = 59 and a0.8 = a(R = 0.8) = 55μm). 



 
Fig. 5: Similar to Fig. 4, but with semi-log scale to enhance the short crack tolerance. Small 

cracks with a < 30μm have practically no effect in its fatigue resistance.  
 
Therefore, this simple (but sensible) model indicates that this component is not too tolerant to 
1D surface cracks. However, as this conclusion is based on estimated properties, it is worth to 
study its sensibility to the assumed values. Fig. 6 shows the prediction range associated with 
the typical interval expected for the estimated properties, enhancing how important it is to 
measure them.  

 
Fig. 6: Typical steel threshold 6 < ΔK0 < 12MPa√m and γ exponent 1.5 < γ < 8 ranges influ-

ence in the largest mode I stress ranges Δσ0 tolerated by the w = 3.4mm strip, as a 
function of the 1D superficial crack size a. 



Note that equation (16) assumes that the short crack is unidimensional and grows without 
changing its original plane. Note also that this model only describes the behavior of macros-
copically short cracks, as it uses macroscopic material properties. Thus it can only be applied 
to short cracks which are large in relation to the characteristic size of the intrinsic material 
anisotropy (e.g. its grain size). Smaller cracks grow inside an anisotropic and usually inhomo-
geneous scale, thus their FCP is also affected by microstructural barriers, such as second 
phase particles or grain boundaries. However, as grains cannot be mapped in most practical 
applications, such problems, in spite of their academic interest, are not really a major problem 
from the fatigue design point of view. 
 
But this model first limitation which may be much more important for practical applications, 
as it assumes that the short crack can be completely characterized by its depth a. However, 
most short cracks are surface or corner cracks, which to grow by fatigue in two directions, 
maintaining their original plane when they are loaded under pure mode I conditions. In these 
cases, they can be modeled as bidimensional (2D) cracks which grow both in depth and width. 
In reality, both long and short cracks (these meaning cracks not much larger than aR) only be-
have as 1D cracks after having cut all the component width to become a through crack, with a 
more or less straight front which propagates in an approximately uniform way. Thus, equation 
(16) must be adapted to consider the influence of 2D short cracks in the fatigue limit. This can 
be done by assuming that:  

(i) the cracks are loaded in pure mode I, under quasi-constant Δσ and R conditions, with 
no major overloads;  

(ii) material properties measured (or estimated) testing 1D specimens may be used to si-
mulate the FCP behavior of 2D cracks; and  

(iii) 2D surface or corner cracks can be well modeled as having an approximately elliptical 
front, thus their SIF can be described by the classical Newman-Raju [16]. In this case, 
it can be expected that the component tolerance to cracks be given by: 
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     (19) 

 
For semi-elliptical or quart-elliptical surface cracks in a plate of thickness t loaded in mode I, 
the SIF in the semi-axis directions, or in the depth a and width c directions, KI,a = σ√(πa)⋅Φa 
and KI,c = σ√(πc)⋅Φc, are given by quite complicated functions, which enhance the operational 
advantage of treating the FCP threshold as a function of the crack size, ΔKth(a), as claimed 
above. For structural calculations and design purposes, it is indeed relatively simple to use ei-
ther equation (16) or (19) to evaluate the influence of surface cracks on the component fatigue 
strength. Moreover, it is not too difficult to adapt the 2D equations to include notch effects. 
Φa and Φc expressions are reproduced in Castro and Meggiolaro [11]. 
 
4. CONCLUSIONS 
 
A generalized El Haddad-Topper-Smith’s parameter was used to model the threshold stress 
intensity range for short cracks dependence on the crack size, as well as the behavior of non-
propagating fatigue cracks. This dependence was used to estimate the notch sensitivity factor 
q of semi-elliptical notches, from studying the propagation behavior of short non-propagating 



cracks that may initiate from their tips. The predicted notch sensitivities reproduced well the 
classical Peterson’s q estimates for circular holes or approximately semi-circular notches, but 
it was found that the notch sensitivity of elongated slits has a very strong dependence on the 
notch aspect ratio, defined by the ratio c/b of the semi-elliptical notch that approximates the 
slit shape having the same tip radius. These predictions were confirmed by experimental mea-
surements of the re-initiation life of long fatigue cracks repaired by introducing a stop-hole at 
their tips, using their calculated Kf and appropriate εN procedures. Based on this promising 
performance, a criterion to evaluate the influence of small or large surface cracks in the fati-
gue resistance was proposed. 
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