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SYNOPSIS 
 
Non-proportional (NP) multiaxial fatigue life predictions require the use of a multiaxial rain-
flow algorithm together with a method to calculate the effective stress or strain ranges asso-
ciated with each counted cycle [1]. The objective of this work is to develop a simple multiaxi-
al rainflow algorithm that allows the proper calculation of multiaxial damage in non-periodic 
NP histories and to periodic NP histories formed by complex blocks with multiple cycles 
each. It is shown that Wang-Brown’s (WB) multiaxial rainflow algorithm [2] has a few idio-
syncrasies that can lead to non-conservative predictions, incorrectly filtering out significant 
events within a multiaxial loading cycle. An improved multiaxial rainflow algorithm is pro-
posed, called Modified Wang Brown (MWB). It has two main improvements over the WB al-
gorithm. First, the criterion to choose the point where the count is started is modified. Exam-
ples are shown to prove that the original criterion can overlook the most damaging event from 
the history, as opposed to the modified version. And second, the algorithm implementation is 
significantly simplified when formulated in the reduced five-dimensional Euclidean space de-
fined in [3]. Under plane stress conditions, the algorithm is further simplified using a three-
dimensional Euclidean space based on the deviatoric stresses or strains. A simple pseudo-code 
is presented to efficiently implement the multiaxial count, allowing a fast and efficient calcu-
lation of fatigue damage even for very long non-periodic NP histories. 
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1. INTRODUCTION  
 
Traditional fatigue life prediction methods under variable amplitude non-proportional (VA-
NP) loadings are usually applicable only to periodic histories or to infinite life calculations. 
Finite life calculations can be performed, but usually the available models implicitly assume 
that each block of the periodic loading path contains a single cycle. To generalize the existing 
methods to finite life predictions in periodic histories with multiple cycles at each block or pe-
riod, or to non-periodic histories, a cycle counting algorithm must be introduced.  
  
The rainflow algorithm [4-5] is reputably the best approach to identify the most damaging 
events embedded in a variable amplitude history. For linear elastic uniaxial histories, it is in-
different to perform the uniaxial rainflow count on the stresses or on the strains. In addition, 
the sequential rainflow count is always a better option over the traditional rainflow, since it 
preserves the original loading order. The sequential rainflow [6-7] is obtained by simply reor-
dering the resulting traditional rainflow count by the final counting point. Even for linear elas-
tic problems, where the damage caused by each event should not depend on the other events 
nor on the loading order, it is a good idea to choose the sequential rainflow to correctly pre-
dict in which event the accumulated damage reaches its critical value (usually 1.0, according 
to Miner [8]). It is also recommended for crack growth predictions, to correctly account for 
load interaction effects without changing the load order. 
 
For elastoplastic uniaxial histories, it is fundamental to calculate the hysteresis loops before 
performing any rainflow count. After measuring/calculating both stress and strain histories, 
the sequential rainflow count must be applied to the strains, never to the stresses. For mul-
tiaxial problems, however, the uniaxial rainflow of stresses or strains may lead to significant 
errors, even in the linear elastic case, as discussed in the next section. 
 
2. RAINFLOW OF A MULTIAXIAL HISTORY 
 
For general NP multiaxial histories, the traditional unixial rainflow count, applied to some 
stress or strain component that is assumed dominant to describe the history, does not provide 
good life predictions. This is so because the peaks and valleys of the stresses and the corres-
ponding strains do not usually coincide, even in the same direction, not to mention in different 
directions. 
 
Another important issue involves the common practice of filtering non-reversals from a 
measured history. When dealing with measured multiaxial loading histories, the sampling 
points that do not constitute a reversal in any of its stress or strain components are usually 
eliminated. Filtering points that do not constitute a reversal helps to decrease computational 
cost in multiaxial fatigue calculations, especially when dealing with over-sampled data [9]. 
 
But filtering out all points that do not constitute a reversal in one stress or strain component 
may cause significant damage prediction problems, discussed next. First, the reversal points 
obtained from a multiaxial rainflow algorithm may not occur at the reversal of one of the 
stress or strain components. E.g., the relative Mises strain, used in Wang-Brown’s rainflow 
count [1], may reach a peak value at a point that is not a maximum or minimum of any strain 
component. But this most important point would have been filtered by any non-reversal filter-
ing algorithm, compromising the results. 
 



The second problem may occur because the entire path between two reversals is needed to 
evaluate the equivalent stress or strain associated with each count. Filtering out points along 
such path would almost certainly result in lower equivalent stress or strain estimates than ex-
pected. 
 
Another issue with rainflow counting NP multiaxial histories is whether or not to use a critical 
plane approach. The Wang-Brown multiaxial rainflow algorithm is general enough to be di-
rectly applied to a multiaxial history involving all 6 strain components [1]. But the counted 
cycles will probably occur in different planes, not reproducing the crack initiation mechanism. 
 
Instead, a critical plane approach must be followed: the multiaxial history must be projected 
onto a candidate plane, and only then should a multiaxial rainflow count be used. In this criti-
cal plane approach, the stress and/or strain history is projected onto a candidate plane from the 
critical point. A uniaxial rainflow count is then applied to an appropriate strain or stress com-
ponent, which depends on the chosen damage model: for the εN and Smith-Wastson-Topper 
(SWT) [1] damage models, the normal strain perpendicular to the candidate plane is rainflow 
counted; in the Brown-Miller, Fatemi-Socie and Wang-Brown damage models [1], a shear 
strain component acting parallel to the candidate plane is rainflow counted; and in the Findley 
damage model [1], a shear stress component parallel to the candidate plane is counted. 
 
While performing such rainflow count on the candidate plane, the other stress and strain com-
ponents cannot be overlooked or discarded. For instance, if the SWT damage model is used, 
at every rainflow counted half cycle ε1, the maximum value of the normal stress σ⊥1 parallel 
to ε1 along the entire half cycle must be stored to compute σ⊥1max. Since for complex NP mul-
tiaxial load histories these maxima may happen at any point along the half cycle, not only at 
the peaks and valleys of a given component, non-reversals should never be filtered before per-
forming the rainflow count. 
 
Note also that, if only the strain (or stress) history is provided, one might need to calculate the 
entire stress-strain history from proportional multiaxial stress-strain relations or from incre-
mental plasticity techniques, before performing the rainflow count. After performing the rain-
flow count at each candidate plane, the resulting damage is calculated. The critical plane is 
then the candidate plane that results in the highest fatigue damage. 
 
However, it must be noted that Case B cracks (defined in [1]) can have two shear strain (or 
stress) components acting parallel to each candidate plane. A uniaxial rainflow approach 
would either neglect the effect of one of such shear components, or consider that one of them 
is dominant over the other during the rainflow algorithm application. But this practice can be 
non-conservative, since both shear components induce crack initiation. To deal with that, a 
true multiaxial rainflow algorithm must be used, accounting for all stress or strain compo-
nents, such as Wang-Brown’s algorithm, discussed next. 
 
3. WANG-BROWN’S MULTIAXIAL RAINFLOW ALGORITHM 
 
Wang and Brown [10] proposed an interesting multiaxial generalization of the rainflow count 
that is applicable to any proportional or NP history of strains (or stresses, with simple modifi-
cations to the algorithm). Wang-Brown’s multiaxial rainflow is based on the Mises strain 
εMises as an indirect measure of fatigue damage. 
 



The problem with using εMises is the loss of the loading event sign, since Mises values are al-
ways positive. Therefore, in 90o out-of-phase histories it is even possible that εMises remain 
constant, which would wrongfully result in an infinite life prediction. To solve this issue, the 
relative Mises strain εRMises is used, calculated from the difference between the strain compo-
nents (εxj, εyj, εzj, γxyj, γxzj, γyzj) of each (jth) point in the history and the strain components (εxi, 
εyi, εzi, γxyi, γxzi, γyzi) of the initial (ith) point of the current count: 
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where Δεx ≡ εxj − εxi,  Δεy ≡ εyj − εyi,  εz ≡ εzj − εzi,  Δγxy ≡ γxyj − γxyi,  Δγxz ≡ γxzj − γxzi,  Δγyz ≡ γyzj 
− γyzi, and j > i. 
 
The relative strains need to be re-calculated for every initial counting point, a computationally 
intensive task for very long histories. Note however that the relative strain εRMises is only used 
to locate the initial and final counting points of each half cycle, after which it is possible to 
apply at these points any multiaxial damage model (even models that do not include a Mises 
strain parameter). 
 
As in the uniaxial case, Wang-Brown’s multiaxial rainflow is based on 3 simple rules: 
1. The first count must start at the point with the largest value of εMises from the entire history. 
2. Each count must be initiated sequentially at each peak or valley of a strain component, and 

the relative Mises strain εRMises of the subsequent history must be computed with respect to 
the initial point. 

3. The final point of each count is obtained when reaching: 
a) the largest value of εRMises with respect to the initial point of the history, or 
b) any path used in a previous count. 

 
Note that the maxima and minima of each stress or strain component may not happen at the 
beginning or at the end of the counted half cycle, as discussed before. It may happen at any 
point along the cycle. Therefore, any stress or strain range must be computed considering the 
maximum and minimum values along the entire path between two reversions, not only the ini-
tial and final values from the half cycle. 
 
The following example clarifies the necessary steps to implement this routine. The objective 
is to rainflow count the multiaxial NP history of cyclic tension-torsion formed by successive 
blocks of normal and shear strains given by (εx,  γxy) = {(2, 1)→(−1, 2)→(2,  −2)→(−2,  

−2)→(2,  2)→(−2,  0)}% repeatedly applied to a steel specimen, see Fig. 1. 
 
Assuming the elastic Poisson coefficient νel = 0.3 and εel ≅ εpl, the effective Poisson coeffi-
cient [1] is 
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Defining ε ≡ εx and γ ≡ γxy, and using Hooke’s law assuming σy = σz = 0, one can obtain 
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Fig. 1: Strain history for the considered NP loading and corresponding γ-ε diagram. 
 
Translating the block to begin at the point with highest absolute εMises (point A = (2, 2), even 
though points E and F have the same εMises in the time history shown in Fig. 1), the γ-ε dia-
gram from Fig. 1 is obtained. The initial point of the first event of the rainflow count is A(2, 
2). The relative Mises strains with respect to A are given by 
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2 2

R ( A ) ( 2%) 3 [( 2%) /( 2 2 )]ε ε γ ν= − + ⋅ − +
     (4) 

 
resulting in the relative history from Fig. 2. The count of this first event stops at point F, 
which has the highest εRMises with respect to A, see Fig. 2. Note that in the path B-B’ of Fig. 2 
the value of εRMises is constant, therefore in the corresponding γ-ε diagram it describes an arc 
of ellipse centered in A. Along the entire path A-B-B’-F, the highest value of ε = 2% takes 
place at point A, and the lowest ε = −2% takes place at B and F. The highest γ = 2% also 
takes place at A, and the lowest γ = −2% takes place at the entire path B’-F. In this way, ac-
cording to Wang-Brown’s method, in this half cycle we obtain the absolute ranges Δε = 4% 
and Δγ = 4%.  
 

          
Fig. 2: Rainflow count of the 1st event of the history and corresponding γ-ε diagram. 
 



Note that the calculation of the exact location of point B’ in the path E-F of the γ-ε diagram is 
important to obtain the ranges Δε and Δγ from the following counts. The position is obtained 
finding the interpolation parameter α from B’ = (ε, γ) = (2, −2) + α ⋅ [(−2, −2) − (2, −2)] that 
makes the εRMises of B’ with respect to A equal to 4.19% (which is equal to the εRMises of point 
B with respect to A), hence 
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So, B’ is located at (ε, γ) = (2 – 4α, −2) = (−1.378, −2)%. The initial point of the count of the 
second event is B(−2, 0). The relative Mises strains with respect to B are given by 
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resulting in the relative history from Fig. 3. The count of this second event stops at point A 
which, together with point E, has the largest relative εRMises with respect to B, see Fig. 3. The 
paths C-C’ and E-A in the γ-ε diagram are arcs of ellipses centered at B. Note that it is impor-
tant to draw the path B’-F in these two figures, to avoid counting it more than once. Note also 
that, if Pi is the initial point of the count, the successive plots εRMises(Pi)×(remaining events) 
follow the rules of the traditional rainflow algorithm. 
 

        
Fig. 3: Rainflow count of the 2nd event of the history and corresponding γ-ε diagram. 
 
The position of point C’ in the D-E path of the γ-ε diagram is interpolated by the expression 
(ε, γ) = (−1, 2) + α ⋅ [(2, −2) − (−1, 2)], where α is the value that makes the εRMises of C’ with 
respect to B equal to 4.05% (which is equal to the εRMises of C with respect to B), hence 
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So, C’ is located at (ε, γ) = (−1 + 3α, 2 – 4α) = (1.883, −1.844)%. Along the entire path B-C-
C’-E-A, the largest value of ε would be higher than 2%, taking place in the middle of the el-
liptic arc E-A of Fig. 3. Note, however, that the path E-A is a result of the rainflow count, it is 
not an actual path followed during the history. Therefore, it is reasonable to assume that the 



largest value of ε is 2%, which happens exactly at points E and A. The minimum ε = −2% 
takes place in B, resulting in Δε = 4% in this count according to Wang-Brown’s method. The 
highest γ = 2% takes place at A and the lowest γ = −2% at E, resulting in Δγ = 4%. Be careful 
not to calculate Δγ as the difference (2% − 0%) between the values of γ at A and B, the final 
and initial points of the path, because in this case the lowest value of γ takes place along the 
path, at point E. 
A criticism to this procedure that obtains Δγ = 4% instead of 2% is that most of the variation 
Δε takes place in the path B-C’, whereas most of the variation Δγ takes place subsequently, in 
the path C’-C-E-A. However, when calculating the associated damage, Wang-Brown’s me-
thod assumes that both variations take place at the same time, and not sequentially. This could 
possibly result in conservative predictions in this case. If, on the other hand, only the extremes 
A and B of the path were used to calculate the strain variations, obtaining Δγ = 2% instead of 
4%, highly non-conservative predictions would be probably obtained. Such inconsistencies 
will be solved in the Modified Wang-Brown count proposed in the next section, where the 
MOI method will be used to calculate the equivalent strain (or stress) ranges associated with a 
complex path. 
 
The third event begins at point C, and stops at B’ because it found a previous count, resulting 
in the path C-D-D’-B’. In the corresponding γ-ε diagram, the transition D-D’ happens through 
an arc of ellipse centered at C, where the εRMises relative to C is 
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The position of D’ in the path E-F is interpolated by (ε, γ) = (2, −2) + α ⋅ [(−2, −2) − (2, −2)], 
where α makes εRMises with respect to C equal to 3.06% (the same value as εRMises of D with 
respect to C), hence 
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So, D’ is located at (ε, γ) = (2 − 4α, –2) = (−0.437, −2)%. Note that along the path C-D-D’-B’ 
the largest Δε takes place between B’ and C, giving a normal strain range Δε = 2% − 
(−1.378%) = 3.378%, whereas the largest shear strain range Δγ takes place between the path 
D’-B’ and point D, with Δγ = 2% − (−2%) = 4%. 
 
The counting procedure for the remaining half cycles of the block is similar, resulting in the 
half cycles D-C’, with normal and shear strain ranges Δε = 1.883% − (−1%) = 2.883% and Δγ 
= 2% − (−1.844%) = 3.844%; E-D’, with Δε = 2% − (−0.437%) = 2.437% and Δγ = 0%; and 
F-A, with Δε = 4% and Δγ = 4%, according to Wang-Brown’s algorithm. 
 
The multiaxial rainflow count results in the ranges and mean loads shown in Fig. 4, corres-
ponding to the paths A-B-B’-F, B-C-C’-E-A, C-D-D’-B’, D-C’, E-D’ and F-A, represented by 
arrows in the γ-ε diagram. 
 
Multiaxial damage models based on strains, e.g. Brown-Miller, Fatemi-Socie or SWT, can 
then be applied to these half cycles. Note that the Sines and Findley models are not applicable 



in this case, because εa and/or γa ≥ 2% implies in significant plasticity for metals, while those 
models assume linear elastic strains; besides, Sines’ model does not account for NP histories. 
 

           
Fig. 4: Rainflow counted strain ranges and corresponding γ-ε diagram with arrows 
representing the resulting half cycles. 
 
4. MODIFIED WANG-BROWN (MWB) ALGORITHM 
 
The original Wang-Brown algorithm is not difficult to be implemented in histories of uniaxial 
tension/bending combined with torsion, which can be represented only by one normal σx and 
one shear τxy stress components (or one normal εx and one shear γxy strain components). In this 
case, the subspace of normal and shear components is planar (it is represented by a diagram in 
only 2 dimensions), and the only difficulty in applying the algorithm happens when solving 
for the equations of the ellipses associated with the points with same relative Mises stress or 
strain. 
 
However, in a generic multiaxial history, the dimension of the diagram may be increased, re-
quiring the calculation of intersections between straight lines and ellipsoid or hyper-ellipsoid 
surfaces, increasing the computational complexity. 
 
The Modified Wang-Brown method solves this problem by working in the reduced 5-
dimensional stress E5σ [3] or strain E5ε subspaces, or in a lower dimension subspace from 
them. In this way, a general multiaxial strain or stress history is represented by a set of points 
Pi = (e1, e2, e3, e4, e5) or Pi = (S1, S2, S3, S4, S5), respectively, where 
 

y z y z y z
1 x x 2

3 xy 4 xz 5 yz

S S3S S ,   S 3 3
2 2 2 2 2

S 3,   S 3 ,   S 3

σ σ σσ
σ

τ τ τ

− −
≡ − − = ≡ =

≡ ≡ ≡     (10) 
 

x y z y z y zx
1 2

xy yzxz
3 4 5

2 e ee3e ,  e 3 3 ,
2 1 2 (1 ) 2 (1 ) 2 (1 )

3 33e ,  e ,  e
2 (1 ) 2 (1 ) 2 (1 )

ε ε ε ε ε
ν ν ν ν

γ γγ
ν ν ν

− − − −
≡ ⋅ = ≡ =

+ ⋅ + ⋅ + ⋅ +

≡ ≡ ≡
⋅ + ⋅ + ⋅ +    (11) 



 
Wang-Brown’s multiaxial rainflow algorithm is rather simplified when working in such spac-
es, because the distance between two points is already the relative Mises strain (or stress) be-
tween them. The 3 rules of the rainflow count have now simple geometric interpretations, re-
sulting in: 
1. The count must be initiated at the point with highest norm, i.e., with the longest Euclidean 

distance to the origin of the diagram. This first initial counting point is called P1, and the 
subsequent ones are called P2..., Pn, in the same sequence of the original history. 

2. Each count must be sequentially initiated at each point Pi of the diagram. 
3. The final point of each counting is obtained when reaching: 

a) the point Pj most distant from the initial point Pi (with j > i) in the reduced subspace, or 
b) any path used in a previous count. 

 
The first rule in Wang-Brown’s algorithm was conceived to try to guarantee that the largest 
εRMises (or relative Mises stress σRMises) of the history is identified, one of the main objectives 
of a rainflow count. However, this rule can fail to reach this objective if the point P1 with 
largest norm is not one of two points of the diagram farthest apart from each other. 
 
This is easy to check in the example from Fig. 5, which shows an e1-e3 strain diagram with a 
triangular path. The point (e1, e3) = (0.8%, 0%) is clearly the one with largest norm, equal to 
0.8%, however its Wang-Brown count results in two half cycles with εRMises = 1.0%. Instead, 
if the count is started at the point (e1, e3) = (0%, 0.6%), both half cycles result in εRMises = 
1.1%. It is not difficult to prove that the largest relative Mises strain (or stress) of the history 
can be underestimated by up to 1−√2/2 = 29.3% using the original Wang-Brown algorithm. 
Even if a convex hull method or the MOI method are applied to the resulting half cycles, to 
account for the shape of the entire path, and not only the value of εRMises, the original Wang-
Brown algorithm still underestimates the resulting equivalent ranges. The conclusion is that 
the starting point of the first count must be better chosen. 

 
Fig. 5: Rainflow counts using the original Wang-Brown algorithm (left) and the modified ver-
sion (right). 
 
So, the first rule of the multiaxial rainflow count is now modified, to search for the pair of 
points in the diagram with largest relative distance, and between them the point P1 farthest 
from the origin. But the Modified Wang-Brown (MWB) algorithm differs from the original 



method not only due to such first rule. Other rules are modified and introduced as well. The 
MWB method can be summarized by a set of 8 rules: 
1. Find among the n⋅(n−1)/2 pairs of points from an n-point path the one(s) that form the 

longest chord in the 5D strain (or stress) subspace, and choose among them the one with 
greatest distance from the origin; label this point P1, and the subsequent P2, ..., Pn follow-
ing their original order; 

2. Each count should be sequentially initiated at P1, P2, ..., Pi, ..., Pn; 
3. The final point in each count is obtained when reaching: 
 a) the point Pj farthest away (in an Euclidian sense) from the initial point Pi (j > i), or 

b) any finite segment (not just a point or a finite number of points) from a previous count; 
4. Once found the initial and final points Pi and Pj, the count is defined by the traveled path 

portions closest to the straight segment Pi-Pj in an Euclidean sense (to avoid long “de-
tours” from the straight line Pi-Pj that defines such half cycle); 

5. Every time a full cycle is counted, i.e. two half cycles with identical extreme points are 
counted, use the Moment Of Inertia (MOI) method (or some convex hull method) to cal-
culate the equivalent strain (or stress) range or amplitude and mean or maximum from the 
full cycle to obtain the associated fatigue damage using some multiaxial model; 

6. After rainflow counting the entire load history, repeat step 5 to calculate the damage contri-
bution of the half cycles that did not close into a full cycle; 

7. Use some damage accumulation rule, e.g., Miner’s rule, to find the total multiaxial damage; 
8. If using a critical plane approach, repeat steps 1-7 for every candidate plane, to find the 

critical plane that maximizes the accumulated multiaxial damage; note that only Case B 
cracks or tension-torsion histories will need a multiaxial rainflow count, because the sin-
gle shear component in Case A cracks can be counted using a uniaxial rainflow algorithm. 

 
5. APPLICATION OF THE MWB ALGORITHM 
 
In this section, the MWB rainflow algorithm is applied to the NP history presented in Section 
3, formed by blocks of (εx,  γxy) = {(2, 1)→(−1, 2)→(2,  −2)→(−2,  −2)→(2,  2)→(−2,  0)}% re-
peatedly applied to a steel specimen. The MWB count results in this example in the exact 
same half cycles from the original Wang-Brown method obtained in the example from Sec-
tion 3, however with a much lower complexity and computational cost. The MWB algorithm 
has simple geometric interpretations, it does not require the calculation of intersections with 
hyperellipses, and it does not require the recalculation of all εRMises for every count. In addi-
tion, it always finds the events with largest εRMises, as opposed to the traditional Wang-Brown 
method, as discussed before.  
 
After obtaining the equivalent ranges and mean components of all rainflow counted paths, any 
multiaxial model can be applied to calculate the accumulated damage at the considered candi-
date plane. The critical plane will then be the candidate plane with highest accumulated dam-
age. 
 
6. CONCLUSIONS 
 
Wang and Brown proposed a multiaxial rainflow count based on the relative Mises strain 
εRMises as an indirect measure of the damage during a half cycle. But the original method re-
quires the calculation of εRMises at every rainflow count for all subsequent starting points. In 
this work, a Modified Wang Brown (MWB) rainflow counting method was proposed, based 
on the representation of the stress or strain history in a reduced 5D subspace of the 6 deviator-
ic strain (or stress) components. The MWB uses improved rules to guarantee that the event 



with highest εRMises is always counted. Coupled with some convex hull method, the MWB can 
better account for the path shape influence on the associated fatigue damage. The method has 
simple geometric interpretations that considerably simplify its implementation, e.g. the dis-
tance between 2 points in the considered deviatoric strain subspace is the εRMises between 
them. 
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