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Abstract. A critical issue in multiaxial fatigue damage calculation is how to find the equivalent stress or strain ranges 
and mean components associated with non-proportional (NP) histories. A traditional way to find such ranges is to use 
convex hull methods, which search for convex enclosures of the entire history path in stress or strain diagrams. In this 
work, all existing convex hull methods are presented and compared using results from more than 3x106 Monte Carlo 
simulations of random and especially chosen path topologies in two to five-dimensional stress or strain diagrams. New 
convex hull models are also proposed, based on Deperrois’ idea of longest chords. It is found that the proposed models 
are very similar to the Maximum Prismatic Hull model, but with a much simpler and efficient algorithm to compute 
equivalent stresses. It is also shown that the Minimum Circumscribed Ellipsoid, Minimum Volume Ellipsoid, and 
Minimum Ball (MB) methods may result in very poor predictions of the stress or strain amplitudes. The only 
recommended convex hull method based on ellipsoids is the Minimum F-norm Ellipsoid (MFE) which, together with 
the Maximum Prismatic Hull model and its variations, are very efficient to predict equivalent amplitudes in NP 
histories.  
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1. INTRODUCTION  
 

Non-proportional (NP) multiaxial fatigue damage occurs when the principal stress directions vary during the loading 
induced by several independent sources, such as out-of-phase bending and torsion moments (Socie, 1999). Multiaxial 
fatigue damage models are based on stress or strain ranges. It is not difficult to define these ranges for constant ampli-
tude loadings, where only two stress or strain states need to be considered, for the peak and the valley. 

However, for multiaxial variable amplitude (VA) loadings, in special when the history is non-proportional (NP), it is 
not clear how these ranges should be defined and identified. The loading path, represented e.g. in the Mises diagram ε × 
γ/√3, could have a generic curved shape spanning infinitely many strain states, without a clear peak or valley. A peak 
(or valley) of one strain component may not coincide with the peak (or valley) of the other strain components (Langlais 
et al., 2003). The following sections deal with how to quantify the stress or strain ranges used by the various multiaxial 
damage models, associated with VA-NP histories that are periodic in time.  

Consider that the periodic history is formed by repeatedly following a given loading path domain D, where 
D contains all points from the stress or strain variations along one period of the history. For a complex-shaped history 
such as the one shown in Fig. 1, it is not easy to decide how to obtain the effective Δτmax. The so-called convex hull 
methods try to find circles, ellipses or rectangles that contain the entire path (in the 2D case). In a nutshell, in the 2D 
case, the Minimum Ball (MB) method (Dang Van and Papadopoulos, 1999) searches for the circle with minimum ra-
dius that contains D; the minimum ellipse methods (Freitas et al., 2000; Gonçalves et al., 2005; Zouain et al., 2006) 
search for an ellipse with semi-axes a and b that contains D with minimum area π⋅a⋅b or minimum norm (a2 + b2)1/2; 
and the maximum prismatic hull methods (Gonçalves et al., 2005; Mamiya et al., 2009) search among the smallest rec-
tangles that contain D the one with maximum area or maximum diagonal (it’s a max-min search problem). The value 
of Δτmax in Fig. 1 would either be assumed as the value of the circle diameter, or twice the ellipse norm, or the rectangle 
diagonal. If the history path were represented in a γB × γB2 diagram, the same methods would result Δγmax estimates. 

The convex hull methods can also be applied to traction-torsion histories, if a σx × τxy√3 diagram is considered. The 
effective range in this case is the Mises stress range ΔσMises, defined in the next section. Similarly, for traction-torsion 
histories where plastic strains dominate, a strain diagram εx × γxy/√3 can be used to predict an effective ΔεMises. 

Such convex hull methods can be extended to histories involving more than two stress or strain components. E.g., if 
the history path is plotted in a 3D diagram representing 3 stress or strain components, the convex hull methods will 
search for spheres, ellipsoids or rectangular prisms. For higher dimension diagrams, the search is for hyperspheres, hy-
perellipsoids, and rectangular hyperprisms. However, this practice can lead to significant errors, since each convex hull 
will reflect an effective range calculated on different planes at different points in time. The recommended approach for 
general 6D histories involving all stress (or strain) components is then to project them onto Case A and Case B candi-
date planes (see Fig. 2), resulting in each case in searches for effective ranges in 2D diagrams σ × τ√3, ε × γ/√3, τB × 
τB2, or γB × γB2. 
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Fig. 1: Stress history path D in the τB × τB2 diagram, enclosed in convex hulls based on circles (balls), ellipses and rec-

tangular prisms. 
 

 
Fig. 2: Case A and Case B cracks. 

 
The convex hull methods are described in detail in the following sections. Their framework is based on deviatoric 

stress (or strain) diagrams and Mises stress (or strain) parameters, which are discussed next. 
 

2. MISES STRESS AND STRAIN PARAMETERS 
 
The methods to obtain effective (or equivalent) stress and strain ranges usually make use of stress and strain pa-

rameters based on the Mises yield function. For linear elastic histories, both Mises effective stress σMises and Mises (or 
octahedral) shear stress τMises can be used as auxiliary parameters, where 
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Since the Mises stress σMises (as well as the octahedral shear stress τMises) equation is always positive, a Mises stress 
range ΔσMises (also known as relative Mises stress σRMises) should be used to correctly evaluate the variation of σMises due 
to a change (Δσx, Δσy, Δσz, Δτxy, Δτxz, Δτyz) in the stress components along some loading path Δ: 
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Δσ σ
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= =                  (2) 

Note that the Mises stress range correlates with the octahedral shear range parameter ΔτMises, used in both Sines and 
Crossland models, through ΔσMises = ΔτMises ⋅ 3/√2. 

The Mises effective strain εMises is another useful quantity in VA-NP histories, in special to deal with plastic strains. 
It uses the mean or effective Poisson coefficient pl el el pl el(0.5 ) ( )ν ε ν ε ε ε= + +  to include plastic effects, where εel 
and εpl are the elastic and plastic components of the strains, and νel and νpl are the elastic and plastic Poisson coefficients 
(where νpl = 0.5). The Mises strain correlates with the octahedral (or Mises) shear strain γMises, which is the combination 
of both shear strains that act in each of the octahedral planes, through 
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Since the εMises (as well as the γMises) equation is always positive, a Mises strain range ΔεMises (also known as the rela-
tive Mises strain εRMises) should be used to evaluate its variation due to a change (Δεx, Δεy, Δεz, Δγxy, Δγxz, Δγyz) in the 
strain components along some loading path: 
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An octahedral (or Mises) shear range parameter ΔγMises can also be defined, related to the Mises strain range by 

Mises
Mises

3
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+

                                   (5) 

Note that the octahedral stress or strain shear ranges ΔτMises or ΔγMises are measured on the octahedral planes, they are 
not equal to twice the shear amplitudes τa or γa acting on the considered plane. But those shear amplitudes could be eas-
ily obtained by 
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Finally, for the linear elastic case, all these relative Mises stresses and strains correlate with the Mises shear range 
parameters by 
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3 3EE
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⋅ +

                 (7) 

 
3. REDUCED ORDER STRESS AND STRAIN SPACES 

 
When dealing with incremental plasticity, it is convenient to represent the stresses or strains in a 9-dimensional (9D) 

space. In particular, when representing the deviatoric stress tensor in 9D, its norm |S | becomes directly proportional to 

the Mises stress and octahedral (or Mises) shear stress, namely |S | = σMises⋅√6/3 = τMises⋅√3. In addition, the Prandtl-
Reuss flow rule results in slightly different (and probably better) equations when formulated in 9D space than the equa-
tions derived using a reduced 6-dimensional (6D) formulation. 

But, to find effective ranges in VA-NP histories, it is a good idea to work in a space with reduced dimensions, sav-
ing computational effort without modifying the results. The reduction from 9D to 6D deviatoric stresses is simply a 
matter of eliminating the τyx, τzx and τzy components from the deviatoric stress tensor, which are redundant because τyx ≡ 
τxy, τzx ≡ τxz, and τzy ≡ τyz. 

Since the deviatoric stresses Sx, Sy and Sz are linear-dependent, because Sx + Sy + Sz = 0, it is possible to further re-
duce the deviatoric stress dimension from 6D to 5D. There are infinite ways to do this, for example replacing the 
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stresses Sx, Sy and Sz by new variables S1 ≡ ax1⋅Sx + ay1⋅Sy + az1⋅Sz and S2 ≡ ax2⋅Sx + ay2⋅Sy + az2⋅Sz, where the user-defined 
coefficients ax1, ay1, az1, ax2, ay2 and az2 are any values that make the vectors [ax1  ay1  az1]T, [ax2  ay2  az2]T, and  [1  1  1]T 
become linear independent. A notable example of such transformation is the one proposed by Papadopoulos et al. [21], 
who chose [ax1  ay1  az1]T = [√3/2  0  0]T and [ax2  ay2  az2]T = [0  0.5  −0.5]T, resulting in a reduced-order deviatoric stress 
tensor S '  represented in a 5D transformed Euclidean stress-space E5σ, where 
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S ' S S S S S
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                 (8) 

The above defined 5D deviatoric stress S '  has three very interesting properties: 

1) the norm of the 5D vector S '  from the E5σ transformed deviatoric stress-space is equal to the Mises equivalent 
stress σMises; 

2) the Euclidean distance in the 5D E5σ stress-space between any 2 points AS ' = [S1A S2A S3A S4A S5A]T and BS ' = 

[S1B S2B S3B S4B S5B]T, respectively associated with the 9D deviatoric stresses AS  and BS , is equal to the Mises 
stress range ΔσMises between these stress states; and  

3) the locus of the points which have the same ΔσMises with respect to a point S '  in the E5σ deviatoric stress-space 

is the surface of a hypersphere with center in S '  and radius ΔσMises. This is a simple corollary from the second 
property. 

Note that, for unnotched specimens under histories combining uniaxial tension σx and torsion τxy, the 5D deviatoric 
stress S '  can be represented in the classical diagram σx × τxy√3 using the 2D projection [S1  S3]T,  since in this case S1 
= σx, S3 = τxy√3, and S2 = S4 = S5 = 0. 

The above properties will be useful to obtain effective stress ranges. For strain histories, it is possible to define a 
similar transformation to a 5D transformed Euclidean strain-space E5ε for the deviatoric strains, resulting in a reduced-
order deviatoric strain e '  represented by 
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           (9) 

where ν  is the effective Poisson coefficient.  
The above defined deviatoric strain e '  in the transformed strain-space E5ε also has three interesting properties, very 

similar to the ones from S ' : 
1) the norm of the 5D vector e '  in the E5ε strain-space is equal to the Mises equivalent strain εMises; 
2) the Euclidean distance in the 5D E5ε strain-space between any 2 points Ae ' = [e1A e2A e3A e4A e5A]T and Be ' = [e1B 

e2B e3B e4B e5B]T, respectively associated with the 9D deviatoric strains Ae  and Be , is equal to the Mises strain 
range ΔεMises between these strain states; and 

3) the locus of the points which have the same ΔεMises with respect to a point e '  in the E5e deviatoric space is the 
surface of a hypersphere with center in e '  and radius ΔεMises. This is a simple corollary from the second prop-
erty. 

Note that, in strain histories where the plastic deformations dominate, it is possible to estimate ≅ =pl 0.5ν ν , re-

sulting in 3 xy xy xye 3 /(2 2 ) 3 / 3 / 3γ ν γ γ= + ≅ = , =4 xze / 3γ  and =5 yze / 3γ . However, note also that the 

common practice of representing strain histories in traction-torsion tests using an ×x xy[ / 3 ]ε γ  diagram is only 

appropriate if the plastic strains are really dominant, otherwise the general definition using ν  should be used instead. 
In addition, such 2D diagram is only appropriate for uniaxial tension-torsion with σy = σz = 0 histories, which implies 
that y z xε ε ν ε= = − ⋅  and therefore e1 ≡ εx, as proven next. 
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The above 5D deviatoric stresses and strains can represent any multiaxial history, even at points below the surface 
of the specimen. In the particular case of points at a free surface perpendicular to the z direction, the plane stress condi-
tion gives σz = τxz = τyz = 0 and γxz = γyz = 0, so the deviatoric stress and strain can be further reduced to 3D sub-spaces  
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2 2
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σ τ                         (10) 
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Note that the plane stress equation εz = −ν ⋅ (εx + εy)/(1 − ν) can only be used above for elastic strains. For elasto-
plastic strain histories, εz must be calculated using e.g. incremental plasticity algorithms, or estimated from the effective 
Poisson coefficient, assuming z x y( ) /(1 )ε ν ε ε ν≅ − ⋅ + − . 

For surface stress histories consisting only of uniaxial tension σx and torsion τxy combinations (where σy = σz = τxz = 
τyz = 0), 2D sub-spaces can be used to represent the deviatoric stress and strain 

[ ]T1 3S "' S S= , where   ≡ ≡1 x 3 xyS , S 3σ τ                 (12) 
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where it was assumed that = ≅ − ⋅y z xε ε ν ε , which results in e1 ≡ εx (as mentioned before) while making e2 ≡ 0.  
After defining all involved stress and strain parameters, the convex hull methods are discussed. These methods are 

based on convex hulls enclosing the history path in the above defined stress or strain sub-spaces. There are 3 types of 
convex hulls: balls, ellipsoids and rectangular prisms. The Minimum Ball method is presented next. 

 
4. MINIMUM BALL METHOD 

 
Dang Van (1999) realized that the search for an effective stress range must take place on the deviatoric stress space. 

For periodic elastic histories, the mesoscopic stresses and strains in the critically oriented grain should stabilize by the 
process of elastic shakedown, generating a local residual stress [σij]res at such critical grain. Dang Van assumed that the 
subsequent mesoscopic (μ) stress history at such grain, after the stabilization, is related to the macroscopic (M) history 
through 

ij ij M ij res[ ( t )] [ ( t )] dev[ ]μσ σ σ= +                   (14) 

where dev[σij]res is the deviatoric part of the residual stresses tensor stabilized in that grain.  
The calculation of the mesoscopic stresses in Dang Van’s model can be interpreted as a hardening problem, caused 

by elastic shakedown. When the periodic macroscopic history is represented in the deviatoric space, Dang Van assumes 
that the stabilized residual stress is the vector from the center of the minimum ball that circumscribes the history to the 
origin of the diagram. The word “ball” is used here to describe a circle, sphere or hypersphere, respectively for 2D, 3D 
or higher dimension histories. The same result holds if the reduced stress E5σ (or strain E5ε) space is used, or a sub-space 
from it.  

The values of the mesoscopic Tresca stress τμ(t) and mesoscopic hydrostatic stress σμh(t) (which is equal to the mac-
roscopic hydrostatic stress) are calculated for each point in the mesoscopic history path Dμ. Dang Van then predicts in-
finite life if and only if all points satisfy the inequality  

τμ(t) + αDV⋅σμh(t) ≤ βDV          (15) 

There are several algorithms to find the minimum radius circle (or sphere or hypersphere, for higher dimensions) 
that circumscribes the load history, such as the miniball method proposed by Gärtner (1999). This miniball method is an 
optimization of the work from Welzl (1991). 

In summary, Dang Van is a type of Minimum Ball (MB) method where each stress state along the history path is 
compared to a limiting stress level to predict infinite life. However, it is not useful to calculate finite fatigue lives, since 
it does not deal with stress (or strain) ranges, only with individual stress states. 

But the same MB circumscribed to the macroscopic history can be used to estimate an effective Mises stress range 
ΔσMises (or strain range ΔεMises). The diameter d of such MB in the transformed deviatoric stress-space E5σ or strain-
space E5ε (or in a 2D, 3D or 4D sub-space of such spaces) is the magnitude of the variation S'Δ  (or e'Δ ), which is 
equal to ΔσMises (or ΔεMises). Therefore, the effective shear ranges Δτmax (used in the Findley and McDiarmid models) 
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and Δγmax (used in the Brown-Miller and Fatemi-Socie models), Mises ranges ΔσMises and ΔεMises, and octahedral shear 
ranges ΔτMises (used in the Sines and Crossland models) and ΔγMises, can be estimated from d using the MB method by 

 orMises Mises max a MB

Mises max a
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3 / 2 3 ( 2 ) 3 | S'| d L
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                  (16) 

where L is the longest chord in the history (the maximum Euclidean distance in the transformed space between any two 
points along the history path, measured in either stress or strain units), and λMB is a dimensionless parameter defined as 
the ratio between the Mises stress or strain range for the Minimum Ball method and such longest chord L. This ratio 
will be useful to compare the equivalent stresses and strains predicted by the different methods. 

In the 2D case, if any two points from the history define the diameter of a circle that contains the entire path, then 
their distance L is equal to the diameter d, therefore the ratio becomes λMB = 1.0. A notable 2D case is for a path form-
ing an equilateral triangle, where λMB = 2/√3 ≅ 1.155. For any other 2D path, it is found that 1.0 ≤ λMB ≤ 1.155. 

 
5. MINIMUM ELLIPSOID METHODS 

 
The Minimum Ball (MB) method is not efficient to represent the behavior of NP histories. For instance, it would 

predict the same Mises ranges for a NP 90o out-of-phase circular path and a proportional path defined by a diameter of 
this circle, both resulting in λMB = 1.0. But a higher value of λMB would certainly be expected for the NP history. 

To solve this problem, Freitas et al. (2000) proposed the Minimum Circumscribed Ellipsoid (MCE) method. It 
searches for an ellipse (or ellipsoid or hyperellipsoid, for higher dimensions) that circumscribes the entire history, with 
its longest semi-axis a1 equal to the radius of the minimum ball, and with the smallest possible values for the remaining 
semi-axes ai (i > 1). The Mises ranges are defined by 

  or  
dim

2
M ises M ises i

i 1
2 a 2 FΔ σ Δε

=

= ⋅ ≡ ⋅∑                 (17) 

where dim is the dimension of the history path, 2 ≤ dim ≤ 5, and F is defined as the Frobenius norm of the ellipsoid, 
which is equal to the square root of the sum of the squares of the ellipsoid semi-axes. Here, the Frobenius norm is es-
sentially an Euclidean distance (or Euclidean norm) between the origin and a point with coordinates (a1, a2, …, adim), 
since the axes of the reduced stress (or strain) space are orthonormal. In the case of tensors, the Euclidean norm is 
commonly called the Frobenius norm, usually abbreviated as F-norm. 

The ratio between the Mises ranges calculated by the MCE method and the longest chord L, defined here as λMCE, 
reproduces experimental data better than λMB generated by the MB method. In the 2D case, a NP circular path would 
result in λMCE = √2 instead of the proportional value 1.0, which is much more reasonable than the Minimum Ball pre-
diction. It is also found that any 2D path results in 1.0 ≤ λMCE ≤ √2, with the maximum value occurring e.g. for circular 
and square paths. In general, for any dimension dim, it is found that 1.0 ≤ λMCE ≤ √dim, with the maximum value √dim 
occurring e.g. for paths that follow the edges of hypercubes or large portions of the surface of hyperspheres. The down-
side of the MCE method is the requirement that the longest semi-axis must be equal to the radius of the Minimum Ball.  

A possible alternative to the MCE method is to search for the Minimum Volume Ellipsoid (MVE), also known as 
the Löwner-John Ellipsoid. In the 2D case, it is basically the search for an enclosing ellipse with minimum area. Such 
MVE method solves the MCE issues with rectangular paths, however it tends to find ellipses with lower aspect ratios 
than expected. In addition, the search for such ellipsoid or hyperellipsoid can be computationally intensive for 3D or 
higher dimension histories. 

Another alternative to the MCE method is the search for the Minimum F-norm Ellipsoid (MFE) (Gonçalves et al., 
2005). Instead of searching for the minimum volume (or area), the MFE looks for the ellipse, ellipsoid, or hyperellip-
soid with minimum value of its F-norm F, defined in Eq. (17). Zouain et al. (2006) present an efficient (although com-
putationally intensive) method to numerically find such MFE. Other efficient algorithms can be found in (Bernasconi, 
2002). 

The ratios between the Mises stress or strain ranges 2⋅F, calculated from the MCE, MVE and MFE methods, and the 
longest chord L are defined, respectively, as λMCE, λMVE and λMFE. All these ratios must be greater than or equal to 1.0. 
In the 2D case, a notable path is the one with the shape of an equilateral triangle with sides L (which are also its longest 
chords), where the resulting hull is a circle with diameter d = 2L/√3 and F-norm F = d√2, resulting in λMCE = λMVE = 
λMFE = 2⋅F/L = 2√2/√3 ≅ 1.633. For any other 2D path, it is found that 1.0 ≤ λMCE ≤ 1.633 and 1.0 ≤ λMFE ≤ 1.633, how-
ever λMVE can reach values beyond 2.0 when a very elongated enclosing ellipse is the solution with minimum area, an 
indication that the MVE method can be very conservative. 
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6. MAXIMUM PRISMATIC HULL METHODS 
 
Another class of convex hull methods tries to find a rectangular prism with sides 2a1, ..., 2adim that encloses a load 

history path, where dim is the dimension of the considered space. There are essentially 4 methods to fit rectangular 
prisms to the history path. 

The first is the Maximum Prismatic Hull (MPH). This method searches for the smallest rectangular prism that en-
closes the history (the minimum prism), for each possible orientation of the prism. Among them, the one with highest F-
norm is chosen. The F-norm and resulting Mises ranges are the same defined in Eq. (17), except that here ai are the 
semi-lengths (half the length) of the sides of the rectangular prism. The MPH was originally proposed by Gonçalves et 
al. (2005) for sinusoidal time histories, and later extended by Mamiya et al. (2009) for a general NP loading. 

Another prismatic hull method is the Maximum Volume Prismatic Hull (MVPH), which searches among the mini-
mum prisms the one with maximum volume. Although the search is for a maximum volume, the F-norm is also used to 
compute the Mises range. In the 2D case, the MVPH method is essentially the search, among the minimum rectangles 
that enclose the entire path, of the one with maximum area (it’s a max-min problem). 

A third method is proposed here, called the Maximum Prismatic Hull with Longest Chords (MPHLC). It is basically 
an improvement of Deperrois’ method (Deperrois, 1991). In the Deperrois method, the longest chord L5 between any 
two points of the path in the projected 5D deviatoric stress-space E5σ (or deviatoric strain-space E5ε, for strain histories) 
is determined. Then, the path is projected onto a 4D stress-subspace E4σ orthogonal to L5, and the new longest chord L4 
is computed in this subspace. The path is then projected onto a stress-subspace E3σ orthogonal to both L5 and L4, and the 
new longest chord L3 is computed in this subspace. Analogously, the longest chord L2 is found in the stress-subspace 
E2σ orthogonal to L5, L4 and L3. Finally, the longest chord L1 is found in the stress-subspace E1σ orthogonal to L5, L4, L3 
and L2.  

The Deperrois method provides satisfactory results (Ballard et al., 1995). However, Papadopoulos et al. (1997) criti-
cize it because, if any longest chord is non-unique, then different rectangular prisms and resulting shear amplitudes 
could be obtained for the same history. But this non-uniqueness could be easily solved by stating that, when the longest 
chords are non-unique, then the chosen prismatic hull would be the one with maximum F-norm among all possible re-
sults. The use of rectangular prisms with maximum F-norm has shown good results in the MPH method, therefore this 
could be the solution to Papadopoulos’ criticisms. 

The combination of the MPH and Deperrois’ methods thus leads to the MPHLC method, performed in 4 steps: 
1) define the longest side 2a1 of the rectangular prism in the direction of the longest chord L of the history; 
2) project the history into the sub-space orthogonal to the directions of all sides of the prisms that have already been 

defined (for a history with dimension dim, if m sides have already been chosen, then such sub-space will have 
dim−m dimensions); 

3) define the next side 2ai of the rectangular prism in the direction of the longest chord measured in the projected 
sub-space, and repeat step 2 until all sides are found; 

4) if multiple solutions for the rectangular prism are found, the one with maximum F-norm is chosen – this step ad-
dresses Papadopoulos’ criticisms. 

The advantage of the MPHLC method over the MPH or MVPH is that it does not require a numerical search for the 
prismatic hull orientation. Its orientation is deterministically defined by the longest chords. In special for 3D or higher 
dimension histories, the MPHLC method can lead to a huge decrease in computational effort. For instance, the orienta-
tion of a 5D hyperprism is given by 10 angles, therefore the search for the orientation associated with maximum F-norm 
(or maximum volume) involves a search in a 10-dimensional space, which can be very costly. In addition, the next sec-
tions will show that the MPHLC predictions give almost the same results as the MPH and MVPH methods. 

A variation of the MPHLC is also proposed, called the Maximum Prismatic Hull with Container Chords (MPHCC). 
It is similar to the MPHLC, but all chords that contain the orthogonal projection of the entire history onto them (called 
here “container chords”) are considered as candidate directions for the sides of the rectangular prism. Note that every 
longest chord LC is a “container chord” CC, but not every CC is a LC. From the probable multiple solutions for the re-
sulting rectangular prisms, the one with maximum F-norm is chosen. 

The ratios between the Mises stress or strain ranges 2⋅F, calculated from the MPH, MVPH, MPHLC and MPHCC 
methods, and the longest chord L are defined, respectively, as λMPH, λMVPH, λMPHLC and λMPHCC. All these four ratios are, 
in average, very close to each other, therefore any of the four variations of the prismatic hull methods could be used in-
terchangeably. For a history path with dimension dim, it is found that 1 ≤ λMPHLC ≤ λMPHCC ≤ λMPH ≤ √dim, therefore the 
MPHCC results in Mises ratios slightly closer to the MPH predictions than the MPHLC. In addition, it is also found that 
1 ≤ λMVPH ≤ λMPH ≤ √dim. 

In the next section, all convex hull methods presented in this paper are evaluated and compared. 
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7. COMPARISON AMONG THE CONVEX HULL METHODS 

 
Figure 3 shows the convex hulls obtained from all presented methods for a rectangular history path in a reduced 2D 

sub-space, and their ratios λ between the Mises ranges and longest chord L. Note that, in this example, L is the diagonal 
of the rectangular path. 

 
 

 
Fig. 3: Values of the λ Mises stress or strain range ratio for the MB, MCE, MVE, MFE, MPH, MPHLC, MPHCC, 

MVPH, MinPH and MinVPH methods for a rectangular 2D history path. 
 
Experimental results suggest that the expected ratio λ in this example is about 1.3. However, the MB method pre-

dicts λMB = 1.0, which is very non-conservative. The MB assumes that such rectangular path would have the same 
Mises range L as a straight path along one of its diagonals, which is not reasonable. The MCE method, on the other 
hand, overestimates λ, obtaining λMCE = √2 ≅ 1.414. The MCE method finds the same circle from the MB to enclose 
such history, even though the aspect ratio of this rectangular path is very different from 1.0, suggesting instead the use 
of an elongated elliptic hull.  

The MVE method also tends to overestimate λ, obtaining in this example λMVE = 1.413. In the search for the mini-
mum area (or volume, for higher dimension diagrams), the MVE method ends up finding overly elongated ellipses (b 
<< a), which have a small area π⋅a⋅b due to the very low value of b but an unrealistically high F-norm (a2+b2)1/2 due to 
the high value obtained for a. Thus, λMVE overestimates the ratio λ, since it is calculated from this unrealistic F-norm, 
and not from the area (or volume). 

Among the ellipsoid hull methods, the MFE gives the best predictions, resulting in λMFE = 1.295, with an enclosing 
ellipse with a much more reasonable aspect ratio than the ones from the MCE and MVE methods, see Fig. 3. 

Both MPH and MVPH methods obtain in this example λMPH = λMVPH = 1.295, which exactly agrees with the MFE 
prediction. Note however that the MPH and MFE methods are not equivalent, since they result in slightly different λ 
values between them for other history paths, as shown in (Castro et al., 2009). 

The MPHLC and MPHCC result in λMPHLC = λMPHCC = 1.207, a value about 7% lower than the MPH prediction. 
The fact that λMPHLC ≤ λMPH and λMPHCC ≤ λMPH is not a surprise, since the MPH searches for the maximum F-norm 
checking rectangles (in the 2D case) in all directions, while the MPHLC and MPHCC only search for rectangles in the 
directions of the longest and/or container chords. If these directions of longest or container chords coincide with the 
ones associated with a maximum F-norm rectangle (which is quite often true), then the MPHLC or MPHCC predictions 
will coincide with λMPH, otherwise they will result in λ ratios slightly lower than the upper bound λMPH. 
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Figure 3 also shows the prismatic hulls MinPH and MinVPH with minimum (instead of maximum) F-norm and vol-
ume (or area, in 2D), respectively. In this example, these rectangular hulls would coincide with the original rectangular 
path, wrongfully predicting λ = 1. This counter-example shows why no prismatic hull method with minimum F-norm or 
volume has been proposed. 

In summary, the MB method tends to underestimate the Mises stress or strain range ratio λ, while the MCE and 
MVE overestimate it. The MPHLC and MPHCC slightly underestimate λ, while the MFE, MPH and MVPH give very 
similar (although, in general, different) predictions. 

But the above considerations are based on a single example. To really compare all convex hull methods, it is neces-
sary to study all possible history path topologies in 2D, 3D, 4D and 5D deviatoric stress or strain spaces. Monte Carlo 
simulations are performed for 3⋅106 random 2D history paths, in addition to a few selected paths to try to cover all pos-
sible path topologies. All convex hull methods are applied to each of these simulated paths, to evaluate and compare the 
λ predictions. 

The λ ratios estimated from the MPH and MPHCC methods are compared for the 3⋅106 Monte Carlo simulations. It 
is found that the MPHCC tends to underestimate λ when compared to the MPH, as expected. However, the differences 
are small: for 2D paths, in average, λMPHCC is about 98% of λMPH, with a standard deviation of only 2.1%. And, even for 
such rare paths, λMPHCC never underestimates λMPH by more than 10%. In addition, the MPHLC and MPHCC usually 
give almost identical results, with λMPHLC being in average about 99.85% of λMPHCC, with a standard deviation of only 
0.9% for these 3⋅106 simulations. 

Similar conclusions apply to 3D, 4D and 5D load history paths in deviatoric stress or strain spaces, also obtained 
from Monte Carlo simulations. Note that fewer simulations were performed as the dimension increased, because of time 
restrictions, since most convex hull methods are very computationally intensive in higher dimensions. E.g., the search 
for the direction of a 5D hyperprism in the MPH method involves a search in a 10-dimensional space for the 10 angles 
that define its 5D orientation, which can take several seconds to be found in a typical personal computer, even for rough 
discretizations of each angle at 15o steps. On the other hand, the MPHLC and MPHCC methods are straightforward, de-
terministic (no numerical search method based on discretizations is required) and several orders of magnitude faster, 
taking anything from a few microseconds to a few milliseconds to be calculated, depending on the size of the set of 
points that define the history path. These calculations are much faster and still result in the same MPH prediction for the 
Mises stress or strain range ratio λ within 2% (in average). 

The 3⋅106 Monte Carlo 2D simulations are now used to compare the other convex hull methods. The MPH and 
MVPH are found to have a very good agreement, except for low values of λ. In addition, λMVPH ≤ λMPH and, in average, 
λMVPH is about 98.6% of λMPH, with a standard deviation of only 1.8%. Similar conclusions are found for 3D, 4D and 5D 
histories. 

Let’s now compare the MPH and MFE methods in 2D. Even though these methods seem coherent, they can lead to 
very different λ predictions. It is found that λMFE ≥ λMPH and, in average, λMPH is about 92.9% of λMFE, with a standard 
deviation of 4.3%. Similar conclusions are found for 3D, 4D and 5D histories. Note that the pair (λMPH, λMFE) = 
(0.5+√3/2 ≅ 1.366, 2√2/√3 ≅ 1.633) denotes the (extreme) case of a path with the shape of an equilateral triangle. This 
significant difference between λ predictions suggests that a path shaped like an equilateral triangle would provide a very 
good discriminant experiment to compare the adequacy of the MPH and MFE methods for a certain material. 

Now, let’s compare the MPH and MVE methods in 2D. The MVE method can severely (and wrongfully) overesti-
mate λ, in special for low values of λMPH, associated with almost proportional paths. As discussed before, almost pro-
portional paths can lead to overly elongated ellipses in the MVE method, which can have a small area but an unrealisti-
cally large F-norm, leading to λMVE values larger than 2.0 in some extreme cases. Similar conclusions are found for 3D, 
4D and 5D histories. 

When the MFE and MCE methods are compared in 2D, it is found that λMCE overestimates λ, in special for low val-
ues of λMFE, associated with almost proportional paths. For instance, for an almost proportional history defined by a rec-
tangular path with very low aspect ratio, the expected λ would be close to 1.0 (which is the expected value of λ for pro-
portional histories), however the MCE method would circumscribe a circle (instead of an elongated ellipse) to such 
elongated rectangular path, wrongfully predicting λMCE = √2. An almost proportional triangular path would also result 
in this same notable pair (λMFE, λMCE) = (1, √2), revealing the inadequacy of the MCE method. Similar conclusions are 
found for 3D, 4D and 5D histories. 

Comparing the MFE and MB methods in 2D, it is found that the MB method can severely (and wrongfully) underes-
timate λ, except for almost proportional load histories (where λMB ≅ λMFE ≅ 1.0). Good discriminant experiments to con-
firm the inadequacy of the MB method could make use of a square or circular path, where (λMFE, λMB) = (√2, 1), or a 
path shaped as an equilateral triangle, where (λMFE, λMB) = (2√2/√3 ≅ 1.633, 2/√3 ≅ 1.155). Both cases would result in 
λMFE/λMB = √2, a 41% difference that could be easily verified experimentally. Similar conclusions are found for 3D, 4D 
and 5D histories. 

Table 1 summarizes the medians of the ratios between the λ parameters from each model pair, as well as the coeffi-
cient of variation (COV) of such ratios. The medians are less influenced by the extreme values than the means. 
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Table 1: Median values of the ratios between the λ calculated using the models from each row and column from the ta-

ble. The values in parentheses are the coefficient of variation (COV) of such ratios/correlations. 

row / col MPHLC MPHCC MPH MVPH MFE MVE MB MCE
MPHLC - 1.00 (0.9%) 0.98 (2.3%) 1.00 (3.4%) 0.91 (5.9%) 0.84 (7.7%) 1.06 (6.2%) 0.87 (8.8%)
MPHCC 1.00 (0.9%) - 0.98 (2.1%) 1.00 (3.2%) 0.91 (5.7%) 0.84 (7.7%) 1.06 (6.3%) 0.87 (8.6%)

MPH 1.02 (2.3%) 1.02 (2.2%) - 1.01 (1.9%) 0.93 (4.3%) 0.86 (6.6%) 1.09 (6.9%) 0.88 (7.0%)
MVPH 1.00 (3.5%) 1.00 (3.3%) 0.99 (1.8%) - 0.91 (4.3%) 0.85 (6.7%) 1.07 (7.8%) 0.86 (6.8%)

MFE 1.10 (5.9%) 1.10 (5.7%) 1.08 (4.3%) 1.10 (4.3%) - 0.95 (6.5%) 1.18 (10.4%) 0.97 (4.1%)
MVE 1.19 (7.7%) 1.19 (7.7%) 1.16 (6.8%) 1.17 (6.9%) 1.05 (7.7%) - 1.28 (8.8%) 1.00 (9.2%)

MB 0.94 (5.7%) 0.94 (5.8%) 0.92 (6.6%) 0.93 (7.4%) 0.85 (10.2%) 0.78 (9.6%) - 0.80 (12.9%)
MCE 1.15 (8.7%) 1.15 (8.6%) 1.13 (6.9%) 1.16 (6.4%) 1.03 (4.5%) 1.00 (7.6%) 1.25 (12.2%) -  

 
8. CONCLUSIONS 

 
In this work, all convex hull methods from the literature were reviewed and compared, and new methods were pro-

posed. The conclusions from the comparisons are: 
1. the prismatic hull methods MPHLC and MPHCC are very similar to the MPH and MVPH methods, but with a 

much simpler search algorithm for 3D to 5D histories; 
2. the only recommended ellipsoid hull is the Minimum F-norm Ellipsoid (MFE), which results in similar (but not 

equal) λ predictions when compared to the prismatic hull methods; and 
3. the Minimum Circumscribed Ellipsoid (MCE), Minimum Volume Ellipsoid (MVE), and Minimum Ball (MB) 

methods may result in very poor predictions of the stress or strain amplitudes. 
In summary, the Minimum F-norm Ellipsoid and all four Maximum Prismatic Hull (MPH) models are efficient to 

predict equivalent amplitudes in NP histories. 
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