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Abstract. Non-proportional (NP) multiaxial fatigue life predictions require the use of a multiaxial rainflow algorithm 
together with a method to calculate the effective stress or strain ranges associated with each counted cycle. The most 
successful multiaxial rainflow algorithm proposed so far is the Wang-Brown (WB) method, however it has a few 
idiosyncrasies that can lead to non-conservative damage predictions, incorrectly filtering out significant events within 
a multiaxial loading cycle. This work introduces a novel multiaxial rainflow counting algorithm, called Modified 
Wang-Brown (MWB), applicable to both non-periodic NP histories and periodic NP histories formed by complex 
blocks with multiple cycles each. There are two main improvements of the MWB over the original WB algorithm. First, 
the criterion to choose the point where the count is started is modified. Examples are shown to prove that the original 
criterion can overlook the most damaging event from the history, as opposed to the modified version. And second, the 
algorithm implementation is significantly simplified when formulated in the reduced five-dimensional Euclidean space 
defined by Papadopoulos. Under plane stress conditions, prevalent in most fatigue crack initiation problems, the 
algorithm is further simplified using a three-dimensional Euclidean space based on the deviatoric stresses or strains. 
The computational implementation of such algorithm is discussed in detail, including a flow chart with all its necessary 
steps, allowing a fast and efficient calculation of fatigue damage even for very long non-periodic NP histories.  
 
Keywords: multiaxial fatigue; multiaxial rainflow; Wang-Brown method. 

 
 
1. INTRODUCTION  

 
Most non-proportional (NP) fatigue design methods are only applicable to periodic histories or to infinite life calcu-

lations. Finite life calculations can be performed, but usually the available models implicitly assume that each block of 
the periodic loading path contains a single cycle. To generalize the existing methods to finite life predictions in periodic 
histories with multiple cycles at each block or period, or to non-periodic histories, a cycle counting algorithm must be 
introduced.    

The rainflow algorithm (Matsuishi and Endo, 1968; ASTM E 1049) is reputably the best approach to identify the 
most damaging events embedded in a variable amplitude history. For linear elastic uniaxial histories, it is indifferent to 
perform the uniaxial rainflow count on the stresses or on the strains. In addition, the sequential rainflow count is always 
a better option over the traditional rainflow, since it preserves the original loading order. The sequential rainflow is ob-
tained by simply reordering the resulting traditional rainflow count by the final counting point. Even for linear elastic 
problems, where the damage caused by each event should not depend on the other events or on the loading order, it is a 
good idea to choose the sequential rainflow to correctly predict in which event the accumulated damage reaches its 
critical value (usually 1.0, according to Miner’s rule). It is also recommended for crack growth predictions, to correctly 
account for load interaction effects without changing the load order. 

For elastoplastic uniaxial histories, it is fundamental to calculate the hysteresis loops before performing any rainflow 
count. After measuring/calculating both stress and strain histories, the sequential rainflow count must be applied to the 
strains, never to the stresses. 

However, for multiaxial problems, the uniaxial rainflow of stresses or strains may lead to significant errors, even in 
the linear elastic case, as discussed in the next section. 

 
2. RAINFLOW OF A MULTIAXIAL HISTORY 

 
For general NP multiaxial histories, the traditional uniaxial rainflow count, applied to some stress or strain compo-

nent that is assumed dominant to describe the history, does not provide good life predictions. This is so because the 
peaks and valleys of the stresses and the corresponding strains do not usually coincide, even in the same direction, not 
to mention in different directions.  

Another important issue involves the common practice of filtering non-reversals from a measured history. When 
dealing with measured multiaxial loading histories, the sampling points that do not constitute a reversal in any of its 
stress or strain components are usually eliminated. Filtering points that do not constitute a reversal helps to decrease 
computational cost in multiaxial fatigue calculations, especially when dealing with over-sampled data (Bannantine and 
Socie, 1991). 
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But filtering out all points that do not constitute a reversal in one stress or strain component may cause significant 
damage prediction problems, discussed next. First, the reversal points obtained from a multiaxial rainflow algorithm 
may not occur at the reversal of one of the stress or strain components. E.g., the relative Mises strain, used in Wang-
Brown’s rainflow count (Wang and Brown, 1996), may reach a peak value at a point that is not a maximum or mini-
mum of any strain component. But this most important point would have been filtered by any non-reversal filtering al-
gorithm, compromising the results. 

The second problem may occur because the entire path between two reversals is needed to evaluate the equivalent 
stress or strain associated with each count, e.g. using a convex hull method. Filtering out points along such path would 
almost certainly result in lower equivalent stress or strain estimates than expected. 

Another issue with rainflow counting NP multiaxial histories is whether or not to use a critical plane approach. The 
Wang-Brown multiaxial rainflow algorithm is general enough to be directly applied to a multiaxial history involving all 
6 strain components. But the counted cycles will probably occur in different planes, not reproducing the crack initiation 
mechanism. Instead, a critical plane approach must be followed: the multiaxial history must be projected onto a candi-
date plane, and only then should a multiaxial rainflow count be used. 

In this critical plane approach, the stress and/or strain history is projected onto a candidate plane from the critical 
point. A uniaxial rainflow count is then applied to an appropriate strain or stress component, which depends on the cho-
sen damage model: for the εN and SWT damage models, the normal strain perpendicular to the candidate plane is rain-
flow counted; in the Brown-Miller, Fatemi-Socie and Wang-Brown damage models, a shear strain component acting 
parallel to the candidate plane is rainflow counted; and in the Findley damage model, a shear stress component parallel 
to the candidate plane is counted. 

While performing such rainflow count on the candidate plane, the other stress and strain components cannot be 
overlooked or discarded. For instance, if the SWT damage model is used, at every rainflow counted half cycle ε1, the 
maximum value of the normal stress σ⊥1 parallel to ε1 along the entire half cycle must be stored to compute σ⊥1max. 
Since for complex NP multiaxial load histories these maxima may happen at any point along the half cycle, not only at 
the peaks and valleys of a given component, non-reversals should never be filtered before performing the rainflow 
count. 

Note also that, if only the strain (or stress) history is provided, one might need to calculate the entire stress-strain 
history from proportional multiaxial stress-strain relations or from incremental plasticity techniques, before performing 
the rainflow count. After performing the rainflow count at each candidate plane, the resulting damage is calculated. The 
critical plane is then the candidate plane that results in the highest fatigue damage. 

However, it must be noted that Case B cracks (Socie, 1999) can have two shear strain (or stress) components acting 
parallel to each candidate plane. A uniaxial rainflow approach would either neglect the effect of one of such shear com-
ponents, or consider that one of them is dominant over the other during the rainflow algorithm application. But this 
practice can be non-conservative, since both shear components induce crack initiation. To deal with that, a true multiax-
ial rainflow algorithm must be used, accounting for all stress or strain components, such as Wang-Brown’s algorithm, 
discussed next. 

 
3. WANG-BROWN’S MULTIAXIAL RAINFLOW ALGORITHM 

 
Wang and Brown (1996) proposed an interesting multiaxial generalization of the rainflow count that is applicable to 

any proportional or NP history of strains (or stresses, with simple modifications to the algorithm). Wang-Brown’s mul-
tiaxial rainflow is based on the Mises strain εMises as an indirect measure of fatigue damage. 

The problem with using εMises is the loss of the loading event sign, since Mises values are always positive. Therefore, 
in 90o out-of-phase histories it is even possible that εMises remain constant, which would wrongfully result in an infinite 
life prediction. To solve this issue, the relative Mises strain εRMises is used, calculated from the difference between the 
strain components (εxj, εyj, εzj, γxyj, γxzj, γyzj) of each (jth) point in the history and the strain components (εxi, εyi, εzi, γxyi, γxzi, 
γyzi) of the initial (ith) point of the current count: 
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where ∆εx ≡ εxj − εxi,  ∆εy ≡ εyj − εyi,  εz ≡ εzj − εzi,  ∆γxy ≡ γxyj − γxyi,  ∆γxz ≡ γxzj − γxzi,  ∆γyz ≡ γyzj − γyzi, and j > i. 
The relative strains need to be re-calculated for every initial counting point, a computationally intensive task for 

very long histories. Note however that the relative strain εRMises is only used to locate the initial and final counting points 
of each half cycle, after which it is possible to apply at these points any multiaxial damage model (even models that do 
not include a Mises strain parameter). 

As in the uniaxial case, Wang-Brown’s multiaxial rainflow is based on 3 simple rules: 
1. The first count must start at the point with the largest value of εMises from the entire history. 
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2. Each count must be initiated sequentially at each peak or valley of a strain component, and the relative Mises 
strain εRMises of the subsequent history must be computed with respect to the initial point. 

3. The final point of each count is obtained when reaching: 
a) the largest value of εRMises with respect to the initial point of the history, or 
b) any path used in a previous count. 
Note that the maxima and minima of each stress or strain component may not happen at the beginning or at the end 

of the counted half cycle, as discussed before. It may happen at any point along the cycle. Therefore, any stress or strain 
range must be computed considering the maximum and minimum values along the entire path between two reversions, 
not only the initial and final values from the half cycle. 

 
4. MODIFIED WANG-BROWN (MWB) ALGORITHM 

 
The original Wang-Brown algorithm is not difficult to be implemented in histories of uniaxial tension/bending com-

bined with torsion, which can be represented only by one normal σx and one shear τxy stress components (or one normal 
εx and one shear γxy strain components). In this case, the subspace of normal and shear components is planar (it is repre-
sented by a diagram in only 2 dimensions), and the only difficulty in applying the algorithm happens when solving for 
the equations of the ellipses associated with the points with same relative Mises stress or strain. 

However, in a generic multiaxial history, the dimension of the diagram may be increased, requiring the calculation 
of intersections between straight lines and ellipsoid or hyper-ellipsoid surfaces, increasing the computational complex-
ity. 

The Modified Wang-Brown method solves this problem by working in the reduced 5-dimensional stress E5σ or 
strain E5ε subspaces (Papadopoulos, 1997), or in a lower dimension subspace from them. In this way, a general multiax-
ial strain or stress history is represented by a set of points Pi = (e1, e2, e3, e4, e5) or Pi = (S1, S2, S3, S4, S5), respectively, 
where 
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Wang-Brown’s multiaxial rainflow algorithm is rather simplified when working in such spaces, because the distance 
between two points is already the relative Mises strain (or stress) between them. The 3 rules of the rainflow count have 
now simple geometric interpretations, resulting in: 

1. The count must be initiated at the point with highest norm, i.e., with the longest Euclidean distance to the origin of 
the diagram. This first initial counting point is called P1, and the subsequent ones are called P2..., Pn, in the same 
sequence of the original history. 

2. Each count must be sequentially initiated at each point Pi of the diagram. 
3. The final point of each counting is obtained when reaching: 

a) the point Pj most distant from the initial point Pi (with j > i) in the reduced subspace, or 
b) any path used in a previous count. 

The first rule in Wang-Brown’s algorithm was conceived to try to guarantee that the largest εRMises (or relative Mises 
stress σRMises) of the history is identified, one of the main objectives of a rainflow count. However, this rule can fail to 
reach this objective if the point P1 with largest norm is not one of two points of the diagram farthest apart from each 
other. 

This is easy to check in the example from Fig. 1, which shows an e1-e3 strain diagram with a triangular path. The 
point (e1, e3) = (0.8%, 0%) is clearly the one with largest norm, equal to 0.8%, however its Wang-Brown count results 
in two half cycles with εRMises = 1.0%. Instead, if the count is started at the point (e1, e3) = (0%, 0.6%), both half cycles 
result in εRMises = 1.1%. It is not difficult to prove that the largest relative Mises strain (or stress) of the history can be 
underestimated by up to 1−√2/2 = 29.3% using the original Wang-Brown algorithm. Even if a convex hull method or 
the MOI method are applied to the resulting half cycles, to account for the shape of the entire path, and not only the 
value of εRMises, the original Wang-Brown algorithm still underestimates the resulting equivalent ranges. The conclusion 
is that the starting point of the first count must be better chosen. 
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Fig. 1: Rainflow counts using the original Wang-Brown algorithm (left) and the modified version. 

 
So, the first rule of the multiaxial rainflow count is now modified, to search for the pair of points in the diagram 

with largest relative distance, and between them the point P1 farthest from the origin. But the Modified Wang-Brown 
(MWB) algorithm differs from the original method not only due to such first rule. Other rules are modified and intro-
duced as well. The MWB method can be summarized by a set of 8 rules: 

1. Find among the n⋅(n−1)/2 pairs of points from an n-point path the one(s) that form the longest chord in the 5D 
strain (or stress) subspace, and choose among them the one with greatest distance from the origin; label this 
point P1, and the subsequent P2, ..., Pn following their original order; 

2. Each count should be sequentially initiated at P1, P2, ..., Pi, ..., Pn; 
3. The final point in each count is obtained when reaching: 

 a) the point Pj farthest away (in an Euclidian sense) from the initial point Pi (j > i), or 
 b) any finite segment (not just a point or a finite number of points) from a previous count; 

4. Once found the initial and final points Pi and Pj, the count is defined by the traveled path portions closest to the 
straight segment Pi-Pj in an Euclidean sense (to avoid long “detours” from the straight line Pi-Pj that defines 
such half cycle); 

5. Every time a full cycle is counted, i.e. two half cycles with identical extreme points are counted, use e.g. a con-
vex hull method to calculate the equivalent strain (or stress) range or amplitude and mean or maximum from the 
full cycle to obtain the associated fatigue damage using some multiaxial model; 

6. After rainflow counting the entire load history, repeat step 5 to calculate the damage contribution of the half cy-
cles that did not close into a full cycle; 

7. Use some damage accumulation rule, e.g., Miner’s rule, to find the total multiaxial damage; 
8. If using a critical plane approach, repeat steps 1-7 for every candidate plane, to find the critical plane that 

maximizes the accumulated multiaxial damage; note that only Case B cracks or tension-torsion histories will 
need a multiaxial rainflow count, because the single shear component in Case A cracks can be counted using a 
uniaxial rainflow algorithm. 

 
5. COMPUTATIONAL IMPLEMENTATION OF THE MWB ALGORITHM 

 
The practical implementation of the proposed MWB multiaxial rainflow count is described next, including a de-

tailed description of its computational algorithm. During the execution of the algorithm, when a segment Pi-Pi+1 is 
counted, totally or partially, an interpolation variable αi (1 ≤ i ≤ n) is associated to it, such that 0 ≤ αi ≤ 1. If the entire 
segment Pi-Pi+1 has been counted, then αi = 0, otherwise αi is computed from the intersection Pi’ between Pi-Pi+1 and 
the most recent count, see Fig. 2, using 
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Fig. 2: Definition of the variable αi that delimits the segment Pi’-Pi+1 already accounted for and the segment Pi-Pi’ that 

will still be counted by the algorithm. 
 
 
In this way, a segment associated with 0 < αi < 1 will have its segment Pi’−Pi+1 already counted, whereas the por-

tion Pi−Pi’ is still available for future counts, where Pi’ = Pi + αi⋅(Pi+1 − Pi).  
In the computational algorithm, all αi are initialized with some value outside the interval [0, 1] (e.g. αi = −1, for i = 

1, 2..., n), to indicate that, initially, no path has been counted. Note that it is possible to have αi = 1.0 if a previous count 
crossed the segment exactly at Pi+1, which would create a stopping point for future counts, but without using up any 
portion of the segment Pi−Pi+1. But rule 3 above states that a point or a finite number of points previously counted can-
not define the end of a count, therefore any αi = 1.0 must be reset to αi = −1 in the algorithm not to create a stopping 
point at Pi+1 in this case. Note that in the algorithm the history paths are all assumed as formed by straight segments. If 
however the paths are curved, then they must be approximated by sufficiently refined polygonal paths. 

Since the transformations that converted the stress and strain components into their deviatoric forms, as well as the 
transformations that projected them onto the reduced subspaces E5σ and E5ε, are all linear (even for the elastoplastic 
case), the stresses and strains at a point Pi’ in the straight segment Pi-Pi+1 can be linearly calculated from αi and the co-
ordinates of points Pi and Pi+1. E.g., the projected deviatoric strain e1 at point Pi’ is simply ε1,i + αi ⋅ (ε1,(i+1) − ε1,i). This 
linearity simplifies very much the calculations in the proposed multiaxial rainflow algorithm, eliminating the need to 
calculate intersections between segments and ellipses, ellipsoids or hyper-ellipsoids, as it was necessary in the original 
Wang-Brown algorithm. 

As mentioned before, the multiaxial rainflow count starts at each point Pi of the history, i = 1, 2..., n. The algorithm 
to perform the count from an initial point Pi is described next. 

If the path Pi-Pi+1 is already associated with a variable αi different than −1, calculated during a previous count, then 
the count stops, and the stopping point will be Pi’ = Pi + αi ⋅ (Pi+1 − Pi). Otherwise, if the path Pi-Pi+1 is not associated 
with any αi different than −1, then this entire segment is counted and αi is set to zero. 

Next, the algorithm searches for the first point Pj+1 (j > i) that has a greater or equal distance to Pi+1 with respect to 
Pi. If it does not exist, then Pi+1 will be the final point of the count. Otherwise, the intersection with the segment Pj-Pj+1 
is calculated at the point Pj’ with same distance to point Pi as Pi+1, see Fig. 3. The value of αj associated with point Pj’ is 
obtained from Stewart's Theorem (Coxeter and Greitzer, 1967) applied to triangle Pi−Pj−Pj+1 

2 2 2
j j j jb [(1 ) a ] c [ a ] p a [ a ] [( 1 ) a ] aα α α α⋅ − ⋅ + ⋅ ⋅ − ⋅ = ⋅ ⋅ − ⋅ ⋅                            (5) 

where, b, c and p are defined in Fig. 3, resulting in 
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Fig. 3: Calculation of the intersection point Pj’ between the current multiaxial rainflow count and the segment Pj-Pj+1 in 

a subspace of E5ε (or E5σ). Note that, usually, the triangles Pi-Pj-Pj+1 and Pi-Pi+1-Pj’ do not share the same plane. 
 
 
The valid solution will be the lowest αj = αj’ (between the 2 solutions) that satisfies 0 ≤ αj’ ≤ 1. If the segment Pj-

Pj+1 was already associated to some αj = αj* (i.e., a portion from it had already been counted), then there are 2 hypothe-
ses: (i) if αj’ < αj*, then the portion between αj’ and αj* is counted, the stopping point becomes the one associated with 
αj* (since it crossed a segment from a previous count), and αj = αj’ is stored, replacing αj*; or (ii) if αj’ ≥ αj*, then the 
intersection point Pj’ would be invalid since it would take place on a previously counted segment, therefore the stopping 
point must be set as Pi+1. 

On the other hand, if no portion of the segment Pj−Pj+1 had been accounted for (i.e., αj was equal to −1), then the 
calculated αj’ is stored in αj, counting then the segment Pj’−Pj+1. As mentioned before, if αj results in 1.0 then it must 
be reset to αj = −1 not to create an unnecessary stopping point for future counts. This count continues from Pj+1 in a 
similar way as the one coming from Pi+1. The algorithm then searches for the first point Pm+1 (m > j) with a greater or 
equal distance than Pj+1 with respect to Pi. If it does not exist, then Pj+1 will be the final point of this count. Otherwise, 
the intersection with the segment Pm−Pm+1 is calculated at a point Pm’, with the same distance as Pj+1 with respect to Pi. 
The value of αm = αm’ associated with Pm’ is obtained applying Stewart's Theorem to the triangle Pi−Pm−Pm+1. The ex-
pression of αm is analogous to the one obtained before for αj, being enough to exchange Pj for Pm, Pj+1 for Pm+1, and 
Pi+1 for Pj+1. 

The above procedure continues in a similar way. If the segment Pm−Pm+1 was already associated to some αm = αm* 
different than −1, then there are 2 hypotheses: (i) if αm’ < αm*, then the segment bounded by the points associated with 
αm’ and αm* is counted, the stopping point is associated with αm*, and αm = αm’ is stored, replacing αm*; or (ii) if αm’ ≥ 
αm*, then the intersection point Pm’ would be invalid and the stopping point is Pj+1. If no portion of the path Pm−Pm+1 
had been counted, then the value αm = αm’ is stored, the segment Pm’−Pm+1 is counted, and the count continues from 
Pm+1. The algorithm then searches for the first point Pr+1 (r > m) with a longer distance than Pm+1 with respect to Pi, and 
so on. 

The algorithm continues until the stopping point for the count started at Pi is found. The linearity of the adopted 
transformations allows all resulting stresses and strains at any intersection point to be obtained from a simple interpola-
tion involving the αi coefficients. 

The entire process is performed for all starting points Pi (i = 1, 2..., n). Note that a count can stop at point P1 if the 
history is periodic, in which case the segment Pn−P1 exists and it cannot be left out. At the end of the algorithm, all 
segments will be associated with values αi = 0, indicating that all of them were entirely counted. Figure 4 shows the 
flow chart of the entire MWB algorithm. 
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Fig. 4: Flow chart of the proposed Modified Wang-Brown (MWB) algorithm. 

 
6. CONCLUSIONS 

 
Wang and Brown proposed a multiaxial rainflow count based on the relative Mises strain εRMises as an indirect meas-

ure of the damage during a half cycle. But the original method requires the calculation of εRMises at every rainflow count 
for all subsequent starting points. In this work, a Modified Wang Brown (MWB) rainflow counting method was pro-
posed, based on the representation of the stress or strain history in a reduced 5D subspace of the 6 deviatoric strain (or 
stress) components. The MWB uses improved rules to guarantee that the event with highest εRMises is always counted. 
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Coupled with some convex hull method, the MWB can better account for the path shape influence on the associated fa-
tigue damage. The method has simple geometric interpretations that considerably simplify its implementation, e.g. the 
distance between 2 points in the considered deviatoric strain subspace is the εRMises between them. The computational 
implementation of the algorithm was discussed in detail, including a flow chart with all necessary steps. 

 
7. ACKNOWLEDGEMENTS 
 

CNPq has provided research scholarships for the authors. 
 
8. REFERENCES 

 
ASTM E 1049, Practices for cycle counting in fatigue analysis, ASTM Standards v.03.02. 
Bannantine, J.A., Socie, D.F., A Variable amplitude Multiaxial Fatigue Life Prediction Method, fatigue Under Biaxial 

and Multiaxial Loading, ESIS Publication 10, Mechanical Engineering Publications, London, pp.35-51, 1991. 
Coxeter, H.S.M., Greitzer, S.L., Geometry Revisited. Washington, DC: Math. Assoc. Amer., 1967. 
Deperrois, A., Sur le calcul des limites d’endurance des aciers. Thèse de Doctorat. Ecole Polytechnique, Paris, 1991. 
Matsuishi, M., Endo, T., Fatigue of metals subjected to varying stresses, Japan Society of Mechanical Engineers, 1968. 
Papadopoulos, I.V., Davoli, P., Gorla, C., Fillippini, M., Bernasconi, A., A comparative study of multiaxial high-cycle 

fatigue criteria for metals. International Journal of Fatigue 19(3), pp.219–235, 1997. 
Socie, D.F., Marquis, G.B. Multiaxial Fatigue, SAE 1999. 
Wang, C.H., Brown, M.W., Life prediction techniques for variable amplitude multiaxial fatigue - part 1: theories, Jour-

nal of Engineering Materials and Technology, v.118, pp.367-370, 1996. 
 
9. RESPONSIBILITY NOTICE 
 

The authors are the only responsible for the printed material included in this paper. 
 


