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Abstract. Structural components designed for very long fatigue lives should avoid fatigue crack initiation AND be 
tolerant to undetectable short cracks. But this requirement is still not used in fatigue design routines, which just intend 
to maintain the critical point loading below its fatigue limit. Nevertheless, most long-life designs work just fine, thus 
they are somehow tolerant to undetectable or to functionally admissible short cracks. But the question “how much 
tolerant” cannot be answered by SN procedures alone. This problem can only be solved by adding a proper fatigue 
crack propagation threshold requirement to the “infinite” life design criterion. This paper evaluates the tolerance to 
short 1D and 2D cracks, and proposes a design criterion for infinite fatigue life which explicitly considers it.  
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1. INTRODUCTION  
 

The notch sensitivity 0 ≤ q ≤ 1 correlates the linear elastic (LE) stress concentration factor (SCF) Kt = σmax/σn, to its 
corresponding fatigue SCF, Kf = 1 + q⋅(Kt – 1) = SL/SLntc, where SL and SLntc are the fatigue limits measured on standard 
(smooth and polished) and on notched test specimens (TS), usually under fully alternated loads. But these limits can be 
defined for any R = σmin/σmax ratio, SL(R) and SLntc(R). Since q is associated with the generation of tiny non-propagating 
fatigue cracks when SL/Kt < σn < SL/Kf, it can be predicted from their fatigue behavior (Castro and Meggiolaro, 2009). It 
is the stress gradient around notch roots that controls the fatigue crack propagation (FCP) behavior of short cracks 
emanating from them. For any given material, q depends not only on the notch tip radius ρ, but also on its depth b, 
meaning that shallow and elongated notches of same radius ρ may have quite different sensitivities q. Note that “short 
crack” here means “mechanical” not “microstructural” short crack, since material isotropy is assumed in their modeling, 
a simplified hypothesis experimentally corroborated (Meggiolaro et al., 2007, Wu et al., 2010).  

The FCP threshold of short cracks must be smaller than the long crack threshold ∆Kth(R), or else the stress range ∆σ 
required to propagate them would be higher than the fatigue limit ∆SL(R). Indeed, if FCP is controlled by the stress 
intensity factor (SIF) range, ∆K ∝ ∆σ√(πa), and if short cracks with a→ 0 had the same ∆Kth(R) of long cracks, then 
their propagation by fatigue would require ∆σ → ∞ (Lawson et al., 1999). The FCP threshold of short fatigue cracks 
under pulsating loads ∆Kth(a, R = 0) can be modeled using their ETS characteristic size a0 (El Haddad-Topper-Smith 
1979) estimated from ∆S0 = ∆SL(R = 0) and ∆K0 = ∆Kth(R = 0). This clever trick reproduces the Kitagawa-Takahashi 
(1976) plot trend, using a modified SIF range ∆K’ to describe the fatigue propagation of any crack, short or long, 

0K (a a )∆ ∆σ π′ = + , where ( )( )2
0 0 0a 1 K Sπ ∆ ∆=        (1) 

This a0 trick reproduces the expected limits ∆Kth(a→ ∞) = ∆K0 and ∆σ(a → 0) = ∆S0. Knowing that steels typically 
have 6 < ∆K0 < 12MPa√m, ultimate tensile strength 400 < SU < 2000MPa, and fatigue limit 200 < SL < 1000MPa 
(very clean high-strength steels tend to maintain the SL/SU ≅ 0.5 trend of lower strength steels under R = −1); and 
estimating by Goodman the pulsating (R = 0) fatigue limit as ( )0 U L U L 0S 2S S S S 260 S 1300 MPa∆ ∆= + ⇒ < < ; it 
can then be expected that the maximum a0 range for steels should be  

 ( )( ) ( )( )min max max min
2 2

0 0 0 0 01 K S 7 a 700 m 1 K Sπ µ π∆ ∆ ≅ < < ≅ ∆ ∆        (2) 

This a0 range may be overestimated, since ∆K0min is not necessarily associated with ∆S0max, neither is ∆K0max always 
associated with ∆S0min. But it justifies the “short crack” denomination used for cracks of a similar small size, and shows 
that cracks up to a few millimeters may still behave as short cracks in some steels, meaning they may have a smaller 
propagation threshold than that measured with long crack, which have a >> a0. Since the strengths of typical aluminum 
alloys are 70 < SU < 600MPa, 30 < SL < 230MPa, 40 < ∆S0 < 330MPa, and 1.2 < ∆K0 < 5MPa√m, their maximum a0 
(over)estimated range, and thus their short crack influence scale, is wider than the steels range, ~1µm < a0 < ~5mm.  

As ∆K’ has been deduced using Griffith’s plate SIF, ∆K = ∆σ√(πa), Yu et al (1988) used the non-dimensional 
geometry factor g(a/w) from the SIF expression ∆K =∆σ√(πa)⋅g(a/w) to deal with other geometries, re-defining 

0K g( a w ) (a a )∆ ∆σ π′ = ⋅ + ,   where ( ) ( ) 2
0 0 0a 1 K g( a w ) Sπ ∆ ∆⎡ ⎤= ⋅⎣ ⎦        (3) 
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Tolerable stress ranges ∆σ0 tend to the fatigue limit ∆S0 when a → 0 only if ∆σ is the range at the notch root, instead 
of the nominal one. But geometry factors g(a/w) listed in SIF tables usually use ∆σ instead of ∆σn as their nominal 
stress. A clearer way to define a0 is to explicitly recognize this practice, separating the geometry factor g(a/w) into two 
parts: g(a/w) = η⋅ϕ(a), where ϕ(a) depends on the stress gradient ahead of the notch tip, which departs from the notch 
SCF as the crack length a → 0, whereas η encompasses all the remaining terms, such as the free surface correction: 

0K ( a ) (a a )∆ η ϕ ∆σ π′ = ⋅ ⋅ + ,   where ( ) ( ) 2
0 0 0a 1 K Sπ ∆ η ∆⎡ ⎤= ⋅⎣ ⎦      (4) 

The short crack problem can be clearly modeled by letting the SIF range retain its original equation, while the FCP 
threshold expression is modified to become a function of the crack length a, namely ∆K0(a), resulting in  

( )0 0 0K ( a ) K a a a∆ ∆= ⋅ +           (5) 

The ETS equation is one possible asymptotic match between the short and long crack behaviors. Following Bazant’s 
(1977) reasoning, a more general equation can be used introducing an adjustable parameter γ  to fit experimental data  

( )
1/ 2

0 0 0K ( a ) K 1 a a
γγ∆ ∆

−
⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦

         (6) 

Equations (1-5) result from (6) if γ  = 2.0. The limits ∆σ(a ≤ a0) = ∆S0 for short cracks and ∆K0(a ≥ a0) = ∆K0 for 
long ones are obtained when g(a/w) = η⋅ϕ(a) = 1 and γ → ∞. Most short crack FCP data is fitted by ∆K0(a) curves with 
1.5 ≤ γ ≤ 8, but γ = 6 better reproduces classical Peterson q-plots based on fatigue data obtained by testing TS with 
semi-circular notches (Castro and Meggiolaro, 2009). Using (6) as the FCP threshold, then any crack departing from a 
free smooth or notched surface under pulsating loads should propagate if 

( ) ( )
12

0 0 0K a a K ( a ) K 1 a a
γγ∆ η ϕ ρ ∆σ π ∆ ∆

−
⎡ ⎤= ⋅ ⋅ > = ⋅ +⎢ ⎥⎣ ⎦

      (7) 

where η = 1.12 is the free surface correction. As fatigue depends on two driving forces, the stress range ∆σ and its peak 
σmax, (7) can be extended to consider σmax (indirectly modeled by the R-ratio) influence in short crack behavior. First, 
the short crack characteristic size should be defined using the FCP threshold for long cracks ∆KR = ∆Kth(a >> aR, R), 
and the fatigue limit ∆SR, both measured or properly estimated at the desired R-ratio, then 

( ) ( ) 2
R R Ra 1 K 1.12 Sπ ∆ ∆= ⋅⎡ ⎤⎣ ⎦          (8) 

Likewise, the corresponding short crack FCP threshold should be re-written as 

( )
1/ 2

R R RK ( a ) K 1 a a
γγ∆ ∆

−
⎡ ⎤= ⋅ +⎢ ⎥⎣ ⎦

         (9) 

All these details are important when such models are used to make predictions in real life situations, as they do 
influence the calculation results. In particular, neglecting the σmax effect on fatigue can lead to severe non-conservative 
life estimations, a potentially dangerous practice unacceptable for design or analysis purposes. 
 
2. BEHAVIOR OF SHORT CRACKS WHICH DEPART FROM ELONGATED NOTCHES 
 

An estimate for the SIF of a small crack a departing from an Inglis plate elliptical notch tip, with semi-axes b >> a 
and c, and root radius ρ = c2/b, is KI(a) ≅ σn⋅√(πa)⋅f1(a, b, c)⋅f2(free surface). The 2b axis is centered at the x co-ordinate 
origin,σn is the nominal stress (perpendicular to a and b); f1(a, b, c) ≅ σy(x)/σn; σy(x) is the stress at (x = b + a, y = 0) 
ahead of the notch tip when there is no crack; and f2 = 1.12. σy(x = b + a, y = 0) is given by (Schijve, 2001): 

2 2 22 2 2 22y
1 2 2 22 2 2 2n

( x, y 0 ) ( b 2bc )( x x b c )( x b c ) bc ( b c )xf 1
( b c ) ( x b c ) x b c

σ
σ

= − − − + − + + −
= = +

− − + − +
    (10)  

The slender the elliptical notch is, the higher is its SCF. But high Kt imply in steeper stress gradients ∂σy(x, y = 0)/∂x 
around notch tips, since elliptical holes LE SCF for drop from Kt = 1 + 2b/c = 1 + 2√(b/ρ) = σy(1)/σn ≥ 3 at their tip to 
about 1.82 < K1.2 = σy(1.2)/σn < 2.11 (for b ≥ c ) at a point just b/5 ahead of it, meaning their Saint Venant’s controlling 
distance is associated with their depth b, not with their tip radii ρ . This is the cause for the peculiar growth of short 
cracks which depart from elongated notch roots. Their SIF, which should tend to increase with their length a = x − b, 
may instead decrease after they grow for a short while because the SCF effect in KI ≅ 1.12⋅σn√(πa)⋅f1 may diminish 
sharply due the high stress drop close to the notch tip, overcompensating the crack growth effect. This KI(a) estimate 
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can be used to evaluate non-propagating fatigue cracks tolerable at notch roots, using the short crack FCP behavior. For 
analysis purposes, the SIF range of a single crack with length a emanating from a semi-elliptical notch with semi-axes b 
(co-linear to a) and c  at the edge of a very large plate loaded in mode I can be written as 

( )IK F a b ,c b a∆ η ∆σ π= ⋅ ⋅          (11) 

where η = 1.12, and F(a/b, c/b) can be expressed as a function of the dimensionless parameter s = a/(b + a) and of the 
notch SCF, given by  

( )[ ] ( ){ }2.5
tK 1 2 b c 1 0.12 1 c b⎡ ⎤= + ⋅ + +⎣ ⎦         (12) 

To obtain expressions for F, extensive finite element calculations were performed for several cracked semi-elliptical 
notches. The numerical results, which agreed well with standard solutions (Tada et al., 1985), were fitted within 3% 
using empirical equations (Meggiolaro et al., 2007, Wu et al., 2010) 

( ) ( ) ( )2 2
t t t tF a b ,c b f K ,s K 1 exp sK sK⎡ ⎤≡ = − −⎣ ⎦ , c ≤ b and s = a/(b + a)    (13) 

( ) ( ) ( ) ( )s 22 2 2
t t t t tF a b ,c b f K ,s K 1 exp K 1 exp sK sK

−
⎡ ⎤ ⎡ ⎤′ ′≡ = − − − −⎣ ⎦ ⎣ ⎦ , c ≥ b     (14) 

The SIF expressions include the semi-elliptical notch effect through F or F’. Indeed, as s → 0 when a → 0, the 
maximum stress at its tip σmax → F(0, c/b)⋅σn = Kt⋅σn. Thus, the η-factor, but not the F(a/b,c/b) part of KI, should be 
considered in the short surface crack characteristic size a0, as done in equation (3). Note also that the semi-elliptical Kt 
includes a term [1 + 0.12/(1 + c/b)2.5] which can be interpreted as a free surface correction (FSC), since as c/b → 0 and 
the semi-elliptical notch tends to a crack, its Kt → 1.12⋅ 2√(b/ρ). Such 1.12 factor is the notch FSC, not the crack FSC 
η. Indeed, when c/b → 0, this 1.12 factor disappears from the F expression, which gives F(a/b, 0) = 1/√s, and therefore 
∆KI = η⋅F⋅∆σ⋅[π⋅a]0.5 = η⋅∆σ⋅[π⋅(a + b)]0.5, as expected, since the resulting crack for c → 0 would have length a + b. 

Traditional q estimates (Peterson, 1974) assume it depends only on the notch root ρ and on the material strength SU. 
Thus, materials with same SU but different ∆K0 should have identical notch sensitivities. But whereas good empirical 
relations relate the fatigue limit ∆S0 to the tensile strength SU of many materials, there are no such relations between 
their FCP threshold ∆K0 and SU. Moreover, traditional q estimation for elongated notches by the procedures can 
generate unrealistic high Kf values. In conclusion, such traditional estimates should not be taken for granted.  

The proposed model, on the other hand, is based on the FCP mechanics of short cracks which depart from elliptical 
notch roots, recognizing that their q values are associated with their tolerance to non-propagating cracks. It shows that 
their notch sensitivities, besides depending on ρ, ∆S0, ∆K0 and γ, are also strongly dependent on their shape, given by 
their c/b ratio. Their corresponding Peterson’s curve is well approximated by the semi-circular c/b = 1 notch, but this 
curve is not applicable for much different c/b ratios. Therefore, the proposed predictions indicate that these traditional 
notch sensitivity estimates should not be used for elongated notches (Castro and Meggiolaro, 2009, Meggiolaro et al., 
2007), an issue experimentally verified by Wu et al. (2010), as discussed in the following section. 
 
3. EXPERIMENTAL VERIFICATION OF ELONGATED NOTCH SENSITIVITY PREDICTIONS 

 
Fatigue tests were carried out on modified SE(T) specimens of thickness t = 8mm and width w = 80mm, to find the 

number of cycles required to re-initiate the crack after drilling a stop-hole of radius ρ centered at its tip, generating an 
elongated slit with b = 27.5mm. These tests can also be used to check the model proposed to describe short crack FCP 
behavior. They are very briefly described here, but details are available in Wu et al. (2010). The TS were made from an 
Al alloy 6082 T6, with SY = 280MPa, SU = 327MPa, and Young’s modulus E = 68GPa. The particularly careful tests 
were made at 30Hz under fixed load range at R = 0.57, to avoid any crack closure influence on their FCP behavior. The 
TS were first pre-cracked until reaching the required crack size. Then they were removed to introduce the stop-holes in 
a milling machine, using a slight under-size drill precisely centered at their crack tips. Finally, the holes were enlarged 
to reach their final diameter using a reamer. The stop-hole sizes were large enough to remove the previous plastic zones.    

After the stop-hole repair, the fatigue crack re-initiation lives at the tip of the resulting elongated notch can be 
modeled by εN procedures using (i) the alloy parameters σ’f = 485MPa, b = −0.0695, ε’f = 0.733 and c = −0.827, and 
Ramberg-Osgood’s coefficient and exponent of the cyclic stress-strain curve, H = 443MPa and h = 0.064 (Borrego et al, 
2003); (ii) the nominal stress range and R-ratio; and finally (iii) the stress concentration factor of the notches generated 
after repairing the cracks by a stop-hole at their tips, which can be calculated by FE (Kt = 11.8, 8.1, and 7.6 for the 3 
stop-hole radii, ρ = 1, 2.5, and 3 mm.)  

The stress and strain maxima and ranges at the stop-hole tip can be calculated by Neuber’s rule, and used to estimate 
crack re-initiation lives by a ∆ε×N rule, considering the mean loads influence. Neglecting it could lead to severely non-
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conservative predictions, due to the high R-ratio used. Lives predicted for the two larger holes reproduced reasonably 
well the tests results, but for the smaller ρ = 1mm hole they turn out to be too conservative. Few mechanical reasons can 
explain this. One would be significant compressive residual stresses at the ρ = 1mm stop-hole tips. But all stop-holes 
were identically drilled and reamed, to remove their previous crack tip plastic zones. Hence, it is difficult to justify why 
high compressive residual stresses would be present only at the ρ = 1mm stop-hole roots. The same occur with their 
surface finish. However, the smaller stop-holes generate elongated notches with a larger Kt, thus with a much steeper 
stress gradient near their roots. This effect can significantly affect the growth of short cracks and, consequently, the 
stop-hole fatigue notch sensitivity, possibly providing a sound mechanical explanation for the measured behavior.  

Indeed, when using Kf instead of Kt with the traditional εN procedures, calculating the elongated notch sensitivity q 
by the method proposed here, all the estimated fatigue crack re-initiation lives reproduce quite well the measured 
results. The Al 6082 T6 fatigue limit and fatigue crack propagation threshold under pulsating loads required to calculate 
Kf are estimated as ∆K0 = 4.8 MPa√m and ∆S0 = 110MPa, following traditional structural design practices. The γ 
exponent was chosen as γ = 6, as recommended by Castro and Meggiolaro (2009). Figure 1 presents the lives predicted 
by Morrow’s equation and by Smith-Watson-Topper (SWT), which reproduce well the measured data for the ρ = 1mm 
hole. Note that the term “prediction” can in fact be used here, since the curves result from re-initiation life estimations 
calculated using material properties, without considering any of the measured data points.  

 
Figure 1: Predicted and measured crack re-initiation lives after introducing stop-holes with radii ρ = 1.0mm at the tip of 
the previous crack, using the properly calculated Kf of the resulting elongated slit (instead of its Kt) and εN procedures. 

 
4. A CRITERION TO DEFINE FUNCTIONALLY ADMISIBLE SHORT CRACKS 
 

This same methodology can be used to generate an acceptance criterion for small cracks. Since most long-life 
designs work well, structural components are somehow tolerant to undetectable or to functionally admissible short 
cracks. But the question “how much tolerant” cannot be answered by SN or εN procedures alone. Such problem can be 
avoided by adding equations (7-9) to the “infinite” life design criterion to tolerate a crack of size a. In its simplest 
version, this criterion should then be written as 

( )
12

R RK a g( a w ) 1 a a
γγσ ∆ π⎧ ⎫⎡ ⎤∆ < ⋅ ⋅ +⎨ ⎬⎣ ⎦⎩ ⎭

, where ( ) [ ]2
R R Ra 1 K Sπ η= ⋅ ∆ ∆                (15) 

As fatigue limits ∆SR considers microstructural defects inherent to the material, (15) complements it considering the 
component tolerance to cracks. A simple case study can clarify how useful this concept can be, as discussed next.  

It was needed to estimate how short cracks affected tolerable stresses under uniaxial fatigue loads of a component 
with 2mm by 3.4mm rectangular cross section; measured fatigue limit SL(R = −1) = 246MPa; and SU = 990MPa. Note 
that as SL ≅ SU/4, it should include surface roughness effects which should not affect the cracks. But, in the absence of 
reliable information, the only safe option is to use the measured SL value to estimate SR and aR. Therefore, by Goodman 

( ) ( ) ( )R L U U LS S S 1 R S 1 R S 1 R= − − + +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦          (16) 

The mode I stress range ∆σ tolerable by this component when it has a uniaxial surface crack of depth a is then 

R F
12

R3

K

aa a a 2w a[a 0.752 2.02 0.37( 1 sin ) ] sec tan 1w a2w 2w 2w a

γγ

∆ ϕ
σ

π π ππ π

∆ <
⎡ ⎤⎛ ⎞+ + − ⋅ + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

           (17) 
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where g(a/w) was obtained from Tada et al (1985). Figure 2 plots the maximum tolerable stress (assuming φF = 1) for 
several R-ratios. As the FCP threshold was not available, it had to be estimated. The typical threshold range for steels is 
6 < ∆K0 < 12MPa√m. It is usual to assume ∆KR ≅ ∆K0 for R < 0 loads. Lower limit estimations for positive R are 
∆Kth(0 < R ≤ 0.17) = 6MPa√m, and ∆Kth(R > 0.17) = 7⋅(1 – 0.85R) (Castro and Meggiolaro, 2009). Using η = 1.12 and 
∆K0 = 6MPa√m, a0 = 59µm. Figure 2 shows that if this piece works e.g. under ∆σ = 286MPa and R = −0.12, it tolerates 
cracks up to a ≅ 105µm, and if it works under ∆σ = 176MPa and R = 0.44, it can sustain cracks up to a ≅ 150µm.  

 
Figure 2: Surface crack of size a effect in the largest stress range ∆σR(a) tolerable by a strip of width w = 3.4mm loaded 

in mode I, for various R-ratios (supposing ∆K0 = 6MPa√m and γ = 6, thus a0 = 59 and a0.8 = 55µm). 

Therefore, this model indicates that this piece is not too tolerant to 1D surface cracks. But as this conclusion is based 
on estimated properties, Figure 3 studies its sensibility to the assumed values. Equation (15) assumes that the short 
crack is 1D and grows without changing its original plane, and this model describes the behavior of macroscopically 
short cracks, as it uses macroscopic material properties. Thus it can only be applied to short cracks which are large in 
relation to the characteristic size of the intrinsic material anisotropy (e.g. its grain size). Smaller cracks grow inside an 
anisotropic and usually inhomogeneous scale, thus their FCP is also affected by microstructural barriers, such as second 
phase particles or grain boundaries. However, as grains cannot be mapped in most practical applications, such 
problems, in spite of their academic interest, are not really a major problem from the fatigue design point of view. 

However, this model has another limitation: it assumes that the short crack can be completely characterized by its 
depth a. But most short cracks are surface or corner cracks, which tend to grow by fatigue at least in two directions, 
maintaining their original plane when they are loaded under pure mode I conditions. In these cases, they can be modeled 
as bidimensional (2D) cracks which grow both in depth and width. In reality, both long and short cracks (these meaning 
cracks not much larger than aR) only behave as 1D cracks after having cut all the component width to become a through 
crack, with a more or less straight front which propagates in an approximately uniform way. Thus, equation (17) must 
be adapted to consider the influence of 2D short cracks in the fatigue limit.  

 
Figure 3: Typical steel threshold 6 < ∆K0 < 12MPa√m and γ exponent 1.5 < γ < 8 ranges influence in the largest mode 

I stress ranges ∆σ0 tolerated by the w = 3.4mm strip, as a function of the 1D superficial crack size a. 
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This can be done by assuming that: (i) the cracks are loaded in pure mode I, under quasi-constant ∆σ and R 
conditions, with no major overloads; (ii) material properties measured (or estimated) testing 1D specimens may be used 
to simulate the FCP behavior of 2D cracks; and (iii) 2D surface or corner cracks can be well modeled as having an 
approximately elliptical front, thus their SIF can be described by the classical Newman-Raju equations (1984). In this 
case, it can be expected that the component tolerance to cracks be given by: 

( )

( )

12
R a R

12
R c R

K a ( a,c,w,t ) 1 a a

K c ( a,c,w,t ) 1 a c

γγ

γγ

∆ π Φ
∆σ

∆ π Φ

⎧ ⎧ ⎫⎡ ⎤⋅ ⋅ +⎨ ⎬⎪ ⎣ ⎦⎪ ⎩ ⎭< ⎨
⎧ ⎫⎪ ⎡ ⎤⋅ ⋅ +⎨ ⎬⎣ ⎦⎪ ⎩ ⎭⎩

       (18) 

For semi-elliptical or quart-elliptical surface cracks in a plate of thickness t, the SIF in the semi-axis directions, or in 
the depth a and width c directions, KI,a = σ√(πa)⋅Φa and KI,c = σ√(πc)⋅Φc, are given by complicated functions, which 
enhance the operational advantage of treating the FCP threshold as a function of the crack size, ∆Kth(a), as claimed 
above. For structural calculations and design purposes, it is indeed relatively simple to use either equation (15) or (18) 
to evaluate the influence of surface cracks on the component fatigue strength. Moreover, it is not too difficult to adapt 
the 2D equations to include notch effects. Φa and Φc expressions are reproduced in Castro and Meggiolaro (2009). 
 
5. CONCLUSIONS 
 

A generalized El Haddad-Topper-Smith’s parameter was used to model the threshold stress intensity range for short 
cracks dependence on the crack size, as well as the behavior of non-propagating fatigue cracks. This dependence was 
used to estimate the notch sensitivity factor q of semi-elliptical notches, from studying the propagation behavior of short 
non-propagating cracks that may initiate from their tips. The predicted notch sensitivities reproduced well the classical 
Peterson’s q estimates for circular holes or approximately semi-circular notches, but it was found that the notch 
sensitivity of elongated slits has a very strong dependence on the notch aspect ratio, defined by the ratio c/b of the semi-
elliptical notch that approximates the slit shape having the same tip radius. These predictions were confirmed by 
experimental measurements of the re-initiation life of long fatigue cracks repaired by introducing a stop-hole at their 
tips, using their calculated Kf and appropriate εN procedures. Based on this promising performance, a criterion to 
evaluate the influence of small or large surface cracks in the fatigue resistance was proposed. 
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