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ABSTRACT. Semi–empirical notch sensitivity factors q have been widely used to properly account for notch 
effects in fatigue design for a long time. However, the intrinsically empirical nature of this old concept can be 
avoided by modeling it using sound mechanical concepts that properly consider the influence of notch tip stress 
gradients on the growth behavior of mechanically short cracks. Moreover, this model requires only well-
established mechanical properties, as it has no need for data-fitting or similar ill-defined empirical parameters. 
In this way, the q value can now be calculated considering the characteristics of the notch geometry and of the 
loading, as well as the basic mechanical properties of the material, such as its fatigue limit and crack propagation 
threshold, if the problem is fatigue, or its equivalent resistances to crack initiation and to crack propagation 
under corrosion conditions, if the problem is environmentally assisted or stress corrosion cracking. Predictions 
based on this purely mechanical model have been validated by proper tests both in the fatigue and in the SCC 
cases, indicating that notch sensitivity can indeed be treated as a stress analysis problem. 
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INTRODUCTION  
 

Semi-empirical notch sensitivity factors 0  q  1 have been long used to relate linear elastic (LE) stress concentration 

factors (SCF) Kt  = max/n, to their corresponding fatigue SCF Kf  = 1 + q(Kt – 1) = SL(R)/SLntc(R), where max and min 

are the maximum and minimum LE stress at the notch root caused by n, the nominal stress that would act at that point if 
the notch did not affect the stress field around the notch, whereas SL(R) and SLntc(R) are the fatigue limits measured on 

standard (smooth and polished) and on notched test specimens (TS), respectively, at a given R = min/max ratio. Despite 
their empirical nature, such Kf values are still widely used to quantify notch effects on the fatigue strength of structural 
components [1].  

On the other hand, it is well known that the notch sensitivity in fatigue can be associated with the relatively fast generation 

of tiny non-propagating cracks at notch roots when SL(R)/Kt < n < SL(R)/Kf, see Fig. 1 [2]. Based on this behavior, a 
model has been proposed to calculate the q values from the fatigue behavior of short cracks emanating from notch tips, 
using only relatively simple but sound mechanical principles, which do not require heuristic arguments, neither any 
arbitrary data-fitting parameter [3-5]. In particular, this model does not require a critical distance concept, a good idea 
which originally assumed that the notch sensitivity should be dependent on some (yet never discovered) microstructural 
parameter [6-10]. In fact, to operationalize the critical distance concept it needs in practice to be fitted to the measured 
material properties, not to its microstructural parameters. The alternative explanation proposed here may be appealing for 
those who tackle such problems from a more mechanical viewpoint. Such an approach allowed it to explain notch effects 
not only on fatigue, but also on environmentally assisted cracking problems. Indeed, it is claimed here that notch 
sensitivity exists on such problems as well, and that it can be described using the same techniques successfully applied to 
model the fatigue problem. In fact, this can be done by just considering the proper resistances to crack initiation and to 
crack propagation in the given material/environment pair, both standard well-defined mechanical properties. Data is 
already available to support the proposed model predictions both in fatigue and SCC conditions.    
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Figure 1: Classical data showing that non-propagating fatigue cracks are generated at the notch roots if SL/Kt < n < SL/Kf [2, 7]. 

 
ANALYSIS OF NOTCH EFFECTS ON THE FCG BEHAVIOR OF SHORT CRACKS  

The generation of non-propagating fatigue cracks shown in Figure 1 indicates that whereas crack initiation by fatigue is 
controlled by the stresses acting at notch tips, the fatigue crack growth (FCG) behavior of short cracks emanating from 
them should be affected by the stress gradients around them too. It also indicates that notch sensitivity is caused by the 
existence of those non-propagating cracks. Indeed, to start a crack at a notch tip and then stop it after a short growth, its 
driving force must decrease in spite of its growing size. As the cracking driving force depends on the crack size and on the 
stress acting on it, the only mechanical explanation for such an apparently odd behavior is that the stresses ahead of the 
notch tip must decrease more than the crack growth contribution. Therefore, the stress gradients ahead of the notch tips 
must be as important as their SCF to understand the notch sensitivity behavior. Indeed, based on this sensible argument, 
even before developing its mechanics it could be claimed that, contrary to the traditional practice, for any given material 

the notch sensitivity value q should depend not only on the notch tip radius , but also on its depth b, since both affect 

the stress gradients around notch tips. This means that shallow and elongated notches of same  may have quite different 
q. But before jumping to conclusions, let’s work out this mechanical model. 

First note that short fatigue cracks must behave differently from long cracks, since their FCG threshold must be smaller 

than the long crack threshold Kth(R) [11], otherwise the stress range  required to propagate them would be higher than 

the material fatigue limit SL(R). Indeed, assuming as usual that the FCG process is primarily controlled by the stress 

intensity factor (SIF) range, K  (a), if short cracks with a  0 had the same Kth(R) threshold of long cracks, their 

propagation by fatigue would require   , clearly a nonsense. Note also that the word “short” is used here to mean 
“mechanical” and not “microstructural” small cracks, since material isotropy is assumed in their modeling, a simplified 

hypothesis corroborated by the tests. The FCG threshold of short fatigue cracks under pulsating loads Kth(a, R  0) can 

be modeled using El Haddad-Topper-Smith (ETS) characteristic size a0 [12], which is estimated from S0  SL(R  0) 

and K0  Kth(R  0). This clever trick reproduces the Kitagawa-Takahashi plot trend [13], see Fig. 2, using a modified 

SIF range K’ to describe the fatigue propagation conditions of any crack, short or long, defined by: 

0K (a a )     , where   
2

0 0 0a 1 K S          (1) 

This K’ has been deduced for the Griffith’s plate SIF, K = (a). To deal with other geometries it should be 
rewritten using the non-dimensional geometry factor g(a/w) of the cracked component: 

0K g( a w) (a a )      , where    
2

0 0 0a 1 K g( a w) S          (2) 

But the tolerable stress range  under pulsating loads only tends to the fatigue limit S0 when a  0 if  is the notch 
root (instead of the nominal) stress range. However, most g(a/w) expressions found in tables include the notch SCF, thus 

they use  instead of n as the nominal stress. A clearer way to define the short crack characteristic size a0 when the 
short crack departs from a notch root is to explicitly recognize this practice, separating the geometry factor g(a/w) into two 

parts: g(a/w) = (a), where (a) describes the stress gradient ahead of the notch tip, which tends to the SCF as the crack 

length a  0, whereas  encompasses all the remaining terms, such as the free surface correction: 
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Figure 2: Kitagawa-Takahashi plot describing the fatigue propagation of short and long cracks under pulsating loads (R = 0) in HT80 

steel with K0 = 11.2 MPam and S0 = 575 MPa. 

0K ( a ) (a a )         , where    
2

0 0 0a 1 K S            (3) 

Operationally, the short crack can be better treated by letting the SIF range retain its original form, while modifying the 

FCG threshold expression to become a function of the crack length a, namely K0(a), resulting (under pulsating loads) in: 

 0 0 0K ( a ) K a a a              (4) 

The ETS equation can be seen as one possible asymptotic match between the short and long crack behaviors. Following 

Bazant’s idea [14], a more general equation can be used introducing an adjustable parameter   to fit experimental data: 

  
1

/ 2
0 0 0K ( a ) K 1 a a




 


   
 

         (5) 

Equations (1) to (4) result from (5) if    2. The bi-linear limit, (a  a0)  S0 for short cracks and K0(a  a0)  K0 

for the long ones, is obtained if g(a/w)  (a)  1 and   .  Most short crack FCP data is fitted by K0(a) curves with 

1.5    8, but   6 better reproduces classical q-plots based on data measured by testing semi-circular notched fatigue 
TS [3-5]. Using (5) as the FCP threshold, then any crack departing from a notch under pulsating loads should propagate if: 

   
1

2

0 0 0K a a K ( a ) K 1 a a



    


          
  

      (6) 

where   1.12 is the free surface correction. As fatigue depends on two driving forces,  and max, (6) can be extended 

to consider max (indirectly modeled by the R-ratio) influence in short crack behavior. First, the short crack characteristic 

size should be defined using the fatigue limit SR and the FCP threshold for long cracks KR  Kth(a >> aR, R), both 
measured or properly estimated at the desired R-ratio: 

   
2

R R Ra 1 K 1.12 S                (7) 

Likewise, the corresponding short crack FCP threshold should be re-written as: 

 
1

/ 2
R R RK ( a ) K 1 a a




 


   
 

         (8) 

According to Tada [15], the SIF of a crack with size a  that departs from a circular hole of radius  given within 1% by: 
 

     

   



    


                 

I

2 3

6

K 1.1215 a ( x ), x a

0.2 0.3 x x x1( x ) 2 2.354 1.206 0.221(1 x ) (1 x ) 1 x 1 x 1 x

    (9) 

So, for circular holes (x  0)  3 and (x )  1/1.12152  0.63. Since to propagate by fatigue any crack its SIF 
must be larger than its threshold, then for pulsating loads: 
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1//2
I th 0 0K a a K ( a ) K 1 a a      (10) 

Note that a0 cannot depend on the stress gradient factor (a/w), otherwise it would not be a material property. The FCG 

criterion can thus be rewritten using two dimensionless functions, one related to the notch stress gradient (a/w), and the 

other g(S0/, a/, K0/S0, ) which includes the applied stress range , and depends on the crack size, on the 

notch radius , on the fatigue resistances K0 and S0, and on the data fitting exponent  (if it is used): 
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0 0
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S
a K S

    (11) 

Therefore, if x  a/ and   K0/S0  (a0/), a fatigue crack departing from a Kirsch hole under pulsating loads 

grows whenever (x)/g(S0/, x, , ) > 1. Figure 3 plots some /g functions for several fatigue strength to loading 

stress range ratios S0/ as a function of the normalized crack length x, assuming a small notch root radius compared to 

the short crack characteristic size with  1.40a0, and a material with   1.5 and   6 [5].  

 

Figure 3: Cracks that can start from the border of a (small) circular hole may propagate by fatigue and then stop if their /g< 1. 

For high applied stress ranges , the strength to load ratio S0/ is small, and the corresponding /g curve is always 
higher than 1, so cracks initiate and propagate from this Kirsch hole border without stopping during this process. Small 

stress ranges with load ratios S0/  Kt  3 have /g < 1, meaning that such loads cannot initiate a fatigue crack from 
this hole, and that small enough cracks introduced there by any other means will not propagate at such low loads. 

Intermediate load ranges can initiate and propagate a fatigue crack from this hole border, until the decreasing /g ratio 
reaches 1, where the crack stops because the stress gradient ahead of its small root is sharp enough to eventually force 

KI(a) < Kth(a). Finally, the curve is tangent to the /g  1 line identifies the smallest pulsating stress range that can cause 
crack initiation and propagation (without arrest) from the notch border by fatigue alone. Hence, by definition, it is 
associated to this hole fatigue SCF Kf. Moreover, the abscissa of its tangency point gives the largest non-propagating crack 

size that can arise from it by fatigue alone, amax. For any other /a0, , and  combination, Kf and amax can always be found 
by solving the system  

 

   

   

max max f

max max f

x g x ,K , ,g 1

g x 0 x x g x ,K , , x

  

   

  
 

        

     (12) 

Kirsch holes induce relatively mild stress gradients. Larger holes compared with the short crack characteristic size, with 

radii  >> a0, are associated to small  values and do not induce short crack arrest. That is a nice way to mechanically 

interpret the notch sensitivity concept. In other words, if the system {/g  1, (/g)x  0} is solved for a given  and 

several tip radii using K0/S0, then the notch sensitivity factor q is obtained by: 

f tq( , ) [ K ( , ) 1] ( K 1)              (13) 
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This approach has 4 advantages: (i) it is an analytical procedure; (ii) it considers the effect of the fatigue resistances to 

crack initiation and propagation on q; (iii) it can use the exponent  used to modify the original ETS model to better fit 
short FCG data; and (iv) it can be easily extended to other notch geometries. For example, the SIF of cracks that depart 
from a semi-elliptical notch with semi-axles b and c, with b collinear with the crack a and perpendicular to the (nominal) 

stress n, can be described by: 

 IK F a b ,c b a                (14) 

where   1.1215 is the free surface correction factor and F(a/b, c/b) is the geometrical factor associated to the notch 
stress concentration effect. Such notches SCF Kt is given by [15]: 

   2.5
tK 1 2b c 1 0.1215 (1 c b )               (15) 

Using s  a/(a + b) two analytical expressions for F(a/b, c/b) were obtained in [3] by fitting results obtained by a series of 
finite elements (FE) analyses for several types of semi-elliptical notches: 
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K s



       

   

     


    (16) 

Note that traditional notch sensitivity estimates, like Peterson’s q  (1 + /)-1, where  is a length parameter obtained by 

fitting only 7 experimental points, suppose that the notch sensitivity depends only on the notch tip radius  and on the 

steel tensile strength (and only on  for Al alloys). The model proposed here, on the other hand, recognizes that q 

depends on , S0, and K0 (and in , if it is used). There are reasonable relations between S0 and SU, the ultimate tensile 

strength, but none between K0 and SU. This means that two steels of same SU, but very different K0, should behave 
identically according to Peterson-like q estimates, for example, not a reasonable assumption. Further details on this model 
are available on [3], and experimental evidence that supports its predictions in fatigue is presented in [4-5]. Its extension 
for stress corrosion cracking conditions is developed in [16]. 
 

INFLUENCE OF SHORT CRACKS ON THE FATIGUE STRENGTH OF STRUCTURAL COMPONENTS 

The traditional SN and N fatigue design methods are used to analyze supposedly crack-free pieces, but very often it is 
not possible to fulfill this requisite in practice. In fact, it is impossible to guarantee that a component is really free of 
cracks smaller than the detection threshold of the non-destructive method used to identify them. Nevertheless, most 
structural components are still designed against fatigue crack initiation using procedures that do not recognize such small 
cracks. Hence, their “infinite life” predictions may become unreliable when they are introduced by any means during 
manufacture or service, and not quickly detected and properly removed. But while large cracks may be easily detected and 
dealt with, small cracks may pass unnoticed, even in careful inspections. Therefore, structural components that must last 
for very long fatigue lives should be designed to be tolerant to undetectable short cracks, since continuous work under 
fatigue loads cannot be guaranteed if any of the cracks they might have can somehow propagate during their service lives. 

Despite being self-evident, this requirement is still not included in most fatigue design routines used in practice. Indeed, 
most long-life designs just intend to maintain the service stresses at the structural component critical point below its 

fatigue limit,  < SL(R)/F, where F is a suitable safety factor. Such calculations can become quite involved when 
designing e.g. against fatigue damage caused by random non-proportional loads, but their safe-life philosophy remains the 
same. However, in spite of not recognizing any cracks, most long-life designs work just fine. This means that they are 
somehow tolerant to undetectable or to functionally admissible short cracks. But the question “how much tolerant” 

cannot be answered by SN or N procedures alone. Such problem can be avoided by adding short crack concepts to their 
“infinite” life design criteria which, in its simplest version, may be given by [5]: 

  
12

R F RK a g( a w ) 1 a a


         
 

, where  
1/2

R R RK ( a ) K 1 a a
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2

R R Ra 1 K S       (17) 
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Since the fatigue limit SR SL(R) already reflects the effect of the microstructural defects inherent to the material, 
equation (17) complements it by describing the tolerances to small cracks that may pass unnoticed in actual service 
conditions. The practical usefulness of this sensible criterion is well illustrated by a practical example, as follows.  

Due to a rare manufacturing problem, a batch of an important component left the factory with tiny surface cracks (only 
detectable by a microscope), causing some unexpected and embarrassing failures. Hence, it became necessary to properly 
quantify the actual effect of such tiny cracks in that component fatigue strength. Assume its rectangular cross-section has 
2 by 3.4mm; its (uncracked) fatigue limit is SL = 246MPa; and it is made from steel with SU = 990MPa. This measured 

fatigue limit is about ¼ of the steel SU/4, whereas it would be traditionally estimated by SL  SU/2  495MPa. This 

difference may be due to a surface finish factor ksf  0.5, a value between those proposed by Juvinall for SU  1GPa steels 

with cold-drawn (ksf  0.45) and machined surfaces (ksf  0.7) [17]. The surface finish should not affect cracks, but as this 
difference could be due to other factors too, like tensile residual stresses, the only safe option is to use SL = 246MPa to 

evaluate the tiny crack effects. Therefore, by Goodman SL(R) = SR = SLSU(1 – R)/[SU(1 – R) + SL(1 + R)] for R1 (or 

m  0), for example. The FCG threshold KR is also needed to model short crack effects, but if data is not available, as in 

this case, it must be estimated e.g. by KR(R  0.17)  K0  6MPam and KR(R > 0.17)  7(1 - 0.85R) [18]. This practice 
increases the predictions uncertainty, but it is the only option available. Besides, it tends to be conservative. Moreover, it 

assumes that KR(R < 0)K0, a safe estimate too (except if the load history contained severe compressive underloads 

which might accelerate the crack, not the case here.) Using the SIF of an edge cracked strip of width w loaded in mode I, 

then the tolerable stress ranges under pulsating loads shown in Fig. 4 are estimated within a fatigue safety factor F as: 

 

 
0 F

0 12
3 0

K a

aa a a 2w a[ 0.752 2.02 0.37(1 sin ) ] sec tan 1w a2w 2w 2w a



  


  


 
 

    
 

       (18) 

 
Figure 4: Larger stress ranges tolerable under several R–ratios by the analyzed component considering it contains an edge crack with 

size a, for w  3.4mm,   1.12, K0  6MPam, a0  59m,   6, and F  1.6. 

 

NOTCH SENSITIVITY IN ENVIRONMENTALLY ASSISTED CRACKING PROBLEMS 

The behavior of materials on aggressive environments is an important problem for many industries, because the costs and 
specially the delivery times for special EAC-resistant alloys keep increasing. Major problems occur e.g. in the oil industry, 
where oil and gas fields can contain considerably amounts of H2S, and in the aeronautical industry, where very light 
structures must operate in saline environments. But environmentally assisted cracking problems have been treated so far 
by simplistic structural integrity assessment procedures based on an overly conservative policy of totally avoiding material-
environment pairs susceptible to EAC conditions. When such conditions are unavoidable during the service life of the 
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structural component in question, the standard solution is just to choose a nobler material to build it, one that is resistant 
or immune to crack initiation and propagation by EAC in the operational environment. Alternatively, the solution may be 
to recover the structural component surface with a suitable properly adherent and scratch resistant EAC-resistant coating. 
But in many cases there are no such coatings available in the market.  

Such inflexible design criteria may be safe, but they can also be too conservative if the material is summarily disqualified 
when it may suffer EAC in the service environment, without considering any stress analysis issues. Such decisions may 
cause severe cost penalties. Indeed, even though EAC conditions may still be difficult to define, due to the number of 
metallurgical, chemical, and in particular mechanical variables that affect them, structural integrity assessment procedures 
should always be used on the design stage to define a maximum tolerable flaw size. In fact no crack can grow unless 
driven by a tensile stress, caused by the superposition of applied loads, residual stresses induced by previous loads or 
overloads, and maintenance or manufacturing procedures. Thus EAC cracks cannot be properly evaluated neglecting the 
stress and strain fields that may drive them. 

But such uneconomical decisions can be avoided, since we already know how different the behavior of deep and shallow 
fatigue cracks is, and how it can be treated in structural design. Therefore, it is now possible to propose an extension of 
the proved criteria for accepting shallow fatigue cracks to environmentally assisted cracking problems, assuming they also 
present a notch sensitivity behavior that can be mechanically described. If cracks behave well under EAC conditions, then 
a Kitagawa-like diagram can be used to quantify tolerable stresses, using the material EAC resistances to define a “short 

crack characteristic size under EAC conditions” by: 

 20 IEAC EACa (1/ ) K S            (19) 

In this way all corrosion features are assumed to be properly described by the resistance to crack propagation KIEAC and by 
the resistance to crack initiation SEAC under fixed stress conditions in the analyzed material-environment pair. In other 
words, this model supposes that the mechanical parameters that govern the environmentally assisted cracking problem 

behave analogously to the equivalent parameters Kth(R) and SL(R) that control the fatigue problem, see Fig. 5. 

 
Figure 5: A Kitagawa-Takahashi-like plot proposed to describe the environmentally assisted cracking behavior of short and deep flaws 

for structural design purposes. 

Consequently, if cracks loaded under EAC conditions behave mechanically as they should, i.e. if their driving force is 
indeed the stress intensity factor applied on them; and if the chemical effects that influence their behavior are completely 
described by the material resistance to crack initiation from smooth surfaces quantified by SEAC, and by its resistance to 
crack propagation measured by KIEAC; then it can be expected that EAC cracks may depart from sharp notches and then 
stop, due to the stress gradient ahead of the notch tips, eventually becoming non-propagating cracks, as it occurs in the 
fatigue case. Hence, if the size of non-propagating short cracks can be calculated using the same procedures useful for 
fatigue case, then the resistance to that kind of defect can be properly quantified using an EAC notch sensitivity factor in 
structural integrity assessments. Therefore, a criterion for the maximum tolerable crack size under EAC conditions can be 
proposed as: 

12
max IEAC 0a ( 1 ) K (1 a a ) a g( a w )

 


            (20) 

CONCLUSIONS 
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A generalized El Haddad-Topper-Smith’s parameter was used to model the crack size dependence of the threshold stress 
intensity range for short cracks, as well as the behavior of non-propagating environmentally assisted cracks. This 
dependence was used to estimate the notch sensitivity factor q of shallow and of elongated notches, from studying the 
propagation behavior of short non-propagating cracks that may initiate from their tips. It was found that the notch 
sensitivity of elongated slits has a very strong dependence on the notch aspect ratio, defined by the ratio c/b of the semi-
elliptical notch that approximates the slit shape having the same tip radius. These predictions were calculated by numerical 
routines. Based on this promising performance, a criterion to evaluate the influence of small or large surface flaws in 
fatigue and in environmentally assisted cracking problems was proposed. Such results indicate that notch sensitivity can 
indeed be properly treated as a mechanical problem. 
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