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1 INTRODUCTION 

This paper presents an alternative and simple exoskeleton 

Human-Machine Interface (HMI) for human strength and 

endurance amplification using a modified version of the 

Hill-type muscle. Pneumatic Artificial Muscles (PAM) are 

used as actuators for its high power-to-weight ratio. 

Genetic Algorithms (GA) approach locally optimizes the 

control model parameters for the assistive device using 

muscle surface electromyography (sEMG). 

2 MECHANICAL DESIGN OF THE 

EXOSKELETON 

The goal of the exoskeleton is to complete the task of 

lifting a payload.   The mechanical design chosen to 

reduce the degrees of freedom (DOF) to complete the task 

was selected as the simplest as possible. In addition, as the 

exoskeleton is directly connected to the user, it is 

necessary to guarantee anthropomorphism and 

smoothness. The solution proposes the use of artificial 

fluidic muscles to drive the system for its inherent 

compliance. 

2.1 The Pneumatic Artificial Muscle (PAM) 

The PAM is composed of a rubber bladder with an inner 

fiber cloth, see Szepe. When air is pressurized it contracts 

axially and expands radially, acting as a simple action 

cylinder.  

The force it delivers is proportional to the inner pressure 

, relative contraction  and contraction ratio . To 

determine the pressure needed to maintain a certain force 

 given the current contraction, Szepe suggests a static 

model of the PAM, with the force given by 

      .    (1) 

Where  and  are unknown parameters. 

2.2 Degrees of Freedom 

The proposed design has only three DOF, two of which 

are active. To lift a payload the shoulder and elbow 

flexion/extension are required. Flexion actuation 

assistance is mandatory, while gravity is responsible for 

extension. 

2.3 Determining the PAM 

To address the problem of the relatively low contraction 

capacity of the PAM, we adopted a cable-driven 

transmission system which places the PAMs in a rear 

backpack enclosure, allowing these actuators to have a 

longer extension (about 600mm each). 

The transmission system consists of a steel cable that 

slides inside steel tubes with an inner Teflon coat to 

reduce friction, the same as parking brake cables. 

3 THE MODIFIED HILL-TYPE MUSCLE 

MODEL 

3.1 Muscle Force Estimation 

This straightforward method has a relatively high 

accuracy on predicting the muscle force using the sEMG 

signal and its kinematic parameters. It defines a passive 

parallel element (PE), a passive series element (SE) and 

an active contractile element (CE), as in Fig. 1. 

 

Fig. 1: The 3-element Hill-Type Muscle Model. 

The work presented by Rose et al. and Cavallaro et al. 

proposes a model based on a set of equations for each 

muscle in order to predict the joint torque. However, the 

large set of muscles involved on the actuation of a single 

joint - about 12 for the elbow - presented by their work, 

demands a proportionally high number of equations and 

parameters, becoming costly for real-time applications. 

The present work modifies this method in two different 

ways: (i) it predicts the torque at the exoskeleton joint 
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instead of the torque at the user articulation; and (ii) it 

uses only one representative muscle (Biceps Brachii) to 

estimate the torque activity generated by the muscle effort. 

The first one is sufficient to exclude any type of user 

sensoring – other than the sEMG‘s electrodes -, thus no 

other HMI is needed. The second one, on the other hand, 

reduces the computational effort for future embedded 

applications. 

3.2 Exoskeleton Joint Torque Prediciton 

The torque exerted by the user’s arm is given by the 

muscle force  times the muscle moment arm . 

This moment arm can be approximately modeled by a 

third-order polynomial function of the joint angle. 

Therefore the join torque is given by 

                       .                     (2) 

Where  is the instantaneous nonlinear gain factor. 

4 PARAMETER ESTIMATION 

In total, each muscle model has 22 floating point 

parameters to be estimated 18 for the muscle model plus 

the extra 4 parameters necessary to define the gain . 

The PAM model, on the other hand, contains six constant 

values to be calibrated. 

4.1 PAM model optimization 

The estimation of six constants (a to f) was performed 

using MatLab Genetic Algorithms Toolbox. The fitness 

function to be minimized is the Root Mean Square Error 

(RMSE) between PAM model estimation and the 

experimental values obtained for the muscle force and 

contraction at each point. 

4.2 Hill Muscle Model Optimization 

To find the 22 constants for the physiological muscle, a 

similar strategy is proposed. However, for this application 

there is no experimental curve to be used as reference. To 

address this problem the dynamic equation of the 

exoskeleton arm is used to calculate the instantaneous 

torque, which is then compared with the GA estimation. 

This equation is the same as that of a two-DOF planar 

serial manipulator which is well known on the literature. 

4.3 Model Recalibration 

The value of the sEMG will vary depending on 

anatomical and physiological characteristics. Variations 

between different sessions are expected because of 

changeable skin conditions and electrode placements. The 

solution found to address this problem was to recalibrate 

the muscle model only evolving the gain factor  

parameters for every session. This way, we reduce the 

problem to find the minimum of a function with only four 

variables. It was verified that, using the previous 

parameters as the initial population, only approximately 

200 generation are necessary to find the local minimum 

for the new parameters.  

5 CONTROL OF THE EXOSKELETON 

The control loop works in the same way as the GA 

evaluated the chromosomes. Given the 22 parameters of 

the muscle model and the signal measured, it is possible 

to estimate the torque the user is applying on the joint. 

The controller then sends this information to the PAM 

model which drives the exoskeleton, working as a 

feedback linearization control. On the other hand, the 

controller amplifies the torque by a given factor under the 

PAM limitations. As a result this proposed control 

algorithm produces the virtual experience in which the 

user barely feels the weight of the payload. 

Fig. 2 shows the neural activation level when lifting a 

3.1kg payload with the active and inactive exoskeleton 

and a torque amplification gain of 1.5. It is possible to 

verify a significant reduction on the effort done when 

lifting the load. The bottom graph shows the percentage 

of increase of the neural activation. 

 

 
Fig. 2: Neural activation level with and without the 

exoskeleton assistance. 

6 CONCLUSIONS 

A real-time sEMG-based controller was developed using a 

modified Hill-type muscle model to control an exoskeleton 

actuated by fluidic muscles. The PAM static model 

parameters were estimated using GA optimization method 

with satisfactory accuracy. An upper limb exoskeleton was 

designed from the chosen actuator. For the control 

algorithm a Hill-type muscle model was used and 

modified to estimate the torque applied directly over the 

exoskeleton joint. 

The task of lifting a 3.1kg payload was performed and it 

is shown that a torque gain factor of 1.5 is enough reduce 

the neural activation level in about 67%. The exoskeleton 

shares part of the torque necessary to lift the weight and 

the user supports only a part of the load, avoiding fatigue 

and increasing endurance. 
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