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ABSTRACT 
 
This work studies an approach to evaluate equivalent stress and strain ranges in non-
proportional (NP) histories, called the Moment Of Inertia (MOI) method. The MOI method 
assumes that the path contour in the deviatoric stress or strain diagram is a homogeneous 
wire with unit mass. The center of mass of such wire gives then the mean component of the 
path, while the moments of inertia of the wire can be used to obtain the equivalent stress or 
strain ranges. The MOI method is an alternative to convex enclosure methods, such as the 
Minimum Ball or Maximum Prismatic Hull methods, without the need for computationally-
intensive search algorithms or adjustable parameters. The MOI method can deal with an 
arbitrarily shaped history without losing information about such shape, as opposed to a 
convex enclosure method. Therefore, it can be successfully used even in highly non-convex 
stress or strain NP history paths such as cross or star-shaped paths, which result in poor 
predictions when convex enclosure methods are used. The MOI method is relatively simple, 
intuitive, and easy to implement and to compute, therefore it should be considered as an 
alternative engineering tool to deal with NP histories. Coupled with a multiaxial rainflow 
algorithm, it is able to deal with very long variable amplitude histories, which would be too 
computationally intensive for incremental plasticity or convex enclosure methods to obtain 
stress or strain ranges. In this work, the MOI method is also generalized to calculate as well 
the non-proportionality factor Fnp of a loading history, using an alternative sub-space of the 
deviatoric stresses or strains. Experimental results for 12 different multiaxial histories prove 
the effectiveness of the MOI method not only to predict the associated fatigue lives, but also 
to predict the observed non-proportionality factors. 
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INTRODUCTION 
 
Multiaxial fatigue lives can be calculated from equivalent stress (or strain) ranges and their 
mean components [1]. However, estimating such ranges and mean values for non-
proportional (NP) loading cycles is not an easy task. These components are traditionally 
estimated by convex circular, ellipsoidal or prismatic enclosures of the entire history path in 



 

stress or strain diagrams. However, enclosing surface methods are not suited for complex 
NP histories, since they do not account for path shape dependence of fatigue damage. 
 
Consider a periodic load history formed by repeatedly following a given loading path domain 

D, where D contains all points from the stress or strain variations along one of its periods. 

Assume that two out-of-phase shear stresses B and B2 act parallel to the critical plane, 

where the crack will most likely initiate. Both B and B2 influence the growth of shear cracks 

along the critical plane. To calculate the maximum shear stress range max at the critical 

plane, it is necessary to draw the path Dof the stress history along a B  B2 diagram, as 
shown in Fig. 1. 

 

Fig. 1: Periodic (or single) stress history path D in a B  B2 diagram, enclosed in surfaces 
such as circles (balls), ellipses and rectangular prisms 
 
The search for an effective range using the deviatoric stress path started with the pioneering 
work of Dang Van [2], who studied various methods to define and calculate it. Since then, 
several “enclosing surface methods” have been proposed [3-7], which try to find circles, 
ellipses or rectangles that contain the entire load path (in the 2D case). In a nutshell, in the 
2D case, the Minimum Ball (MB) method [3] searches for the circle with minimum radius that 
contains D; the minimum ellipse (ME) methods [4-6] search for an ellipse with semi-axes a 

and b that contains D with minimum area ab or minimum norm (a2 + b2)1/2; and the 
maximum prismatic hull (MPH) methods [5, 7] search among the smallest rectangles that 
contain D the one with maximum area or maximum diagonal (it’s a max-min search problem). 

The value of max in Fig. 1 would either be assumed as the value of the circle diameter, or 
twice the ellipse norm, or the length of the enclosing rectangle diagonal. If the history path 

was represented in a B  B2 shear strain diagram, these exact same methods would result 

in estimates for the maximum shear strain range max. 
 
Enclosing surface methods can be useful to estimate the equivalent stress (or strain) 
amplitude associated with NP loading paths. However, such methods have several issues, in 
special regarding information loss. Enclosing surface algorithms do not take into account the 
actual loading path, but only the convex hulls associated with them. All paths that share the 
same convex hull share as well the same enclosing surface for a given method, even though 
they might lead to different equivalent amplitudes and fatigue lives. This issue is addressed 
by a method to calculate equivalent and mean components that takes into account the actual 
loading path, not only its convex hull. This method is presented next. 
 
 



 

THE MOMENT OF INERTIA (MOI) METHOD 
 
The Moment Of Inertia (MOI) method calculates alternate and mean components of complex 
NP load histories. To accomplish that, the history must first be represented in a 2D subspace 
of the transformed 5D Euclidean stress or strain space. The MOI method assumes that the 

2D path/domainD, represented by a series of points (X, Y) from the stress or strain 
variations along it, is analogous to a homogeneous wire with unit mass. Note that X and Y 
can have stress or strain units, but they are completely unrelated to the directions x and y 
usually associated with the material surface. The mean component of D is assumed, in the 
MOI method, to be located at the center of gravity of this imaginary homogeneous wire 
shaped as the history path. Such center of gravity is located at the perimeter centroid (Xc, Yc) 
of D, calculated from contour integrals along the entire path 

        c c
1 1

X X dp, Y Y dp, p dp
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            (1) 

where dp is the length of an infinitesimal arc of D and p is the path perimeter (Fig. 2). 

 

Fig. 2: Load history path, assumed as a wire with unit mass in the deviatoric 2D space 

 
The MOI method is so called because it makes use of the mass moments of inertia (MOI) of 
such homogeneous wire. These moments are first calculated with respect to the origin O of 
the diagram, assuming the wire has unit mass, resulting in 
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Then, the mass moments of inertia of such unit mass wire, with respect to its center of 
gravity (Xc, Yc), are obtained. They are computed from the moments of inertia of the path D 
with respect to its perimeter centroid (Xc, Yc), which are easily obtained from the parallel axis 
theorem, assuming a unit mass: 

            O 2 O 2 O
XX XX c YY YY c XY XY c cI I Y , I I X , I I X Y             (3) 

The MOI method simply assumes that the deviatoric stress or strain ranges, S  Mises or 

e  Mises, depend on the mass moment of inertia IZZ with respect to the perimeter centroid, 
perpendicular to the X-Y plane. This is physically sound, since history paths further away 
from their perimeter centroid PC will contribute more to the effective range and amplitude, 
which is coherent with the fact that wire segments further away from the center of gravity of 
an imaginary homogeneous wire contribute more to its MOI. Note that the use of integral 
parameters to evaluate NP paths is not new, it was already used e.g. in [8] to estimate the 
non-proportionality factor. But the use of a moment of inertia analogy to obtain effective 
ranges is a novel idea, a true alternative for the existing enclosing surface methods. 



 

 
From the perpendicular axis theorem, which states that IZZ = IXX + IYY, and from a dimensional 
analysis, it is found that 

 
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       (4) 

 

CALCULATION OF THE NON-PROPORTIONALITY FACTOR Fnp 
 

To account for NP hardening effects, it is necessary to correctly evaluate the non-
proportionality factor Fnp. The NP factor Fnp can be estimated from the load history path. 
Several methods have been proposed to estimate Fnp. E.g. Itoh [8] estimated Fnp using a 
contour integral definition along the path. This Itoh-Socie method searches for the direction 
of maximum strain in the path, and then it performs an integral average along the entire path 
of the absolute value of the strain components perpendicular to such direction. 
 
The Moment Of Inertia (MOI) method is now used to evaluate Fnp. To accomplish that, 
consider the 2D projection of the deviatoric stress or strain history mentioned before. Now, to 
calculate the directions suffering larger stress or strain magnitudes, the load history path D 
can once again be imagined as a homogeneous wire with unit mass, as it was assumed 
before to calculate the Mises ranges. This is physically sound, since the mass moments of 
inertia IXX and IYY of such wire in the horizontal (X) and vertical (Y) directions are a measure 
of how much the path stretches in the Y and X directions, respectively. 
 

If the path crosses more than once some direction , then it is reasonable to assume that the 
point with maximum magnitude r among them is the one that better represents the 
contribution of the Mises stresses or strains in this direction. This means that the MOI 
equations to compute Fnp must be evaluated only for the enclosing hull (which is not 
necessarily convex) defined by the outer perimeter of the entire history path. Note that this 
hull must be computed for the entire history (since the specimen was virgin up to a certain 
point in time) to be able to account for all non-proportional hardening suffered along the 
specimen life until now (the previously presented MOI method for the range and mean 
calculations, on the other hand, do not make use of any hull, and they are computed for each 
rainflow-counted cycle, not for the entire history). 
 

The MOI Ie in the direction e of the maximum projected deviatoric strain emax from the history 
is then obtained, resulting in 
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EXPERIMENTAL EVALUATION OF THE MOI AND ENCLOSING SURFACE FATIGUE 
LIFE PREDICTIONS 
 
The MOI and enclosing surface estimates of effective ranges are now used to reproduce the 
multiaxial fatigue lives of 304 stainless steel specimens tested by Itoh et al. [8]. Thirteen 
periodic histories are studied, represented by the block loadings shown in Fig. 3 for Cases 0 
through 12. The multiaxial fatigue lives are calculated using the Smith-Watson-Topper (SWT) 
model in Bannantine-Socie’s critical plane approach [1], searching for the plane where the 

damage parameter max/2 is maximized. The material properties used in these 
calculations are: 
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Fig. 3: History paths used in the experimental validation of the equivalent range predictions 

 
Table 1 shows the experimental fatigue lives and the associated MOI, MB and MPH method 
life predictions for each one of the 12 loading histories. The MOI method outperforms the MB 
and MPH method for all cases. The MOI method also outperforms the Itoh et al. method in 
the calculation of Fnp for all 12 experiments, as seen in Fig. 4. 
 

 

Table 1: Fatigue life N (in cycles) experimentally measured and predicted using the Smith-
Watson-Topper damage model and the Moment Of Inertia (MOI), Minimum Ball (MB) and 
Maximum Prismatic Hull (MPH) methods. Note that Cases 1-4 consider 2 cycles per block 
(e.g. the measured life for Case 1 was 1,400 blocks, and thus shown as 2,800 cycles). 
 
 
CONCLUSIONS 
 
The Moment Of Inertia (MOI) method is able to efficiently predict equivalent ranges in 
multiaxial loading histories. Since it is not based on path enclosures, it deals better with path 
shape dependence issues. The method can also be applied to calculate non-proportionality 
factors. Experimental results for 12 different multiaxial histories collected from 
comprehensive studies proved the effectiveness of the MOI method to predict the associated 
fatigue lives, when compared to the existing enclosing surface methods. 
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Fig. 4: Measured and predicted Fnp from the MOI and Itoh-Socie’s methods, for a 304 
stainless steel at strain range levels between 0.7% and 0.8%. 
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