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Abstract. Robotics for rehabilitation and human amplification is imminent to become part of our daily life. The 

juxtaposition of human control capability and machine mechanical power offers a promising solution for human 

assistance and force enhancement. This paper presents an alternative and simple exoskeleton and a Human-Machine 

Interface (HMI) for human strength and endurance amplification using a version of the Hill-type muscle model. 

Pneumatic Artificial Muscles (PAM) are used as actuators for its high power-to-weight ratio. Genetic Algorithms (GA) 

approach locally optimizes the control model parameters for the assistive device using muscle surface 

electromyography (sEMG). The proposed methodology offers three main advantages: (i) it reduces the number of 

electrodes needed to monitor the muscles, (ii) it eliminates the need for user force sensing, and (iii) it reduces the real-

time processing effort which is necessary for embedded implementation and portability due to the decreased 

complexity of the instrumentation system. 
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1. INTRODUCTION  

 

Lack of flexibility and adaptation are two of the main drawbacks of control algorithms for assistive devices when 

compared to human natural control capability. Man and machine integration combines human complex control with 

mechanical power, thus becoming very promising for human amplification. 

The greatest challenge of uniting these two entities relies on developing a Human-Machine Interface (HMI) that can 

control the amplification device with the same naturalness and smoothness of the user movements. Many approaches 

with different physical quantities can be used including electromyography (EMG), electroencephalography (EEG), 

haptics, voice, vision, or some combinations of these (Ormiga, 2010). The difficulty of using this type of bio-signals as 

continuous control commands is the nonlinear and the nonstationary characteristics – in particular the EMG and EEG - 

they provide (Rash, 2003; De Luca, 1993; and Konrad, 2005). Past studies (Fleisher, 2007; Rose et al., 1998; Lloyd and 

Besier, 2002; Au et al., 2005; Shau et al., 2009; Luh et al., 1998; Ullah et al., 2011; Gopura and Kiguchi, 2009; and 

Cavallaro et al., 2006) developed models to extract the desired information from these biological control variables, 

including black-box methods, such as Artificial Neural Networks (ANN), and mathematical models such as the Hill-

type Muscle Model used in this work. 

The present work proposes a different methodology for estimating the torque on the exoskeleton joint using the 

processed and filtered muscular surface electromyography (sEMG). It makes an approximation to the torque exerted by 

the user scaled with a nonlinear gain factor and uses that signal as control input for the wearable robot. The 11kg Naval 

Aluminum exoskeleton performs the task of lifting a payload, while smoothly actuated by pneumatic artificial muscles 

(PAM) - which have an excellent power-to-weight ratio. The validation methodology adopted by this study is done by 

comparing the neural activation level with and without the assistive device during static and dynamic trials. 

The HMIs developed so far usually demand a direct force feedback from the user or rather a very precise dynamic 

model of the exoskeleton in order to decrease its disturbance of the user movements (Gopura and Kiguchi, 2009). 

Muscle natural signals are beneficial for anticipating these movements due to the electromechanical delay (EMD) from 

neural activation to muscle contraction (Rosen et al., 1998). 

This paper is organized in seven sections. Section 2 concerns the mechanical design of the exoskeleton that was 

used as a testbed, including the PAM model. Section 3 explains the Hill muscle model used to process the bio-signals 

and to estimate the control torque. Section 4 shows the parameter optimization methodology using Genetic Algorithms 

(GA) and their calibration for different sessions. Section 5 regards the control of the exoskeleton and the test procedure 

while section 6 shows the experimental results. Finally, section 7 discusses the conclusions of this work and suggests 

future possibilities.  
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2. MECHANICAL DESIGN OF THE EXOSKELETON 

 

The goal of the exoskeleton is to complete the task of lifting a payload.   The mechanical design chosen to reduce 

the degrees of freedom (DOF) to complete the task was selected as the simplest as possible. The proposed design has 

only three DOF, two of which are active. To lift a payload the shoulder and elbow flexion/extension are required; 

flexion actuation assistance is mandatory, while gravity is responsible for extension. 

Moreover, as the exoskeleton is directly connected to the user, it is necessary to guarantee anthropomorphism and 

smoothness. A human upper limb joint is capable of reaching a wide range of movement; however, it can develop 

limited torques (Gopura and Kiguchi, 2009), demanding powerful and light actuators. The solution proposes the use of 

artificial fluidic muscles to drive the system, due to the fact that it has a high power-to-weight ratio, 1-1.5kW/kg 

compared to 50-100W/kg of electric actuators and 100-200W/kg of pneumatic and hydraulic ones (Szepe, 2010). PAMs 

are less likely to leak, and can be very smoothly actuated. 

 

2.1 The Pneumatic Artificial Muscle (PAM) 

 

The PAM is composed of a rubber bladder with an inner fiber cloth (Szepe, 2010). When air is pressurized it 

contracts axially and expands radially (see Fig. 1), acting like a simple action cylinder. It can also be modeled as a 

nonlinear spring with a pressure-controlled stiffness. 

  

 
 

Figure 1. Festo® PAM MAS-10 pressurization 

 

The PAM inherent compliance is useful for safety reasons while protecting the user from high jerk movements but 

its nonlinearity is difficult to model and demands a complex controller. The force it delivers is proportional to the inner 

pressure P, relative contraction h and contraction ratio dh/dt (FESTO Catalogue, 2010). To determine the pressure 

needed to maintain a certain force F given the current contraction, (Szepe, 2010) suggests a static model of the PAM, 

with the force given by  
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The exponential function is the best candidate to fit the high variation that can be evidenced on its behavior. In Eq. 

(1), pi (i = 0,1..5) are unknown parameters that need to be calibrated. This function F(P,h) is invertible and we obtain an 

analytical closed formula for the pressure PF in the muscle:  
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2.2 Determining the PAM 

 

Human upper limb is capable of developing limited torques while reaching a wide workspace. Although fluidic 

muscle can be very light and yet powerful, the main disadvantage is the low contraction capacity – approximately 20% 

of its nominal length at the maximum allowed pressure (8 bar for the MAS-10). Hence, the PAM required to achieve 

such range-to-load tradeoff is impractically long to be mounted directly over the arm link, which varies from 300-

400mm. 

To address that problem, we adopted a cable-driven transmission system which places the PAMs in a rear backpack 

enclosure, allowing these actuators to have a longer extension, such as (Kobayashi et al., 2009). The transmission 
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system consists of a steel cable that slides inside steel tubes with an inner Teflon coat to reduce friction, the same as 

parking brake cables. To increase the torque capacity, three PAMs were to actuate each joint, see Fig. 2. 

          
 

Figure 2. The DOF of the exoskeleton (left); and the final SolidWorks CAD (right) 

 

The entire exoskeleton is made out of Naval Aluminum weighting a total of 11kg (24,3lb).  

 

3.  THE HILL MUSCLE MODEL 

 

3.1 Muscle Force Estimation 

 

The Hill-type muscle is a 3-element scheme (see Fig. 3) that models the muscle contraction-velocity-force relation 

and was first developed by the Nobel Prize British physiologist Archibal Vivian Hill (Hill, 1938).  This straightforward 

method has a relatively high accuracy on predicting the muscle force using the EMG signal and its kinematic 

parameters. It defines a passive parallel element (PE), a passive series element (SE) and an active contractile element 

(CE), as in Fig. 3. 

 

 
 

Figure 3. The 3-element Hill-Type Muscle Model. 

 

The work presented by Rosen (1998) and Cavallaro et al. (2005) propose a model based on a set of equations for 

each muscle in order to predict the joint torque. However, the large set of muscles involved on the actuation of a single 

joint - about 12 for the elbow - presented by their work, demands a proportionally high number of equations and 

parameters, becoming costly for real-time applications. The present work modifies this method in two different ways: 

(i) it predicts the torque at the exoskeleton joint instead of the torque at the user articulation; and (ii) it uses only one 

representative muscle (Biceps Brachii) to estimate the torque activity generated by the muscle effort. The first one is 

sufficient to exclude any type of user sensing – other than the sEMG‘s electrodes -, thus no other HMI is needed. The 

second one, on the other hand, reduces the computational effort for future embedded applications. 

The neural activation is roughly defined as the intensity of the muscle sEMG. To model the signal nonlinearity and 

nonstationary behavior it is defined the relationship between the neural activation a(t) and the measured, amplified and 

filtered sEMG signal u(t) at time t as  
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Parameter A defines the scale of nonlinearity between the two variables. The signal processing consists of: 

 Analog signal amplification with instrumentation amplifier, gain of 805; 
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 Second-order Butterworth high-pass digital filter with 20Hz cut-off frequency; 

 Digital full wave rectification; 

 Second-order Butterworth low-pass digital filter with 6Hz cut-off frequency. 

The first filter excludes the motion artifact due to skin impedance changes when it stretches and the third filter 

returns the envelope of the rectified signal. From Fig. 3 we can extract three relations between the model parameters: (i) 

parallel elements share the same displacement,  

 

;SECEPE LLL   (4) 

 

(ii) series elements share the same force,  

 

;CESE FF   (5) 

 

and (iii) the total force developed by the muscle is given by the sum of the forces on the parallel elements,  
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According to this model, the force (FPE,SE) exerted by the passive parallel and series elements is given by:  
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where Fmax is the maximal force made by each element, S is a shape parameter related to the muscle stiffness, and ΔL(t) 

and ΔLmax are the current and maximal contraction, respectively.  

On the other hand, the active force made by the contractile element,  
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is a function of the neural activation a(t) and the normalized force-length fl are given empirically by 
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It is modeled as a Gaussian function with mean value regulated using φm and φv. The normalized force-velocity fv is 

taken as 
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In Eq. (8), FCEmax is the maximal force that can be generated by the contractile element, and LCE0 is defined as the 

optimal fiber length, i.e., the position where the muscle can develop the greatest force possible. Furthermore, ΔLCE(t)  is 

the relative contraction, and VCE(t) the instantaneous contraction velocity. Moreover, VCE0(t) can be derived as a 

function of the neural activation a(t) and the maximal velocity  VCEmax:  
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where 
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 .412 0max  CECE LV  (12) 

 

Other useful relations are 

 

,05.0 maxmax CEPE FF   (13) 

 

 ,0max TsCEPE LLLL   (14) 

 

,3.1 maxmax CESE FF   (15) 

 

.03.0max TsSE LL   (16) 

 

Constants α, Lmax, and LTs are the percentage of fast fiber in the muscle, the maximal muscle length and the slack 

length, respectively.  

We have experimentally verified that the muscle instantaneous length could be obtained using the joint angular 

position in a third-order polynomial function fitting 
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from which the muscle velocity can be derived: 
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Equations (17) and (18) are used in the presented muscle model to estimate the muscle force FM.  

 

3.2 Exoskeleton Torque Prediction 

 

The work developed by Lloyd and Besier (2002) and Au et al. (2005) states that the muscle moment arm R(θ(t)) varies 

with the joint angular position and when this variation is taken into account the torque prediction becomes more 

accurate. Through an analysis of the moment arm graphs as a function of the joint angle presented by Murray (1995), 

we propose that the relationship between these two variables can be approximately modeled by a third-order polynomial 

function,  
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This moment arm also varies with the forearm pronation/supination angle, but in the present work this angle is fixed 

because this DOF is not allowed by the exoskeleton. 

From Eq. (17) and the force estimated through the Hill model in the previous section, the joint torque can be predicted 

using  

 

  .Mexo TtKT    

 

with TM being the muscle torque so that we obtain 

 

     tRFtKT Mexo   (20) 

 

and K(t) is the instantaneous gain factor. The contribution of the present study to the former Hill method relies on the 

use of K(t) as well as Eq. (17) and Eq. (19). This nonlinear time-varying gain presents three advantages:   

 It establishes a relationship between the user single muscle force estimation with the exoskeleton joint torque 

prediction; 

 It simplifies the model recalibration for every session and user; 

 The recalibration process can be done using the exoskeleton itself and only a few measurements are needed. 
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We proposed this gain factor function by experimentally analyzing the exponential relationship between the torque 

developed by the exoskeleton Texo and the user counterpart TM. As a result, taking into account the neural activation 

variation we define 

 

       ,exp 012
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Where, k0, k1, k2, and k3 are constants to be optimized. 

 

4.  PARAMETER ESTIMATION 

 

In total, each muscle model has 22 floating point parameters to be estimated: 18 for the muscle model plus the extra 

4 parameters necessary to define the gain K(t). The PAM model, on the other hand, contains six constant values to be 

calibrated. 

GA is a heuristic search optimization method capable of finding local minimum of functions with many variables. It 

is inspired by the survival of the fittest principle to estimate the next guess for the optimization iteration. Each guess is 

defined as a chromosome and after each iteration they are combined (crossover) and modified (mutation) to find the 

next estimation. This process continues until the termination criteria is achieved and evolution stops. 

 

4.1 Pneumatic Muscle Model Optimization  

 

In this section, we present the estimation of six constants (pi, i = 0,1..5) using MatLab Genetic Algorithms Toolbox. 

The fitness function to be minimized is the Root Mean Square Error (RMSE) between PAM model estimation and the N 

experimental values obtained for the muscles at each point i,  
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After 1500 generations the best chromosome of a population with 50 individuals found by the algorithm can be seen 

in Table I.  

Table 1. GA parameters optimized for the PAM MAS-10 

 

a 0.0050
 

d -231.72 

b 1.2765
 

e 77.627 

c 0.2024
 

f -173.71 

 

Figure 4 shows the graphical representation of the parameters in Table I used in Eq. (1) to determine the force 

generated by the PAM on the allowed workspace. Together with the force surface, Fig. 4 plots the 360 experimental 

points used as reference for the model optimization with the GA. 

 

 
 

Figure 4. PAM static force surface as a function of the relative contraction and pressure. 
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4.2 Hill Muscle Model Optimization  

 

To find the 22 constants for the physiological muscle, a similar strategy is proposed. However, for this application 

there is no experimental curve to be used as reference. To address this problem the dynamic equation of the exoskeleton 

arm is used to calculate the instantaneous torque, which is then compared with the GA estimation. This equation is the 

same as that of a two-DOF planar manipulator which is well known and defined by the matricial equation 

 

      ,,  qGqqqCqqH   (23) 

 

where H is the inertia matrix, C is the centrifugal and Coriolis effect matrix, G is the gravitational torque vector, q is the 

joints angular posisiton vector, and τ is the torque vector applied to the joints. The angles and axes used are the same as 

those on Fig. 2 and the inertia and distance parameters for the model were obtained with the exoskeleton SolidWorks 

CAD model. 

For the GA optimization the muscle model has to be solved.  Therefore we propose the following methodology to 

calculate the muscle force: 

1. The raw sEMG is filtered and the neural activation level is calculated using Eq. (3); 

2. The exoskeleton joint angles measured by the potentiometers are filtered using a second-order Butterworth 

low-pass filter (30 Hz cut-off) and then differentiated to estimate the joint velocities; 

3. From the angles and velocities it is possible to calculate LCE, Δ LCE, VCE, and R; 

4. Hence, we obtain fl, fv and FCE, which is equal to FSE. 

5. From Eq. (7) it is possible to find the SE displacement, add that value to the CE displacement to get the PE 

displacement; 

6. Again from Eq. (7) we can calculate the force on PE and add that value to FCE to obtain the total muscle force. 

7. From FM we can finally calculate Texo using Eq. (20). 

In this application, the RMSE function did not present satisfactory results as fitness function, hence we adopted 
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For this optimization 2500 generations were necessary to converge to the locally optimal solution for the 22 

chromosomes. Table II presents all the values found for the Biceps Brachii. 

 

Tabela 2: GA parameters for the Biceps Model 

 

 0.6100 a1 [m/rad
-1

] -2.3616 

LCE0 [m] 0.1181 a2 [m/rad
-2

] -1.8965 

LTs [m] 0.2204 a3 [m/rad
-3

] -2.9782 

Lmax [m] 0.5278 b0 [m] -2.7137 

FCEmax[N] 623.3 b1 [m/rad
-1

] 0.2885 

 0.726 b2 [m/rad
-2

] 0.1141 

 7.275 b3 [m/rad
-3

] 0.1777 

 2.7907  4.4781 

 -0.0794  -6.0447 

 0.5624  9.6687 

a0[m] 2.7593  1.9063 

 

It is important to realize that the values presented on Table II may not represent the real parameters for the Biceps 

Brachii on the Hill Muscle Model, as the torque estimated is not the one from the user but the one applied on the 

exoskeleton. On Fig. 5 it is possible to verify the time-varying gain K(t) as a function of the neural activation for the 

optimized parameters using one model for the Biceps and a second one for the Deltoid. This gain allowed to use only 

one electrode to predict the joint torque and thus reduce the overall number of necessary electrodes. 

Figure 6 shows how the optimization process occurs. The GA uses the muscle current position, velocity and neural 

sEMG as input to estimate the torque applied over the exoskeleton using its mathematical model as reference. 

 

 

 

 



J.L.A.S. Ramos, M.A. Meggiolaro 
Use of sEMG to Control an Upper Limb Pneumatic Exoskeleton  

 

 

4.3 Model Calibration  

 

As previously stated, the value of the sEMG will vary depending on anatomical and physiological characteristics. 

Variations between different sessions are expected because of changeable skin conditions and electrode placements. For 

that reason, it would be impractical to evolve the GA for another 2500 generations for every session and user for each  

 
 

Figure 5. Time-varying gain for the Hill model 

 

joint. The solution found was to recalibrate the muscle model only evolving the gain factor K(t) parameters for every 

session. This way, we reduce the problem to find the minimum of a function with only four variables. It was verified 

that, using the previous parameters as the initial population, only approximately 200 generation are necessary to find the 

local minimum for the new parameters. Fig. 7 represents the calibration process after 200 generations. 

 

 

 
 

Figure 6. Optimization process 

 

5. CONTROL OF THE EXOSKELETON 

 

The surface sEMG is recorded using GS27 pre-gelled disposable electrodes from bio-medical and the Signa Gel 

from Parker Laboratories Inc. Its amplification is done using the micro power instrumentation amplifier INA126P from 

Texas Instruments. The angles are obtained using two 10kΩ linear single turn potentiometers and the pressure is 

measured using the PX2 Series Heavy Duty Pressure Transducer from Honeywell. All the signals are acquired using the 

NI 9205 16 bits analog input card and the NI cDAQ 9172 chassis both from National Instruments at a 1.5kHz rate to 

avoid aliasing of the sEMG. To control the PAM the Shadow Pneumatic Control Unit (SPCU) was used, it has 8 on/off 
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valves that can be actuated using serial port commands from the computer (Shadow Robot Company, 2012). The 

MatLab environment was used to control the system along with the Data Acquisition Toolbox (MatLab User’s Guide, 

2002) running in a Sony Vaio 2.16GHz Core 2 Duo notebook. 

In Figure 8 it is possible to verify: 1- the cables that drive the links; 2- the straps that attach the users torso to the 

exoskeleton; 3- the straps that attach the user arm to the exoskeleton; 4- the electrodes that monitor the sEMG; 5- the  

 

 
 

Figure 7. Torque estimation before and after calibration  

 

amplification circuit; 6- the potentiometers used to monitor the joints angle; and 7- the pin where the payload can be 

mounted. 

 

              
 

Figure 8. The exoskeleton system (left); and a trial with a 7 lb (3.2kg) payload (right) 

 

The control loop works in the same way as the GA evaluated the chromosomes. Given the 22 parameters of the 

muscle model and the signal measured, it is possible to estimate the torque the user is applying on the exoskeleton joint. 

The controller then sends this information to the PAM model which drives the exoskeleton, working as a computed 

torque control. On the other hand, the controller amplifies the torque by a given factor under the PAM limitations. As a 
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result this proposed control algorithm produces the virtual experience in which the user barely feels the weight of the 

payload. The control scheme can be viewed on Fig. 9. 

Given the pressure Pd necessary for the control, a proportional controller with gain kp was implemented to drive the 

system pressure Psys to the desired one. 

 

 
 

Figure 9. Control architecture proposed 

 

6. EXPERIMENTAL RESULTS 

 

To validate the methodology presented, experimental tests were performed using the developed exoskeleton. The 

calibration process is fast and simple, taking about five minutes per joint. The calibration can be described by the 

following steps: 

 The user is asked to move his or her arm and forearm together with the inactive exoskeleton through all the 

motion range and at different speeds: low, medium and high, depending on the user capabilities.  

 The same process is repeated with a 7 lb (3.2kg) payload located at the end-effector of the exoskeleton.  

 The software calibrates the muscle model running the GA for about 200 generations (which takes about 

two minutes).  

Finally, the exoskeleton is ready to be used.  

Figure 10 shows the neural activation level when dynamically manipulating a 7 lb (3.2kg) payload with the active 

and inactive exoskeleton. It is possible to verify a significant reduction on the sEMG mean value when the user is 

assisted by the device: from 0.1348V to 0.0437V for the Biceps (208% reduction) and from 0.2369V to 0.0667V for the 

Deltoid (255% reduction).  

According to Konrad (2005), within static submaximal contractions both amplitude and frequency based analysis 

parameters show time domain changes due to muscular fatigue. The amplitude shows an increase whereas the frequency 

based mean or median frequency of the total power spectrum show a decrease over contraction time. 

The second evaluation test concerns the endurance to muscular fatigue while wearing the assistive device. The 

shoulder joint sEMG is evaluated while under static load with the 7 lb (3.2kg) payload at an angle of approximately 35 

degrees during 1 minute (Fig. 11).  

It is possible to verify that while the exoskeleton is on the neural activation level is considerably reduced (128% 

decrease on the mean value). When the device is inactive, the user cannot maintain the static angle and oscillations due 

to muscular fatigue start to occur and the sEMG signal amplitude also starts to grow. On the other hand, while the 

device is active, not only the neural activation level is considerably smaller, but the user is able to statically hold the 

payload. 
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7. CONCLUSIONS 

 

A real-time sEMG-based controller was developed using the Hill Muscle Model to control an exoskeleton actuated 

by fluidic muscles. This type of actuator not only guarantees smoothness while being driven but can also generate large 

forces when compared to its own weight. It is then a good candidate for a lightweight wearable robot. The PAM static 

model parameters were estimated using GA optimization method with satisfactory accuracy. An upper limb exoskeleton 

was designed from the chosen actuator. The aluminum mechanical design ended up with 11kg and could easily be 

applied to an embedded control mobile active suit. 

 

 
 

Figure 10. Neural activation level with and without the exoskeleton assistance (above) 

 

 
 

Figure 11. Fatigue endurance with and without the exoskeleton assistance (above) 

 

For the control algorithm a muscle model was used to estimate the torque applied directly over the exoskeleton joint. 

The proposed method introduces a nonlinear gain factor K(t) which is used to facilitate the recalibration of model 
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parameters. The calibration process takes about five minutes for each joint and is able to converge in approximately 200 

generations of the GA. The task of manipulating a 7  lb payload was performed and it is shown that the exoskeleton 

assistance reduces the neural activation level in over 200%. Also, the task of maintaining the static torque is facilitated, 

reducing de sEMG mean value in about 128%. The exoskeleton shares part of the torque necessary to lift the weight and 

the user supports only a part of the load, increasing the user overall strength and endurance, avoiding muscular fatigue. 

Future work embraces the development of an embedded controller to make the exoskeleton mobile and the 

optimization of the mechanical structure to reduce its weight. 
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