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Abstract. Semi-empirical notch sensitivity factors q have been used for a long time to quantify notch effects in fatigue design. 
Recently, this old concept has been mechanically modeled using sound stress analysis techniques which properly consider the notch 
tip stress gradient influence on the fatigue behavior of mechanically short cracks. This mechanical model properly calculates q 
values from the basic fatigue properties of the material, its fatigue limit and crack propagation threshold, considering all the 
characteristics of the notch geometry and of the loading, without the need for any adjustable parameter. This model’s predictions 
have been validated by proper tests, and a criterion to accept tolerable short cracks has been proposed based on it. In this work, this 
criterion is extended to model notch sensitivity effects in environmentally assisted cracking conditions. 
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1. INTRODUCTION 

As fatigue is associated to two driving forces, one for cyclic and the other for static damage mechanisms, fatigue 
crack growth (FCG) rates on any environment depend on K and Kmax, the stress intensity factor (SIF) range and maxi-
mum, or on any other equivalent pair of parameters, such as K and R  Kmin/Kmax. Even though R is not a crack driving 
force, such definitions are convenient for operational reasons. Long cracks grow by fatigue under fixed {K, R} loading 
conditions if the applied SIF range K is higher than the FCG threshold at the given R-ratio, Kth(R)  KthR. Cracks 
may be considered short while their FCG thresholds are smaller than the long crack FCG threshold, thus while they can 
grow under K < KthR (since otherwise the stress ranges  required to propagate short cracks at a given R would be 
higher than their fatigue limits SL(R)  SLR at that R-ratio) (Lawson et al., 1999). Such statements assume that the 
stresses are induced by external loads only, but if the cracks start from notch tips or from smooth surfaces also loaded 
by residual stress fields caused by plastic strain gradients or any other mechanism, such resident stresses must be added 
to the externally applied stresses as static loading components that affect R but not K.   

Mechanically short cracks larger than the grain with sizes may be modeled by LEFM concepts if the stress field that 
surrounds them is predominantly linear elastic, and if the material can be treated as isotropic and homogeneous in such 
a scale. Since near-threshold FCG is always associated with small scale yielding conditions, to check if short cracks 
really may be modeled in such a way, the idea is to follow Irwin’s steps by first assuming that such concepts are valid 
and then verifying if their predictions are validated by proper tests. Hence, in the sequence, LEFM techniques are used 
to develop a model for the FCG behavior of mechanically short cracks, in particular those that depart from notches, and 
then the notch sensitivity predictions based on it are corroborated by proper experiments. Finally, such concepts are ex-
tended to model notch sensitivity effects under environmentally assisted cracking conditions. 

 
2. THE BEHAVIOR OF SHORT CRACKS IN FATIGUE 

To reconcile the traditional fatigue (crack initiation) limit, SL0  2SL(R  0), with the FCG threshold of long cracks 
under pulsating loads, Kth0 Kth(R  0), El Haddad et al. (1979) added to the physical crack size a hypothetical short 
crack characteristic size a0, a stratagem that forces the SIF of all cracks, short or long, to obey the correct FCG limits: 

I 0K (a a )    , where   2
0 th0a 1 K S   L0                (1)  

In this way, long cracks with a >> a0 do not grow by fatigue if KI a) < Kth0, while very small cracks with 
a  0 do not grow if  < SL0, since KI  (a0) < SL0(a0)  Kth0 in this case. Moreover, as the generic SIF 
is given by KI  a)g(a/w), Yu et al. (1988) generalized Eq. (1) redefining the short crack characteristic size by: 

I 0K (a a ) g( a w )     , where    2
0 th0 L0a 1 K [ S g( a w )]                (2) 

Hence, if a << a0, KI  Kth0 SL0, but when the crack starts from a notch, as usual, its driving force is 
the stress range at the notch root, not the nominal range n normally used in SIF expressions. As in such cases the 
g(a/w) factor includes the stress concentration effect of the notch, it is better to split it into two parts: g(a/w)  (a), 
where (a) quantifies the effect of the stress gradient near the notch root, which for microcracks tends towards Kt, i.e. 
(a  0)  Kt, while the constant  quantifies the effect of the other parameters that affect KI, such as the free surface. 
In this way, it is better to redefine a0 by: 
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   I n 0K ( a ) (a a )     , where      
2

0 th0a (1 ) K S    L0            (3) 

The stress gradient effect quantified by (a) does not affect a0 since the stress ranges at notch tips must be smaller 
than the fatigue limit to avoid cracking, (a  0)  Kt n  (0)n < SL0. However, since SIFs are crack driving 
forces, they should be material-independent. Hence, the a0 effect on the short crack behavior should be used to modify 
FCG thresholds instead of SIFs, making them a function of the crack size, a trick that is quite convenient for operational 
reasons. In this way, the a0-dependent FCG threshold for pulsating loads Kth(a, R  0)  Kth0(a) becomes 

   1 2th0
th0 th0 0

th0 00

K ( a ) a g( a w ) a K ( a ) K 1 a a
K a a( a a ) g( a w )

 
 

  
         

        (4) 

For a >> a0 this short crack FCG threshold tends to Kth0 and becomes independent of the crack size, as it should. It 
may be convenient to assume that Eq. (4) is just one of the models that obey the long crack and short crack limit behav-
iors, introducing in the K0(a) definition an optional data fitting parameter  proposed by Bazant (1997) to obtain: 

 
1// 2

th0 th0 0K ( a ) K 1 a a
 


 




                     (5) 

This equation reproduces the original ETS model when   2, as well as the bilinear limits   SL0 and   
Kth0/(a) when . This additional parameter may allow a better fitting of experimental data, and most data on 
short cracks are contained by the curves generated using   1.5 and   8. However, as fatigue damage depends on two 
driving forces, Eq. (5) should be extended to consider the max influence (indirectly modeled by the R-ratio) on the short 
crack behavior. Thus, if KthR  KthR(a >> aR, R) is the FCG threshold for long cracks, SLR  SL(R) is the fatigue 
limit at the desired R-ratio, and aR is the characteristic short crack size at that R, then: 

 
1/ 2

thR thR RK ( a ) K 1 a a
 


     

, where     2
R thR La 1 K S     R             (6) 

Albeit defect-free micro filaments (whiskers) can be made in lab conditions, structural components always contain 
tiny defects like inclusions, voids, scratches, etc., which in the worst case behave like small cracks. When the size of 
such small defects is not much smaller than a0, their structural effects can thus be estimated assuming they behave as 
mechanically short cracks using LEFM concepts, as detailed by Castro et al. (2013, 2014) and explained following. 

3. INFLUENCE OF SHORT CRACKS ON THE FATIGUE LIMIT OF STRUCTURAL COMPONENTS 

Classical SN and N methods are used to analyze and design supposedly crack-free components, but as it is impossi-
ble to guarantee that they are really free of cracks smaller than the detection threshold of the non-destructive methods 
used to inspect them, their predictions may become unreliable when such tiny defects are introduced by any means dur-
ing manufacture or service. Therefore, structural components should be designed to tolerate undetectable short cracks. 
Despite self-evident, this prudent requirement is still not included in most fatigue design routines, which just intend to 
maintain the service stresses at critical points below their fatigue limits. Nevertheless, most long-life designs work just 
fine, hence they are somehow tolerant to undetectable or to functionally admissible short cracks. However, the question 
“how much tolerant” cannot be answered by SN or N procedures alone. Such problem can be avoided by adding a tol-
erance to short crack requirement to their “infinite” life design criteria which, in its simplest version, may be given by 

 
12

thR F RK a g( a w ) 1 a a
           


 , where     2

R thRa 1 K S    LR       (7) 

Since the fatigue limit SLR includes the effect of microstructural defects inherent to the material, Eq. (7) comple-
ments it by describing the tolerance to cracks (small or not) that may occur in actual service conditions. Such estimates 
can be used e.g. to evaluate the effect of accidental damage on the surface of otherwise well-behaved components, but 
they have some limitations. They assume that the short crack grows unidimensionally (1D), but as they may be small 
compared to the component dimensions, they can really grow in two directions. Moreover, such estimates are valid only 
for cracks with both a and a0 larger than the grain size gr. The local FCG behavior of microcracks with size a < gr is 
sensitive to microstructural features such as the grain orientation, thus they cannot be properly modeled using macro-
scopic material properties. Such problems have academic interest, but as the grains still cannot be mapped in practice, 
they cannot be properly used for structural engineering applications yet, see Castro et al (2013, 2014) for details. 

The SIFs of small mechanical cracks that start at notches with depth b and tip radius  can be estimated by Inglis us-
ing KI  1.12nf1(Kt, a)(a), where f1  y(x)/n is the stress concentration perpendicular to the crack plane at the point 
(x b + a, y  0) ahead of such tips induced by an ellipse with semi-axes b and c and notch tip radius   c2/b. If the 
ellipse axis 2b is centered at the x-axis origin and is perpendicular to the nominal stress n, then (Schive 2001) 
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The stress gradient ahead of notch tips justifies the peculiar behavior of short cracks that start from sharp notches. 
The SIF of short cracks that start at such notch tips first grows fast with their growing sizes a, but after a small a in-
crement they may stabilize or even decrease for a while before growing once again. Indeed, the term a that increases 
KI 1.12(a)f1 can be overcompensated by the abrupt fall in f1 near a notch tip. Such concepts can be used to evalu-
ate the tolerance to fatigue cracks that start from such notches (Castro et al. 2012). Short cracks can be arrested when-
ever their SIFs, which are highly sensitive to the stress gradient ahead of the notch tips, become smaller than the short 
crack FCG threshold at the given R-ratio, which depends on the crack size a while it is not much larger than the charac-
teristic short crack size aR: KI(a)  KthR(a)  crack arrest. 

The notch sensitivity q still is quantified for design purposes by empirical curves fitted to a few data points compiled 
by Peterson (1974) a long time ago. It is used to estimate fatigue limits measured under fixed n and R in notched test 
specimens with a stress concentration factor Kt  Kf  1 + q(Kt  1). However, according to Frost et al. (1999), early 
data showing that small non-propagating fatigue cracks are found at notch tips if SLR/Kt < n < SLR/Kf  goes back as 
far as 1949. It is thus reasonable to expect that q is related to the fatigue behavior of short cracks emanating from notch 
tips. The notch sensitivity can in fact be calculated in this way using relatively simple but sound mechanical principles 
that do not require heuristic arguments, neither any arbitrary data-fitting parameter. To start with, according to Tada et 
al. (1985), the SIF of a crack with size a that departs from a circular hole of radius  is given within 1% by 

     
I

2
6

K 1.1215 a ( x ), x a

0.2 0.31 x x( x ) 2 2.354 1.206 0.221(1 x )(1 x ) 1 x 1 x 1 x

   



    


                  

3x
          (9) 

The FCG condition for cracks that start at such notch borders under pulsating loads is thus 

  1// 2
I th0 th0 0K a a K ( a ) K 1 ( a a )

       


                   (10) 

where Kth0  SL0(a0) Kth0(a >> a0), and a0  (1/)[Kth0/(SL0)]
2. This FCG criterion can be rewritten using 

two dimensionless functions, one related to the notch stress gradient (a/), and the other g(SL0/, a/, Kth0/SL0, 
), which includes the effects of the applied stress range , the crack size a, the notch tip radius , the fatigue resis-
tances SL0 and Kth0, and the optional data-fitting exponent  (if it is used): 

      

    
L0 th0 L0 L0 th0

1/
L0

th0 L0

S K S S Kaa g
S

a K S


      
, , ,  

   
     

  
  

    

         (11) 

Figure 1 plots some /g functions for several fatigue strength-to-load stress range ratios SL0/ as a function of the 
normalized crack length x, for a small notch radius comparable to the short crack characteristic size,  1.40a0, and for 
  Kth0/[SL0(1.4a0)]  1.12(/1.4) = 1.68 and   6. For high applied stress ranges , the strength-to-load ratio 
SL0/ is small, and the corresponding /g curve is always higher than 1, so cracks will initiate and propagate from 
this small Kirsch hole border without stopping during this process, see /g1.4 obtained for SL0/  1.4. On the other 
hand, small stress ranges with load ratios SL0/  Kt  3 have /g < 1, meaning that such loads cannot initiate a fa-
tigue crack from this hole, and that small enough cracks introduced there by any other means will not propagate under 
such low loads. This is illustrated by the curves /g3, associated with the limit case where the local stress range equals 
the material fatigue strength SL0/  3, and /g4, associated with a still smaller load, SL0/  4.  

Three other curves must be analyzed in Fig. 1. The /g2.3 curve crosses the /g  1 line once, thus such an inter-
mediate load level can initiate and propagate a fatigue crack from this small Kirsch hole border, until the decreasing 
/g2.3 ratio reaches 1, where the crack stops because the stress gradient ahead of its tip is sharp enough to eventually 
force KI(a) < Kth(a). Therefore, under this   SL0/2.3 loading, a non-propagating fatigue crack is generated at this 
hole border, with a size given by the corresponding a/ abscissa where /g2.3  1. The /g1.85 curve intersects the /g 
1 line twice. This load level also induces a fatigue crack at this Kirsch hole with  1.40a0 border, which will propa-
gate until reaching the maximum size obtained from the abscissa of the first intersection point (on the left), where the 
crack stops because it reaches KI(a) < Kth0(a). Moreover, cracks longer than the second intersection point will re-start 
propagating by fatigue under   SL0/1.85, until eventually fracturing this Kirsch plate. However, the crack initiated 
by fatigue under such an intermediate pulsating load range cannot propagate between these two intersection points by 
fatigue alone, if the loading parameters {, max} remain constant. Hence, the crack can only grow in this region if 
helped by a different damage mechanism, such as SCC or creep.  
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Fig. 1: Cracks that can start from the border of a (small) Kirsch hole with Kt = 3 may propagate by fatigue and then stop 

if their /g< 1 ( 1.40a0,   1.68, and   6 in this figure).  

The FCG behavior of these two curves seems different in Fig. 1, yet they are similar. Indeed, the /g2.3 curve crosses 
the /g  1 line twice if the graph is extended to include larger cracks, since a long enough crack can always grow by 
fatigue under any given (even small)  range if its SIF range K  (a)g(a/w) grows with the crack size a, as in 
this Kirsch plate. In fact, all /g curves eventually become high enough to propagate a crack for sufficiently large a/ 
values, even those that cannot initiate a crack by fatigue, such as /g4. Finally, the /g1.64 curve is tangent to the /g  1 
line in Fig. 1. Hence, this pulsating stress range  SL0/1.64 is the smallest one that can cause crack initiation and 
growth (without arrest) from that notch border by fatigue alone. Hence, by definition, the fatigue SCF of this small 
Kirsch hole is Kf  1.64, thus its notch sensitivity factor is q  (Kf – 1)/(Kt – 1) = (1.64 – 1)/(3 – 1) = 0.32. Moreover, 
the abscissa of the tangency point between the /g1.64 curve and the /g 1 line gives the largest non-propagating crack 
size that can arise from that hole by fatigue alone, amax. For any other /a0, , and   (a0/) combination, Kf and 
amax can always be found by solving the system  

 
   
   
max max f

max max f

x g x ,K , ,g 1

g x 0 x x g x ,K , , x

  
  

            
              (12) 

Kirsch (circular) holes cause relatively mild stress gradients. Larger holes compared with the short crack characteris-
tic size,  >> a0, are associated to small   (a0/) values and do not induce short crack arrest. For example, Kirsch 
holes with  > 7a0 in a material with   6 do not induce non-propagating fatigue cracks under fixed pulsating loads, 
thus have q  1. That is a sound mechanical interpretation for the notch sensitivity concept. If for a given  Eq. (12) is 
solved for several notch tip radii  using Kth0/SL0, then the notch sensitivity factor q is obtained by: 

fq( , ) [ K ( , ) 1] ( K 1)     t                       (13) 

This approach has four major assets: (i) it is an analytical procedure; (ii) it considers the effect of the fatigue resis-
tances to crack initiation and propagation on q; (iii) it can use the exponent  to generalize the original ETS model, but 
it does not need it neither any other data-fitting parameter; and (iv) it can be easily extended to deal with other notch 
geometries. For example, the SIF of cracks that depart from a semi-elliptical notch with semi-axes b and c, with b in the 
same direction of the crack a, which is perpendicular to the (nominal) stress , can be described by: 

 IK F a b ,c b a                             (14) 

where   1.12 is the free surface factor and F(a/b, c/b) is the factor associated to the notch stress concentration effect. 
Using s  a/(a + b), two expressions for F(a/b, c/b) were introduced by Meggiolaro et al. (2007) by fitting a series of 
finite elements (FE) analyses for several types of semi-elliptical notches:  

   

 

2 2
t tt t

2 s 2t 2
t t t2

t

F a b ,c b f K ,s K 1 exp( K s ) ( K s ), c b

1 exp( K s )F( a b ,c b ) f K ,s K 1 exp( K ) , c b
K s



         
           




         (15) 

Analyzing the life improvements introduced by stop-holes carefully made ahead of fatigue crack tips, Castro et al. 
(2012, 2013, 2014) present fatigue crack re-initiation data that support the notch sensitivity predictions made by this 
methodology.  
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4. NOTCH SENSITIVITY EFFECTS ON ENVIRONMENTALLY ASSISTED CRACKING 

Environmentally assisted cracking (EAC) involves the nucleation and/or propagation of cracks in susceptible mate-
rials immerged in aggressive media. This time-dependent chemical/mechanical damage mechanism may lead to fracture 
under static tensile stresses that may be well below the material strength in benign environments. EAC mechanisms 
have a common feature: unlike other corrosion problems, they depend both on the environment/material pair and on the 
stress state, since cracks cannot grow unless loaded by tensile stresses. Indeed, cracks only grow if driven by tensile 
stresses, and the environment contribution is to decrease the material resistance to the cracking process (Vasudevan and 
Sadananda 2009, 2011). As the terminology stress corrosion cracking (SCC) enhances this mutual dependence, it is 
used here to name all EAC mechanisms when there is no need separate them. Such problems are important for many 
industries, because costs and delivery times for special SCC-resistant alloys are large and keep increasing.  

However, for structural design purposes, most SCC problems have been treated so far by a simplistic policy on sus-
ceptible material-environment pairs: if aggressive media are unavoidable during a component life, the standard solution 
is to choose a material resistant to SCC in such media to build it. Such over-conservative design criteria may be safe, 
but they can also be too expensive if an otherwise attractive material is summarily disqualified in the design stage with-
out considering any stress analysis issues. Decisions based on such an inflexible pass/fail approach may cause severe 
cost penalties, since no crack can grow unless driven by a tensile stress caused by the service loads and by the residual 
stresses induced by previous loads and overloads. 

In other words, although EAC conditions may be difficult to define in practice due to the number of metallurgical, 
chemical, and mechanical variables that may affect them, sound structural integrity assessment procedures must include 
proper stress analysis techniques for calculating maximum tolerable flaw sizes. Such techniques are important in the 
design stage, but they are even more useful to evaluate operating structural components not originally designed for SCC 
service, when by any reason they must work under such conditions due to some unavoidable operational change (e.g. to 
transport originally unforeseen amounts of H2S due to changes in oil well conditions.) Economical pressures to take 
such a structural risk may be inescapable, but such risky decisions can in principle be controlled by the methodology 
proposed as follows, which extends to EAC problems the analysis developed to mechanically quantify notch sensitivity 
effects through the behavior of short fatigue cracks. Indeed, if cracks behave well under SCC conditions, i.e. if LEFM 
concepts can be used to describe them, then a “short crack characteristic size under SCC conditions” can be defined by: 

 SCC
2

0 ISCCa ( 1 ) K S    SCC                     (16) 

In this way, assuming (as usual) that all chemical effects involved in SCC problems can be properly described and 
quantified by the traditional material resistances to crack initiation and propagation under fixed environmental and 
stress conditions, SSCC and KISCC, the a0 concept in SCC follows exactly the same idea of its analogous short crack char-
acteristic size so useful for fatigue purposes: it uses the otherwise separated material resistances KISCC and SSCC to de-
scribe the behavior of mechanically short cracks. Such resistances are well defined material properties for a given envi-
ronment-material pair, and can be measured by standard procedures. Moreover, although SCC problems are time-
dependent, SSCC and KISCC are not, since they quantify the limit stresses required for starting or for growing cracks under 
SCC conditions. Hence, supposing that the mechanical parameters that limit SCC damage behave analogously to the 
equivalent parameters KthR and SLR that limit fatigue damage, a Kitagawa-like diagram can be used to quantify the 
crack sizes a tolerable by any given component that works under fixed SCC and (tensile) stress conditions, see Fig. 2.  

 
Fig. 2: A Kitagawa-Takahashi-like diagram proposed to describe the environmentally assisted cracking behavior of 

short and deep flaws for structural design purposes. 

In other words, if cracks loaded under SCC conditions behave as they should, i.e. if their mechanical driving force is 
indeed the SIF applied on them; and if the chemical effects that influence their behavior are completely described by the 
material resistance to crack initiation from smooth surfaces quantified by SSCC and by its resistance to crack propagation 
measured by KISCC; then it can be expected that cracks induced by SCC may depart from sharp notches and then stop, 
due to the stress gradient ahead of the notch tips, eventually becoming non-propagating cracks, exactly as in the fatigue 
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case. In such cases, the size of non-propagating short cracks can be calculated using the same procedures used for fa-
tigue, and the tolerance to such defects can be properly quantified using an “SCC notch sensitivity factor” in structural 
integrity assessments. Hence, a criterion for the maximum tolerable stress under SCC conditions can be proposed as: 

  SCC

12
max ISCC 0K a g( a w ) 1 a a

        ,    SCC
2

0 ISCC Sa 1 K S   CC      (17) 

In the same way, an expression analogous to Eq. (13) can be used to properly define a “notch sensitivity under EAC 
conditions” by solving for a given  (if it is necessary to better fit the data) the system {/g  1, (/g)x  0} for sev-
eral notch tip radii  using KISCC/(SSCC to obtain 

SCCSCC t tq ( , ) [ K ( , ) 1] ( K 1     )                    (18) 

where qSCC and KtSCC  1 + qSCC(Kt – 1) are the notch sensitivity and the effective stress concentration factor under EAC 
conditions. In this way, qSCC and KtSCC can be seen as analogous to the q and Kf parameters used for stress analyses un-
der fatigue conditions. Such equations can be used for stress analyses of notched components under SCC conditions. 
Hence, they are potentially useful for structural design purposes when over-conservative pass/non-pass criteria used to 
“solve” most practical SCC problems nowadays are not affordable or cannot be used for any other reason. In fact, they 
can form the basis for a mechanical criterion for SCC that can be applied even by structural engineers, since it does not 
require much expertise in chemistry to be useful. Castro et al. (2013, 2014) present data to support such claim.  
 
5. CONCLUSIONS 

The dependence of the fatigue crack growth threshold on the crack size for short cracks and the behavior of non-
propagating cracks induced by environmentally assisted corrosion (EAC) has been mechanically modeled and used to 
estimate the notch sensitivity factor q of shallow and of elongated notches both for fatigue and for EAC conditions, 
from the propagation behavior of short non-propagating cracks that might initiate from their tips. It was found that the 
notch sensitivity of elongated notches has a very strong dependence on the notch aspect ratio, defined by the ratio c/b of 
the semi-elliptical notch that approximates the actual notch shape having the same tip radius. These predictions were 
calculated by numerical routines, and verified by proper experiments. Based on this promising performance, a criterion 
to evaluate the influence of small or large surface flaws in fatigue and in environmentally assisted cracking problems 
was proposed. Such results indicate that notch sensitivity can indeed be properly treated as a mechanical problem. 
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