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Abstract. Notches and cracks are usually treated as two-dimensional problems using solutions from plane elasticity to 
evaluate highly localized stress/strain concentration effects around their tips, which are also associated to high stress 
gradients that cause three-dimensional fields around those tips that can severely restrict local Poisson-induced 
transversal strains. Fatigue crack initiation and growth, plastic zone sizes and shapes, and localized constraint effects 
are typical problems affected by such 3D effects, which may lead to non-conservative damage and life predictions if 
neglected. To quantify how important they can be, first finite element techniques are used to simulate thickness and 
notch tip radius effects in the fields around such tips, and to evaluate their importance from the structural design point 
of view. Then, versatile sub-modeling techniques are used to study similar effects along the fronts of short and long 
cracks. Finally, a stepwise remeshing routine is used to show how an initially straight crack must slightly curve its 
front during its propagation by fatigue, due to the unavoidable 3D effects that always surround real crack tips. 
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1. INTRODUCTION 

For design purposes, the maximum stresses 0 that act at notch tips are usually calculated by using a linear elastic 
(LE) stress concentration factor (SCF) Kt to multiply the nominal stress n that would act there if the notch had no effect 
on the stress and strain fields that surround it: 

0  Ktn                               (1) 

Circular and elliptical notches were studied by Kirsch and Inglis, and since then a few analytical and many numeri-
cal and experimental SCF have been obtained for other notch geometries (Peterson 2008, Savin 1968), but most model 
the notches by their 2D approximations, assuming plane stress (pl-σ), plane strain (pl-ε), or axisymmetric conditions. 
Creager and Paris (1967) estimated SCF from the stress intensity factor (SIF) of a similar crack, but most SIF also as-
sume plane geometries (Tada et al., 2000).  However, 2D models of notched components have limitations, even in sim-
ple cases like a notched plate loaded by a uniform nominal stress. Far from the notch tip, its material works under pl-, 
but the stress/strain fields that surround the tip are in fact 3D, due to the Poisson restriction induced by the gradients that 
act there. A transversal constraint factor Tz can be defined to quantify this restriction at any point by 
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Since very few analytical solutions are available for 3D fields around notches (Youngdahl & Sternberg 1966), 
numerical tools are needed to study most 3D SCF problems. Using finite element (FE) to model many notches, Yu et al. 
(2008) investigated 3D LE fields on tensioned plates, coming to conclusions summarized as follows. SCF along 3D 
notch tips depend on their shape and thickness-to-tip-radius ratio B/. Although the stresses along the notch front y0 
may vary significantly, the y(x,z’)/y0(z’) stress ratio distributions ahead of the notch tips at any given z’ plane are al-
most z-independent. Particularly, the ymp(x)/y0mp ratio along the notched plate mid-plane z  0 is almost insensitive to 
the plate thickness B and to the notch shape up to x/  0.75, and can be approximated by its 2D solution. Moreover, the 
3D affected zone is almost notch shape independent for notches with a/ρ ≥ 1, and it is limited to a distance of about 
3B/8 from the notch tip. The transversal constraint along the notch tip Tz0 is maximal at the notch mid-plane and de-
creases to zero close to the plate free surface. The through-thickness variation of Tz0(z)/Tz0mp is also nearly independent 
of the notch shape, and the constraint level decays with the distance from the notch tip. Unlike cracks, notches have fi-
nite tip radii and cannot provide enough constraint to reach limit pl- conditions along the notch fronts. Instead of single 
SCF Kt  max/n max/n used in 2D analyses, independent K  max/n and K max/n stress and strain concentration 
factors should be used to analyze 3D notch problems. The constraint gradient Tzmp(x)/Tz0mp along the x-direction at the 
mid-plane (z  0) of notched plates is independent of the notch configuration and tip radius, and can be well fitted by  
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3D crack solutions are scarce as well. Bazant & Estenssoro (1979) related the stress field singularity at the free 
surface with angle  with which the crack intersects it. For a pure mode I crack, they showed that for   /2, KI must 
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be zero at the free surface. For the crack to achieve a r1/2 singularity, the   /2 value solely depends on . Nakamura 
& Parks (1990) studied 3D LE fields around ideally straight crack fronts in thick plates within the SIF-dominated zone, 
modeling that region as a disk of radius R centered at the tip, assuming the crack size a long compared to the cracked 
plate thickness (a >> B). The disk boundary (r  R) was loaded by the displacement field generated by the 2D SIF KI 
and KII applied on the plate, the so called Boundary Layer (BL) model. Strong 3D effects were observed within a dis-
tance r  B/2 from the crack tip, with a 3D-2D transition occurring within B/2 < r < 3B/2. The SIF was shown to sig-
nificantly vary along the crack front when compared with 2D predictions. Albeit ingenious, BL models have limitations. 
They assume cracks much longer than the thickness, thus do not model well small cracks, with size a  B or smaller, an 
important problem for fatigue predictions. In addition, the cracked plate stress field is obtained assuming that the plate 
is far-field loaded by the stresses induced by the SIF applied on it. Hence, all K-field assumptions are incorporated by 
BL models. For instance, K-description for the (assumed LE) stress fields in cracked components is strictly valid only 
very close to the crack tips, exactly where plasticity-induced perturbations tend to spoil it. Such assumptions also fail to 
describe the situation where the 3D affected zone surpasses the K-dominated region. Moreover, since K-fields do not 
reproduce the nominal stresses far from the crack tips, non-negligible effects induced by high n cannot be accounted 
for by them. Furthermore, ideally straight cracks are just a convenient mathematical trick, as tests show that they propa-
gate with curved fronts, a phenomenon known as crack tunneling. Extensive research on this phenomenon shows that 
the curved front shape in a through-cracked plate can present a tunneling depth (amax - asurf) up to 0.05 B. This slight 
curvature is shown to bring considerable impact on SIF calculations along the crack front. 

This work first revisits the literature on 3D LE notch analysis and discusses the importance of 3D effects on notch 
design issues. Then it uses powerful sub-modeling techniques, which avoid the K-field domination and long crack hy-
pothesis limitations, to simulate 3D SIF distributions for large single edge cracked plates with several B/a ratios, and to 
evaluate their influence on the KI distribution. Finally, it simulates the 3D growth of an initially straight front crack with 
initial length a0, assuming it can be described by the classical Paris rule, to evaluate how the crack front shape and the 
KI distribution change as the crack grows. 

 
2. 3D EFFECTS ON STRESS FIELDS AROUND NOTCH TIPS 

To evaluate notch-induced 3D stress concentration effects, several Elliptical Holes (EH) and Semi-Elliptical (SE) 
notches with semi-axes a and b in large tensioned plates of width W and height H were simulated in ABAQUS, using 
W/a  H/a  60 to avoid boundary effects within 1% error. To check similar previously published results, E  200GPa 
and   0.33 are used, although   0.29 would better match the chosen modulus, a typical value for steels. The models 
were built with symmetry with respect to the xy plane at the plate mid-thickness and to the xz plane. The EH models re-
ceived additional symmetry with respect to the yz plane. The uniform load is applied as a uniform tensile stress on the 
superior plate face y  H. The notch tip region is described by structured meshes with a maximum element size of 0.1 
at the notch tip, where   b2/a is the notch tip radius. The dimensions of the analyzed notches are listed in Table 1. 

Table 1: Elliptical and semi-elliptical notch parameters analyzed in the present FE models. 

notch b/a /a B/ 
1 1 0.1, 0.2, 0.4, 0.6, 1, 1.5, 2, 3, 4, 6, 8, 10, 20 

0.5 0.25 0.4, 0.8, 2, 2.8, 4, 6, 8, 12, 16, 32, 48 
0.2 0.04 3, 6, 10, 15, 20, 30, 50, 75, 100 

 

elliptical 

0.1 0.01 0.4, 0.6, 1, 2, 4, 6, 10, 20, 40, 60, 100 
1 1 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 7, 10, 20, 30 

0.5 0.25 0.16, 0.24, 0.4, 0.8, 2, 4, 8, 12, 16 
0.2 0.04 0.5, 1, 3, 10, 20, 30 

 
semi- 

elliptical 
0.1 0.01 0.6, 6, 10, 20, 40, 60, 100, 200, 400 

Figure 1 shows K/Kt and K/Kt distributions along the notch tips of EH with b/a  0.5 and /a  0.25. K  K, and 
their maxima occur close to the surface of thick plates (with B >> ), whereas for thinner plates they occur at the plate 
center. K/Kt ratios depend on B/, see Fig. 2. In relatively blunt notches (with low B/ ratios), max and εmax occur at the 
middle plane of the plate, and in sharper notches they dislocate towards the plate free surfaces (located at z/B = 0.5), in 
a slightly decoupled way. K and K can differ up to 15% in such plates. The maximum SCF at the notch tip Kmax can 
be up to about 8% higher than the 2D SCF Kt, a non-negligible difference. Hence Kt measured as usual at free surfaces 
may underestimate max at notch tips, and 3D effects on stress/strain fields along notch tips may indeed be relevant for 
some applications. Maxima stress and strain points indicate preferred locations for crack initiation, whereas the stress 
gradients ahead of such critical points affect how a short crack propagates from them. If cracks prefer to start at maxima 
stress or strain points, as assumed in most damage models, they should do so at the center of thinner notched plates (z/B 
 0) and closer to the free surfaces (z/B  0.5) of the thicker ones, but the growth of such initially small surface cracks is 
strongly dependent on the stress gradient around the notch tip, as discussed elsewhere (Castro et al. 2112). Since the 
studied notches have much stronger stress gradients in the x than in the z-direction, the short crack driving force de-
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crease is sharper ahead than along the notch tip direction. Therefore, cracks initiated at notch tips should prefer to ad-
vance first along them trying to become a passing crack, then along the x-direction, inwards the specimen. However, 
although reasonable, such speculations certainly need further investigation, see Góes et al. (2013) for further details. 

   
Fig. 1: K/Ktn and K/Ktn distributions along the notch front, for an elliptical hole with b/a = 0.5 and /a = 0.25. 

 
Fig. 2: Variation of Kmax/Kt, Kmp/Kt, and Ksurf/Kt with the thickness to notch tip radius ratio B/ for elliptical holes. 

 
3. FE MODELS FOR CRACKS AT THE BORDER OF LARGE PLATES 

The influence of the thickness-to-crack-size B/a ratio on the crack tip fields of large edge cracked plates under uni-
axial loads was evaluated through several LE FE 3D analyses, using sub-modeling techniques to take advantage that 
most of the plate is expected to respond in pl-, with 3D stress state limited to the proximities of the crack tip. A large 
global model for the plate was built using plane elements, with overall dimensions Wglobal/a  Hglobal/a  1000, while 
several 3D sub-models of the region surrounding the crack were built with B/a ratios varying from 0.1 to 100. In-plane 
displacement fields (ux,uy) from the global model solution were applied to every node of the sub-models boundary sur-
faces, while their out-of-plane displacements uz were left free. To maintain kinematic compatibility between global and 
local solutions, the sub-model dimensions Wsub/a, and Hsub/a must be chosen so that Tz  0 within the sub-model limits. 
Since the size of the 3D affected zone for an arbitrary B/a value was not known beforehand, the sub-models were built 
with both Wsub/a and Hsub/a > 5B/a. The results presented following show that such limits were adequately chosen. 

Besides numerically efficient, this procedure has some non-negligible advantages over the BL approach. Its crack 
tip fields are calculated considering all the load characteristics, since they are not restricted by SIF-based hypotheses. It 
recognizes e.g. nominal stress effects far from the crack tip, which are ignored when K-conditions are assumed valid. It 
also allows analyses of relatively shallow cracks with high B/a ratios. For fatigue life estimations the behavior of such 
cracks is much more important than the behavior of long cracks. The sub-models were built assuming symmetry with 
respect to xy and xz crack planes, using 15 elements along their thickness (the z-direction) with sizes varying in geomet-
ric progression from the middle-plane (coarser) to the free surface (finer), with a progression ratio q  1.3. The circum-
ferential direction is divided into 24 elements. In the radial direction, the elements are built with size 0.003B at the very 
crack tip, coarsening in geometric progression with ratio q  1.15. This refinement is enough to guarantee convergence.  

A 2D solution can model this plate far field conditions because it is possible to establish 3 distinct domains for its 
(LE) stress/strain fields: (i) very far from the crack tip the crack is irrelevant, thus if the plate is large enough this do-
main works under constant nominal plane stress field conditions, which may be used to model it and its contour condi-
tions; (ii) in the intermediate domain around the crack tip but not within its dominance zone, the crack affects the fields 
but they remain 2D, since there is no restriction to force them to vary along the z direction; (iii) close to the crack tip 
within its dominance zone such a restriction exists and 3D effects are clearly present, hence the stresses and strains vary 
along z. The intent here is to investigate how such restriction affects short cracks. 3D FE are strictly needed only in this 
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3rd zone, but it is not possible to precisely model its size prior to its simulation. Even so, sub-modeling allows the 3D 
model frontier to be reduced and located somewhere within the 2nd domain without the need to assume a (questionable, 
to say the least) K-dominance there, recognizing the nominal stress effects that are not accounted for by the SIF fields 
and significantly saving computational effort at the same time. Therefore, the simulation results obtained from the sub-
models can furnish more information than would be possible to get from assuming a K-field around the crack tip. 

Figure 3 shows how normalized SIF distributions along idealized straight crack fronts KI/KI,2D deviate from standard 
2D solutions, for a wide range of B/a values including short and long cracks. For long cracks with small B/a, the KI dis-
tribution along the crack front gets closer to standard SIF-dominated far field conditions as expected, but shallow cracks 
behave differently. Their SIF distribution tends to the 2D solution along most of the crack front, but it shows a peak 
close to the plate free surface, which does not appear for the long cracks. This difference may affect how they grow by 
fatigue, thus should not be neglected. Note that “long cracks” mean “cracks large in comparison to the plate thickness 
B”, not to the plate width W. The analysis of very deep cracks, those with large a/W ratios, must include the influence of 
the back face plane on the LE fields ahead of the crack tip, a problem considered beyond the scope of this work. 

 
Figure 3: KI/KI,2D  distribution along the front of short and long cracks. 

Figure 3 also shows that the SIF drops near the free surface (z/B  0.5). As the crack front is assumed straight and 
perpendicular to it in such 3D analyses, KI should be null at that surface, as mentioned above, but such a limit could not 
be achieved with any reasonable mesh refinement. Anyway, its importance is to force real cracks to slightly curve their 
fronts during their propagation, as studied next. Figure 4 shows how the ratios KImax/KI,2D and KImp/KI,2D vary with B/a, 
and compares them with the long crack SIF-dominated limit solution from She & Guo (2007). The maxima SIF tend to 
the long crack solution for cracks with very low B/a, and the middle plate SIFs KImp tend to the limit 2D solution KI,2D as 
B/a becomes large and the cracks get shorter. Moreover, the separation of the KImax/KI,2D curve from the KImp/KI,2D curve 
of the short cracks shows that their KImax value is higher than the reference KI,2D value, about 3% higher for the Poisson 
coefficient   0.3 used in these numerical simulations, see Góes et al. (2013) for details. 

 
Figure 4: KImax/KI,2D and KImp/KI,2D  variation with the crack size in large plates. 

4. GROWTH OF EDGE CRACKS WITH INITIALLY STRAIGHT FRONTS IN LARGE PLATES 

FRANC3D was used to simulate the growth of large and small edge cracks with an initially straight front in large 
plates, assuming LEFM conditions. Since the solution of LE problems is unique and proportional to the imposed load P, 
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the calculated SIF Kcal along the crack front can be interpreted as a shape function, hence Kmax  PKcal, Kmin  PRKcal, 
R  Kmin/Kmax, and K  Kmax – Kmin. Without loss of generality, the analyses developed here considered R  0 and P  1, 
thus in the propagation cases described below K  Kmax  Kcal. Moreover, it is assumed that the local crack advance at 
any specific point of the crack front follows Paris’ fatigue crack growth (FCG) rule. Since the material is assumed iso-
tropic and homogeneous, its FCG behavior along the crack front is also assumed as so, and to depend only on the local 
crack driving force K, since Kmax, the other FCG driving force, is fixed. From the Kcal values at the crack front nodes in 

any given step, a crack growth vector 


a  is obtained by a local increment a multiplied by a unitary vector 

p  in the 

local crack growth direction, which must be parallel to the crack plane (xz in this work notation) and normal to the crack 
front at each point, as the model is symmetric with respect to the xz plane. Since FCG increments are assumed to follow 
Paris’ rule, they can be described for any given node i at every j-th growth step by 

 n
ji jmean ji jmeana a K K                           (4) 

The SIF distribution along the crack front K(z) based on such (reasonable) hypotheses, and the ratios between the 
SIF increments at each crack front node and the mean SIF increment at each load step, ΔKji/ΔKjmean, are all a function of 
ai(z), the crack length at each node in that given step. Hence, Δajmean is an arbitrary analysis parameter, dissociated from 
the number of load cycles. The crack length at the plate free surface, asurf, is adopted as a descriptive parameter of its 
overall length, as it can be measured by optical methods. After solving each particular FCG step, the crack front incre-
ment is smoothed and fitted by a 7th degree polynomial to minimize the unavoidable numerical noise associated with the 
KI(z) solution. Such high order polynomial was chosen to capture the odd KI distributions typical of shallow cracks. The 
simulated edge-cracked plates are built with the same overall dimensions H, B, and W. The initial edge cracks are intro-
duced with idealized straight fronts, but with different depths a0. Values of Δajmean between 0.002B and 0.05B were used 
along the FCG simulation, to deal with convergence issues in the calculation of the crack front in step j+1. The plate 
models assume symmetric boundary condition at the plate mid-plane z  0 and are supposed tensioned by a unitary uni-
formly distributed load at their upper and lower boundaries. Table 2 shows the parameters used in the various models. 

Table 2: Parameters used to model the edge-cracked plates. 
Poisson’s ratio ν  0.3 

Young’s modulus E  200GPa 
Plate Thickness B  5 

Plate Width W 4B 
Plate Height H 2.5B 

Crack initial length a0 0.02B, 0.2B, and B 
Paris’ rule exponent n  2.0 and 4.0 

Figure 5 shows how the 3D to 2D SIF ratio KI(z)/KI,2D varies along the crack front with increasing values of asurf 
for a0/B  0.02 and a Paris’ exponent n  2, and the crack front shape evolution along the plate thickness for the same 
crack growth stages, quantified by the (a(z) – amin)/B ratio. The shapes assumed by the crack front while it grows from 
the initially straight profile with a0/B = 0.02 show first an anti-tunneling and then a tunneling effect, driven by the non-
uniform KI(z) distribution along the crack front at each crack increment. This non-intuitive behavior occurs because the 
crack front naturally curves itself looking for a more uniform SIF distribution along it. The non-uniform SIF distribu-
tion along the initially straight crack front tends to disappear after the crack propagates for a while and gradually as-
sumes its characteristic slight curved front. For other similar results see Góes et al. (2013).  

 
Figure 5: Evolution of the 3D to 2D SIF ratio along the crack front KI/KI2D and of the crack front shape as the crack 

grows from an initially straight front, for a0/B  0.02 and n  2. 
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Such results deserve some comments. Although to assume that FCG rates are controlled by the crack driving forces 
is a consensual hypothesis, there is some dispute on which are the actual FCG driving forces. Some prefer K and Kmax 
while others defend the use of Keff = Kmax – Kop, but this point is irrelevant for this work. Assuming fixed load condi-
tions, Paris’ rule usually fits well the phase II of the FCG curves of many structural alloys. Hence it has been success-
fully used to model 1-D FCG supposing that the crack growth is controlled by K and uniform along their front in that 
phase, neglecting that the fatigue damage process may and probably locally vary along their fronts due to microscopic 
non-homogeneities. Corner and surface 2D cracks can be modeled in the same way, if it is recognized that their SIF 
values vary along their fronts. Such macroscopic procedures are acceptable if the cracks are large enough because the 
specimens used to measure FCG properties generate da/dN curves that are obtained by fitting the average behavior of 
their entire crack front. The original results presented in this paper show how such a classical assumption can explain 
why fatigue cracks like to propagate with a slight curved crack front as a consequence of their attempt to achieve an iso-
KI regime along them. In this sense, such results explain as well why real cracks do not grow by fatigue maintaining a 
straight front. Hence, albeit it is not possible to simulate what is actually happening at every instant along a real crack 
front by using the same Paris’ constants for every node along the modeled crack front, it certainly can be shown where 
this (macroscopically reasonable) assumption leads to. In this way, the results obtained here also demonstrate that 
deeper tunneling effects should be associated with further details not included in this model, like plasticity-induced 
crack closure, for example. Indeed, if as expected closure effects vary significantly along the crack front inducing non-
negligible variations on the Keff values along it, and if Keff is the actual driving force for FCG as assumed by the 
many supporters of the classical Elberian model, then more pronounced tunneling effects could be expected in such 
cases. However, such a fascinating argument cannot be further pursued here due to space limitations.   
 
5. CONCLUSIONS 

FE analyses were used to simulate 3D effects on stress/strain fields close to notch and crack tips. It was observed 
that the stress and strain concentration along the notch tips is variable, but the y gradient ahead of it can be obtained 
from the plane 2D solution, although it causes an out-of-plane restriction on the material that tends to lead the notch tip 
to plane-strain condition as the tip radius grows sharper (ρ → 0). Further on, sub-modeling techniques were used to ex-
amine 3D effects present in cracks on the edge of tensioned large plates with different thickness-to-crack-length (B/a) 
ratios. Crack tip LE stress/strain fields were obtained taking into account the full load description, not restricted to K-
field limitations and long crack assumptions, intrinsically considering T-stress and nominal stress effects. SIF were ob-
served to vary along the crack front, presenting maxima KI values always higher than the 2D solution. The influence of 
the B/a ratio on the KI,mp was obtained, and describes a smooth transient from the long crack solution presented before 
in the literature for B/a  0.1) and the plane 2D solution (for B/a  100). It was observed that KI,max is always higher 
than the 2D predictions. Finally, several FCG were performed, showing that initially straight cracks progressively 
curved their front during propagation, simultaneously flattening the KI distribution along the front. After some transient 
propagation, all cracks converged to the same regime crack propagation front, with tunneling depth close to 2.5% of B. 
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