
Abstract— Robotics for rehabilitation and human 

amplification is imminent to become part of our daily life. The 

juxtaposition of human control capability and machine 

mechanical power offers a promising solution for human 

assistance and force enhancement. This paper presents an 

alternative and simple exoskeleton Human-Machine Interface 

(HMI) for human strength and endurance amplification using 

a modified version of the Hill-type muscle. Pneumatic 

Artificial Muscles (PAM) are used as actuators for its high 

power-to-weight ratio. Genetic Algorithms (GA) approach 

locally optimizes the control model parameters for the assistive 

device using muscle surface electromyography (sEMG). The 

proposed methodology offers advantages such as: reducing the 

number of electrodes needed to monitor the muscles, decreases 

the real-time processing effort, which is necessary for 

embedded implementation and portability, and brings the 

HMI to a neural level. 
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I.  INTRODUCTION  

Man and machine integration combines human control 
complexity with mechanical power, thus becoming very 
promising for human amplification.  

The greatest challenge of uniting these two entities relies 
on developing a Human-Machine Interface (HMI) that can 
control the amplification device with the same naturalness 
and smoothness of the user movements. Many approaches 
with different physical quantities can be used including 
electromyography (EMG), electroencephalography (EEG), 
haptics, voice recognition, visual feedback, or some 
combinations of these [1]. The difficulty of using this type of 
bio-signals as continuous control commands is the time 
delay, the nonlinear and the nonstationary characteristics – 
in particular the EMG and EEG - they provide [2-5], and 
long learning process. Past studies [6-14] developed models 
to extract the desired information from these biological 
control variables, including black-box methods, such as 
Artificial Neural Networks (ANN), and mathematical 
models such as the Hill-type Muscle Model used in this 
work.  
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The HMIs developed so far usually demand a direct force 
feedback from the user or rather a very precise dynamic 
model of the exoskeleton in order to decrease its disturbance 
over the users movements [13]. Muscle natural signals are 
beneficial for anticipating these movements due to the 
electromechanical delay (EMD) from neural activation to 
muscle contraction [7]. 

The present work proposes a different methodology for 
estimating the torque applied to the upper-body exoskeleton 
joints using the processed and filtered muscular surface 
electromyography (sEMG). Making an approximation to the 
torque exerted by the user scaled by a nonlinear gain factor in 
order to control the input to the wearable robot. The 11kg 
exoskeleton performs the task of lifting a payload, while 
smoothly actuated by pneumatic artificial muscles (PAM) - 
which have an excellent power-to-weight ratio. The 
validation methodology adopted by this study is done by 
comparing the neural activation level with and without the 
assistive device. 

This paper is organized in seven sections. Section II 
concerns the mechanical design of the exoskeleton that was 
used as a testbed, including the PAM model. Section III 
explains the Hill muscle model used to process the bio-
signals and to estimate the control torque. Section IV shows 
the parameter optimization methodology using Genetic 
Algorithms (GA) and their calibration for different sessions. 
Section V regards the control of the exoskeleton and the test 
procedure while section VI shows the experimental results. 
Finally, section VII discusses the conclusions of this work 
and suggests future possibilities.  

II. MECHANICAL DESIGN OF THE EXOSKELETON 

The goal of the exoskeleton is to reduce human effort 

when lifting a payload.   The mechanical design reduces the 

degrees of freedom (DOF) in order to complete the task with 

the simplest structure possible. In addition, as the 

exoskeleton is directly connected to the user, it is necessary 

to guarantee anthropomorphism and smoothness. Human's 

upper limb joint is capable of reaching a wide range of 

movement; however, it can develop limited torque [13]. Our 

solution proposes the use of artificial fluidic muscles to 

drive the system, due to the fact that it has an extremely high 

power-to-weight ratio: 1-1.5kW/kg compared to 50-

100W/kg of electric actuators and 100-200W/kg of 

pneumatic and hydraulic ones [15].  

A. The Pneumatic Artificial Muscle (PAM) 

The PAM is composed of a rubber bladder with an inner 
fiber cloth. When air is pressurized it contracts axially 
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and expands radially, acting like a simple action cylinder. 
It can also be modeled as a nonlinear spring with a 
pressure-controlled stiffness [15]. 

 
Fig. 1: Mechanical design of the exoskeleton. 

 

The PAMs inherent compliance is useful for safety 

reasons; protecting the user from high jerk movements. 

But its nonlinearity is difficult to model and demands a 

complex controller. The force delivered is proportional to 

the inner pressure P, relative contraction h and contraction 

ratio dh/dt [16]. To determine the pressure needed to 

maintain a certain force F given a contraction is suggested 

in [15] by 

   (1) 

The exponential function is the best candidate to model the 
high variation that can be evidenced by the PAM behavior. 
In (1), a,b, c, d, e and f are unknown parameters that need 
to be calibrated. The function F(P,h) is invertible and we 
obtain an analytical closed formula for the demanded 
pressure PF given a certain contraction.  

B. Degrees of Freedom (DOF) 

The proposed design has three DOF, two of which are 
active. To lift a payload the shoulder and elbow 
flexion/extension are required; flexion actuation assistance 
is mandatory, while gravity is responsible for extension. 

C. Determining the PAM 

Human upper limb is capable of reaching a wide 
workspace. Although fluidic muscle can be very light and 
yet powerful, the main disadvantage is the low contraction 
capacity – approximately 20% of the nominal length at the 
maximum allowed pressure (8 bar for the MAS-10 [16]). 
Hence, the PAM required to achieve such range-to-load 
tradeoff is impractically long to be mounted directly over 
the arm link - which varies from 300-400mm. 

To address that problem, we adopted a cable-driven 
transmission system which places the PAMs in a rear 
backpack enclosure, allowing these actuators to have a 
longer extension, such as [17] (see Fig. 1). The 
transmission system consists of a steel cable that slides 

inside steel tubes with an inner Teflon coat to reduce 
friction, the same as parking brake cables.  

To increase the torque capacity, three PAMs were to 
actuate each joint. The entire exoskeleton is made of 
Aluminum 6061, weighting a total of 11kg (24,3lb). 

III. THE HILL MUSCLE MODEL 

A. Muscle Force Estimation 

The Hill-type muscle is a three-elements scheme (see Fig. 
2) that models the muscle contraction-force relation. It was 
first developed by the Nobel Prize British physiologist 
Archibal Vivian Hill [18].  This straightforward method has a 
relatively high accuracy on predicting the muscle force using 
the EMG signal and its kinematic parameters. It defines a 
passive parallel element (PE), a passive series element (SE) 
and an active contractile element (CE). 

The work in [7] and [19] proposes a model based on a set 
of equations for each muscle in order to predict the joint 
torque. However, the large set of muscles involved on the 
actuation of a single joint - about 12 for the elbow - presented 
by their work, demands a proportionally high number of 
equations and parameters, becoming costly for real-time 
applications. The present work modifies this method in two 
different ways: (i) it predicts the torque applied at the 
exoskeleton joint by the user instead of the torque at the 
user's articulation; and (ii) it uses only one representative 
muscle to estimate the torque activity generated by the 
muscle effort. The first one is sufficient to exclude any type 
of user sensoring – other than the sEMG‘s electrodes. The 
second one, on the other hand, reduces the computational 
effort for future embedded applications. 

 

Fig. 2: The 3-element Hill-Type Muscle Model. 

 
The neural activation is roughly defined as the intensity 

of the muscle sEMG. To model the signal nonlinearity and 
nonstationary behavior it is defined the relationship between 
the neural activation a(t) and the measured and amplified 
sEMG signal u(t) at time t as 

                                                      (2) 

Parameter A defines the scale of nonlinearity between the 

two variables. The signal processing consists of: 

 Analog signal amplification with instrumentation 

amplifier, gain of 805; 

 Second-order Butterworth high-pass digital filter with 

20Hz cut-off frequency; 

 Digital full wave rectification; 

 Second-order Butterworth low-pass digital filter 

with 2Hz cut-off frequency. 
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The first filter excludes the motion artifact due to skin 

impedance changes when it stretches and the third filter 

returns the envelope of the rectified signal. 
From Fig. 2 we can extract three relations between the 

model parameters: (i) parallel elements share the same 
displacement (L); (ii) series elements share the same force 
(F); and (iii) the total force developed by the muscle is given 
by the sum of the forces on the parallel elements,  

  (3) 

According to this model, the force (FPE,SE) exerted by the 
passive parallel and series elements is given by:  

  (4) 

where Fmax is the maximal force made by each element, S is 

a shape parameter related to the muscle stiffness, and ΔL(t) 

and ΔLmax are the current and maximal contraction, 

respectively.  
On the other hand, the active force made by the 

contractile element,  

  (5) 

is a function of the neural activation a(t) and the normalized 
force-length fl are given empirically by 

  (6) 

It is modeled as a Gaussian function with mean value 
regulated using φm and φv, [7] and [19]. The normalized 
force-velocity fv is taken as 

  (7) 

In (5), FCEmax is the maximal force that can be generated 
by the contractile element, and LCE0 is defined as the optimal 
fiber length, i.e., the position where the muscle can develop 
the maximum force. Furthermore, ΔLCE(t)  is the relative 
contraction, and VCE(t) the instantaneous contraction 
velocity. Moreover, VCE0(t) can be derived as a function of 
the neural activation a(t) and the maximal velocity  VCEmax:  

  (8) 

where 

                                      (9) 

Other useful relations are 

                                  (10) 

                            (11) 

                                                   (12) 

                                                     (13) 

Constants α, Lmax, and LTs are the percentage of fast fiber 

in the muscle, the maximal muscle length and the slack 

length, respectively.  

We have verified empirically that the muscle instantaneous 
length could be obtained using the joint angular position (θ) in 
a third-order polynomial function  

 (14) 

from which the muscle velocity can be obtained deriving (14) 
in respect to time, [20] and [21]. 

B. Exoskeleton Joint Torque Prediction 

The work developed in [8] and [9] states that the muscle 
moment arm r(θ(t)) varies with the joint angular position and 
when this variation is taken into account the torque prediction 
becomes more accurate. Through an analysis of the moment 
arm graphs as a function of the joint angle in [22], we propose 
that the relationship between these two variables can be 
approximately modeled by a third-order polynomial function,  

 (15) 

This moment arm also varies with the forearm 

pronation/supination angle, but in the present work this angle 

is fixed because this DOF is not allowed by the exoskeleton. 
From equation (15) and the force estimated through the 

Hill model in the previous section, the joint torque can be 
predicted using  
 

                  ,      (16) 

where TM is the torque produced by the exoskeleton, FM is the 

PAM force, r(θ) is the instantaneous moment arm and K(t) is 

the instantaneous gain factor. The contribution of the present 

study to the former Hill-type method relies on the use of K(t) 

as well as (14) and (15). This nonlinear time-varying gain 

presents three advantages:  (i) it establishes a relationship 

between the user single muscle force estimation with the 

exoskeleton joint torque prediction; (ii) it simplifies the 

model recalibration for every session and user; (iii) the 

recalibration process can be done using the exoskeleton itself 

and only a few measurements are needed. 
We propose this gain factor function by analyzing 

empirically the exponential relationship between the torque 
developed by the exoskeleton Texo and the user counterpart 
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TM. As a result, taking into account the neural activation 
variation we define 

  (17) 

Where, k0, k1, k2, and k3 are constants to be optimized. 

IV. PARAMETER ESTIMATION 

In total, each muscle model has 22 real valued 

parameters to be estimated: 18 for the muscle model plus 

the extra four parameters necessary to define the gain K(t). 

The PAM model, on the other hand, contains six constant 

values to be calibrated. 

GA is a heuristic search optimization method capable of 

finding local minimum of functions with many variables. It 

is inspired by the survival of the fittest principle to estimate 

the next guess for the optimization iteration. Each guess is 

defined as a chromosome and after each iteration they are 

combined (crossover) and modified (mutation) to find the 

next estimation. This process continues until one of the 

termination criteria is achieved and the evolution 

terminates.  

A. Pneumatic Muscle Model Optimization 

In this section, we present the estimation of six 

constants (a to f) using MatLab Genetic Algorithms 

Toolbox. The fitness function to be minimized is the Root 

Mean Square Error (RMSE) between PAM model 

estimation and the N experimental values obtained for the 

muscles at each point i, 

  (18) 

B. Hill Muscle Model Optimization 

To find the 22 constants for the physiological muscle 
model, a similar strategy is proposed. The torque applied to 
the exoskeleton by the limb is to be estimated using the Hill 
muscle model. The dynamic equation of the exoskeleton arm 
is used to calculate the instantaneous torque, which is then 
compared with the GA estimation. This equation is defined 
by the matricial equation 

  (19) 

where H is the inertia matrix, C is the centrifugal and 

Coriolis effect matrix, G is the gravitational torque vector, q 

is the state vector, and τ is the torque vector applied to the 

joints. 

For the GA optimization the muscle force is calculated 

as follows: 

1.The raw sEMG is filtered and the neural activation level is 

calculated using (2); 

2.The exoskeleton joint angles are and then differentiated to 

estimate the joint velocities; 

3.From the joints angles and velocities it is possible to 

calculate LCE, Δ LCE, VCE, and r; 

4.Hence, we obtain fl, fv and FCE, which is equal to FCE. 

5.From equation (4) it is possible to find the SE 

displacement, add that value to the CE displacement to get 

the PE displacement; 

6.Again from equation (4) we can calculate the force on PE 

and add that value to FCE to obtain the total muscle force. 

7.From FM we can calculate Texo using (16). 

 
In this application, the RMSE function did not present 

satisfactory results as fitness function, hence we define the 
fitness function 

                                      (24) 

C. Model Calibration 

As previously stated, the value of the sEMG will vary 
depending on anatomical and physiological characteristics. 
Variations between different sessions are expected because of 
changeable skin conditions and electrode placements. For that 
reason, it would be impractical to evolve the GA for another 
2500 generations for every session and user for each joint. The 
solution found was to recalibrate the muscle model only 
evolving the gain factor K(t) parameters for every session 
(Fig. 3).  

 
Fig. 3: Calibration session for GA. 

V. CONTROL OF THE EXOSKELETON 

The surface sEMG is recorded using GS27 pre-gelled 

disposable electrodes from bio-medical and the Signa Gel 

from Parker Laboratories Inc. Its amplification is done 

using the micro power instrumentation amplifier INA126P 

from Texas Instruments. The angles are obtained using two 

10kΩ linear single turn potentiometers and the pressure is 

measured using the PX2 Series Heavy Duty Pressure 

Transducer from Honeywell. All the signals are acquired 

using the NI 9205 16 bits analog input card and the NI 

cDAQ 9172 chassis both from National Instruments at a 

1.5kHz rate to avoid aliasing of the sEMG. To control the 

PAM the Shadow Pneumatic Control Unit (SPCU) was 

used [22]. The system is shown in Fig. 4. 
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Fig. 4: The exoskeleton and the acquisition system. 

 

The control loop works in the same way as the GA 

evaluate the chromosomes. Given the 22 parameters of the 

muscle model and the signal measured, it is possible to 

estimate the torque the user is applying on the exoskeleton 

joint. The controller then sends this information to the PAM 

model which drives the exoskeleton. On the other hand, the 

controller amplifies the torque by a given factor under the 

PAM limitations. As a result this proposed controller 

reduces the users effort to manipulate the payload. The 

control scheme can be viewed on Fig. 5. Given the pressure 

Pd necessary for the control, a proportional controller with 

gain kp was implemented to drive the system pressure Psys 

to the desired reference.  

VI. THE EXPERIMENTAL RESULTS 

To validate the methodology presented, experimental 

tests are performed using the developed exoskeleton. The 

calibration process is fast and simple, taking about five 

minutes per joint. The calibration can be described by the 

following steps: 

 The user is asked to move his or her arm and 

forearm together with the inactive exoskeleton through all 

the motion range and at different speeds: low, medium and 

high, depending on the user capabilities.  

 The same process is repeated with a 3.1kg payload 

located at the end-effector of the exoskeleton.  

 The software calibrates the muscle model running 

the GA for about 200 – 500 generations (which takes about 

two minutes).  

 

Finally, the exoskeleton is ready to be used.  

Fig. 6 shows the neural activation level when lifting a 

3.1kg payload with the active and inactive exoskeleton and 

a torque amplification gain of 1.5. It is possible to verify a 

significant reduction on the effort done when lifting the 

load. The bottom graph shows the percentage of increase of 

the neural activation. 

 
 

Fig. 5: Control architecture proposed. 
 

Within static submaximal contractions both amplitude and 

frequency based analysis parameters show time domain 

changes due to muscular fatigue. The amplitude shows an 

increase whereas the frequency based mean or median of the 

total power spectrum shows a decrease over contraction time 

[4]. 

The second evaluation test concerns the endurance to 

muscular fatigue while wearing the assistive device. The 

shoulder joint sEMG is evaluated while under static load with 

the 3.1kg payload at an angle of approximately 35 degrees in 

respect to downward position during 1 minute (Fig. 7). The 

horizontal lines on the second plot represent the mean value 

of the sEMG at each condition. 

It is possible to verify that while the exoskeleton is off 

the neural activation level is much higher (128% increase 

on the mean value). On this condition, the user cannot 

maintain the static angle and oscillations due to muscular 

fatigue start to occur, the sEMG signal amplitude also starts 

to grow. On the other hand, while the device is active, not 

only the neural activation level is considerably smaller, but 

the user is able to statically hold the payload.  

VII. CONCLUSIONS 

A sEMG-based controller was developed using a 

modified Hill-type muscle model to control an exoskeleton 

actuated by fluidic muscles. This type of actuator not only 

guarantees smoothness while being driven but can also 

generate large forces when compared to its own weight. It is 

then a good candidate for a lightweight wearable robot. An 

upper limb exoskeleton was designed from the chosen 

actuator. 

For the control algorithm a Hill-type muscle model was 

used to estimate the torque applied directly over the 

exoskeleton joint. The proposed method introduces a 

nonlinear gain factor K(t) which is used to facilitate the 

recalibration of model parameters. The calibration process 

takes about five minutes for each joint and is able to 

converge in approximately 200-500 generations of the GA. 
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Fig. 6: Neural activation level with and without the exoskeleton assistance. 

 

 
Fig. 7: Fatigue endurance with and without the exoskeleton assistance. 

 

The task of lifting a payload was performed, showing 

that a torque gain factor of 1.5 is enough reduce the neural 

activation in about 67%. Also, maintaining static torque is 

facilitated, reducing de sEMG mean value in about 53%. 

The exoskeleton shares part of the torque necessary to lift 

the weight and the user supports only a reduced part of the 

load, increasing the user overall strength, avoiding fatigue 

and increasing endurance. 

Future work embraces the development of an embedded 

controller to make the exoskeleton mobile and the 

optimization of the mechanical structure to reduce its 

weight. 
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