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Abstract 

Ratcheting is a gradual accumulation of plastic strain that can influence fatigue lives of structural 

components due to the premature exhaustion of the material ductility, much earlier than predicted by 

traditional fatigue crack initiation models. Ratcheting is usually associated with a significant mean 

stress component in either uniaxial or multiaxial stress-controlled histories. The very same process 

can induce mean stress relaxation in strain-controlled histories, affecting fatigue lives due to conse-

quent mean or maximum stress effects. Such processes are mainly caused by a local distortion of the 

yield surface, which would require the use of complex yield functions other than von Mises’ to be 

properly described. The addition of non-linear terms to the kinematic hardening rules compensates for 

this requirement, rendering it possible to model ratcheting effects using the von Mises yield function 

without dealing with distortion. In this two-part work, the formulation of the main non-linear kinemat-

ic (NLK) models is unified into a generalized equation, represented using engineering notation in a 

reduced-order five-dimensional (5D) space that may lower in half the associated computational cost. 

Part I introduces the proposed 5D stress and strain spaces, which are a scaled version of Ilyushin’s 5D 

spaces. These 5D spaces are then applied to the qualitative study of uniaxial ratcheting, multiaxial 

ratcheting, and mean stress relaxation. Part II of this work derives all incremental plasticity equations 

from the NLK approach in the spaces proposed in Part I, and discusses its advantages over the classi-

cal 6D formulation. These NLK models are then used in Part II to quantitatively predict uniaxial 

ratcheting, multiaxial ratcheting, and mean stress relaxation, validated from experiments with 316L 

steel cylindrical and tubular specimens. 

Keywords: Multiaxial fatigue; Ratcheting; Incremental plasticity; Non-linear kinematic hardening; 

Non-proportional loading. 

1. Introduction 

Ratcheting, sometimes called cyclic creep, is the gradual accumulation of any plastic strain com-

ponent with increasing number of cycles [1]. Although this phenomenon is activated by cyclic plastic 

loading, it leads to a steady straining in a certain direction that can affect the fatigue life of structural 

components due to the premature exhaustion of the material ductility, much earlier than its usual crack 

initiation life. It can happen independently of temperature, even though temperature effects can influ-

ence ratcheting by changing the yield strength and the hardening or softening behavior of the material. 

Ratcheting is usually associated with uniaxial or multiaxial load histories containing mean stress 

components. Any loading history that triggers the unsteady effects associated with ratcheting is called 
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an unbalanced history. Balanced histories, on the other hand, can also present complex transient elas-

toplastic hysteresis loops due to strain hardening or softening effects, however after them the material 

behavior involves a closed elastoplastic loop, with no net accumulation of plastic deformation.  

In unbalanced histories, plastic strain accumulation can continue even after the strain hardening 

or softening transient ends, generating hysteresis loops that do not fully close. But ratcheting rates may 

decay as a function of the accumulated plastic strain, until reaching stabilized closed hysteresis loops, 

in a plastic shakedown process. In some cases, it is possible that the steady-state is not only a closed 

loop but it is also perfectly elastic, in which case the transient behavior is called elastic shakedown. 

There are two main types of ratcheting: uniaxial and multiaxial. The first is caused by an unbal-

anced uniaxial (or any other proportional) history, while the latter requires unbalanced multiaxial non-

proportional (NP) conditions, both under stress control. If, on the other hand, the load history is under 

strain control, then the same microstructural mechanisms that cause uniaxial or multiaxial ratcheting 

are responsible for gradually reducing mean stress components towards zero. This phenomenon, called 

mean stress relaxation, can be interpreted as an inverse ratcheting problem, and may be present in 

both uniaxial and multiaxial strain-controlled histories. 

In Part I of this two-part work, reduced-order five-dimensional (5D) stress and strain spaces are 

proposed, which significantly decrease the computational cost in the incremental plasticity formula-

tions required to predict the material behavior subjected to unbalanced stress or strain histories. Its ap-

plication to the qualitative description of ratcheting and mean stress relaxation is discussed, while 

quantitative evaluations are the subject of Part II, which derives the NLK incremental plasticity equa-

tions in the proposed 5D spaces. The 5D representation of stresses and strains is presented next. 

2. Five-dimensional stress and strain formulation 

2.1 Voigt-Mandel’s notation 

Stress and strain tensors can be represented as nine-dimensional (9D) vectors [2], avoiding the 

need to work with tensor operations. Even better representations were proposed by Voigt and Mandel 

[3], taking advantage of shear symmetries to express the stress or strains as six-dimensional (6D) vec-

tors. Denoting i and si as the stress components and their deviatoric parts, and analogously i and ei 

for the strain components, then Voigt-Mandel’s vector representation of the stresses, strains, deviatoric 

stresses, and deviatoric strains used in this work become 

T
x y z xy xz yz

T
x y z xy xz yz

T
x y z xy xz yz

T
x y z xy xz yz

2 2 2

2 2 2

s s s s 2 2 2

e e e e 2 2 2

      

      

  

  

    


   


  
 
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          (1) 

where ij and ij are shear strain components, and T stands for the transpose of a vector. Voigt-

Mandel’s 6D notation is extensively used in solid mechanics to model stress-strain relations, particu-



 

larly to improve computational efficiency in numerical structural mechanics software, since it only 

needs six scalar variables to represent each 33 tensor. 

The 2 terms in Voigt-Mandel’s vector notation makes it geometrically equivalent to the tensor 

notation. The transformation from 6D stresses or strains to their deviatoric part can be represented by a 

66 projection matrix [A6D] through 6Ds A    and 6De A   , where 

 6 D

2 / 3 1 / 3 1 / 3 0 0 0

1 / 3 2 / 3 1 / 3 0 0 0

1 / 3 1 / 3 2 / 3 0 0 0
A

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

  
  
  
 
 
 
  

                  (2) 

If   is elastoplastic, then it is possible to represent its elastic and plastic components in Voigt-

Mandel’s notation through el pl    , where 

2 2 2

2 2 2

el el el el el el

pl pl pl pl pl pl

T
el x y z xy xz yz

T
pl x y z xy xz yz

      

      

 
 

 
 

            (3) 

2.2 Ilyushin deviatoric spaces 

When dealing with multiaxial stress-strain calculations, it is a good idea to work in stress or strain 

spaces with reduced dimensions, to save computational cost without modifying the results. By work-

ing in the deviatoric space, several equations can be simplified, e.g. Hooke’s law becomes a scalar op-

eration instead of involving stiffness matrices. Voigt-Mandel’s 6D vectorial representation of the de-

viatoric stresses s  and strains e  is a good choice, since it is geometrically equivalent to the deviatoric 

tensors, and Hooke’s law only requires a scalar elastic parameter 2G, where G is the shear elastic 

modulus. 

As the deviatoric stresses sx, sy and sz are linearly-dependent, since sx  sy  sz  0, it is possible to 

reduce the deviatoric stress space dimension from 6D to 5D, defining a 5D deviatoric stress vector 

s = [s1 s2 s3 s4 s5]
T
 [4]. There are infinite ways to do this, e.g. defining s3, s4 and s5 as proportional to 

the shear stresses xy, xz and yz, while representing the normal stresses x, y and z by their hydro-

static component h and two new variables s1 and s2, through 

x1 y1 z11 x

2 x2 y2 z2 y

h z

a a as

s a a a

1 3 1 3 1 3




 

    
      
    

    

                    (4) 

where the user-defined coefficients ax1, ay1, az1, ax2, ay2 and az2 are values that make the transformation 

matrix rows [ax1  ay1  az1], [ax2  ay2  az2], and [1/3  1/3  1/3] become linearly independent. 

To avoid undesirable geometric distortions in this transformation, the axes associated with s1, s2 

and h should also be orthogonal. Hence, the axes associated with the components s1 and s2 should be 



 

defined on the deviatoric plane and perpendicular to each other. Using this requirement, a family of 

coordinate transformations involving a scaling factor ks and a rotation angle s can be proposed, see 

Fig. 1(left), where 

x xo o
x1 y1 z11 s s s

y s yo o2 x2 y2 z2 s s sz z

a a as cos( ) cos( 120 ) cos( 240 )
k

s a a a sin( ) sin( 120 ) sin( 240 )

 
  

 
   

                                 

         (5) 

 

Fig. 1: Coordinate transformations between the normal stresses x, y and z and the deviatoric stress-

es s1 and s2 on the deviatoric plane, for a generic scaling factor ks and rotation angle s (left) 

and for the adopted ks  1 and s  0
o
 (right). 

This is a generalization of the classical Ilyushin’s transformations [5], which adopted the particu-

lar scaling factor o
sk cos35.3 2 3  . Defining s3  ks3xy, s4  ks3xz and s5  ks3yz, it can be 

shown that, for any s, 
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 
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s x y z x y x z y z1 2

Mises s
2 2 2 2 2 2 2

s xy xz yz4 53

s s k
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  

      

           (6) 

where Mises is the von Mises equivalent stress, and | . | stands for the Euclidean norm of a vector. Note 

that Ilyushin’s o
sk cos35.3 2 3   makes the 6D s  and the 5D s  have the same norm.  

On the other hand, adopting instead ks  1 conveniently results in Mises| s |   . The resulting 

transformation between the 5D deviatoric stress s  and the 6D stress   becomes s ss A( k , )    , 

where the projection matrix A(ks, s) is given by: 

o o x
s s s

1 yo o
s s s2 z

s3 xy
4

xz5
yz

s

cos( ) cos( 120 ) cos( 240 ) 0 0 0
s
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ks 0 0 0 3 2 0 0 2

s 0 0 0 0 3 2 0 2s
0 0 0 0 0 3 2 2
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   








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   
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   
     
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





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Note that the 6D-to-5D projection matrix adopted by Papadopoulos [6] is a particular case of Eq. 

(7), namely for A(ks 1/3, s 0
o
). The 5D Euclidean sub-space E5s adopted in this work uses instead 

a projection matrix A(ks 1, s 0
o
), see Fig. 1(right), to make its metric | s |  equal to Mises (note that 

the prime in the vector notation means that it is defined in the 5D space) 
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    
           

          (8) 

Such adopted transformation remains unchanged if x, y and z are replaced respectively by their 

deviatoric components sx, sy and sz, therefore  

 
T

1 2 3 4 5s s s s s s A A s                     (9) 

where 

        


  

y1 x z x 2 y z y z

3 xy 4 xz 5 yz

s ( ) 2 3s 2 ,   s ( ) 3 2 ( s s ) 3 2

s 3,   s 3,   s 3

   

  
             (10) 

The above defined 5D deviatoric stress vector s  has three important properties: 

1. The Euclidean norm of the 5D vector s  from the E5s deviatoric sub-space is equal to the Mises 

equivalent stress Mises, thus 

Mises Mises| s | | s | / 2 3 3                   (11) 

2. The Euclidean distance in the E5s space between two stress states (points) A and B, defined by 

As  [s1A s2A s3A s4A s5A]
T
 and Bs  [s1B s2B s3B s4B s5B]

T
, respectively associated with the 6D devia-

toric stresses As  and Bs , is equal to the Mises range Mises between these stress states: 

B A B A Mises Mises|s s | |s s | / 2 3 3                 (12) 

3. The locus of the points that have the same range Mises with respect to a stress state s  in E5s is 

the surface of a hypersphere with center in s  and radius Mises, a corollary from the second 

property. 

Note that such properties are valid for any projection matrix with a scaling factor ks  1, inde-

pendently of the choice of s, i.e., for any projection matrix A(1, s). 

2.3 Elastic and plastic deviatoric strain spaces 

For strain histories, it is also possible to represent the deviatoric strains in 5D strain-based sub-

spaces. In this work, the same A(1, 0
o
) projection matrix is used for strains, resulting in the 5D Euclid-

ean sub-space E5e with coordinates 



 

 
T

1 2 3 4 5e e e e e e A A e                           (13) 

where 

y z y z y z
1 x x 2

xy yzxz
3 4 5

e e3
e e ,  e 3 3

2 2 2 2

e 3,  e 3,  e 3
2 2 2

   


 

  
    


   


           (14) 

This 5D deviatoric strain e  in the defined sub-space E5e also has three important properties, very 

similar to the E5s stress sub-space properties: 

1. The Euclidean norm of the 5D vector e  divided by 1   is equal to the Mises equivalent strain 

Mises: 

Mises
Mises

| e | | e |1 1
3

1 1 1 22 3




  


    

  
              (15) 

where   is the effective Poisson ratio, a weighted average between the elastic  and plastic 0.5 

Poisson ratios. 

2. The Euclidean distance in the E5e sub-space between two points, divided by 1  , is equal to the 

Mises strain range Mises between these strain states. 

3. The locus of the points with same Mises with respect to a point e  in the E5e sub-space is the sur-

face of a 5D hypersphere with center in e  and radius Mises (1 )   , a corollary from the sec-

ond property. 

The 5D deviatoric stresses and strains proposed above can represent any multiaxial history, even 

at points below the surface of the specimen. In the particular case of points on a free surface perpen-

dicular to the z direction, where xz  yz  0 and xz  yz  0 but allowing z  0 (due e.g. to a surface 

pressure), the proposed deviatoric stress and strain vectors can be further reduced to 3D sub-spaces  

 

 

T
y z y zT

3D 1 2 3 x xy

T
y z y z xyT

3D 1 2 3 x

s s s s 3 3
2 2

e e e e 3 3
2 2 2

   
 

    


   
    
  


  
   

 

          (16) 

Moreover, for surface histories consisting of combinations of only uniaxial tension x and torsion 

xy, 2D sub-spaces could be used to simplify even further the representation of the deviatoric stress and 

strain vectors 

 

 

TT
2D 1 3 x xy

T
T xy

2D 1 3 x

s s s 3

e e e (1 ) 3
2

 


 

     
  
     
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              (17) 



 

Such simplifications are a major advantage of the E5s and E5e spaces. For instance, since the stress 

component x shows up in all deviatoric components sx, sy and sz, a simple tension-torsion history 

would normally need to be represented in a 4D sub-space 
T

x y z xys s s 2   if Voigt-Mandel’s no-

tation was used, instead of the above reduced 2D formulation. Note that, for uniaxial histories, the 

trivial scalar sub-spaces  1D 1s s  and  1D 1e e  could be adopted. 

Instead of having to deal with the effective Poisson ratio  , which is an approximation combin-

ing the elastic  and plastic 0.5 Poisson ratios, it is much better to represent the deviatoric strain as a 

sum of its elastic and plastic components el ple e e    in 5D: 

 el el el el el

T
el 1 2 3 4 5 el ele e e e e e A A e                   (18)  

pl pl pl pl pl

T

pl 1 2 3 4 5 pl ple e e e e e A A e                    (19) 

where el and pl subscripts stand respectively for elastic and plastic components, and 

el el el el el el
el el el el

el elel
el el el

y z y z y z
1 x x 2

xy yzxz
3 4 5

e e3
e e ,    e 3 3

2 2 2 2

e   3,  e   3,  e 3
2 2 2

   


 

  
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
   
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        (20) 

pl pl pl pl pl pl

pl pl pl pl
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3 4 5

e e3
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   


  

  
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


  
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        (21) 

The 5D plastic strain space defined by ple  is hereby called E5p space. Note that such ple  vector, 

multiplied by 3/2, is identical to the 5D representation of plastic strains proposed by Tanaka [7]: 

pl pl pl pl pl

pl

T
x y xy xz yz

pl x

Tanaka's 5D deviatoric space

e 2e3
e e

2 3 3 3 3

   
    

 
           (22) 

since the identity expl  eypl  ezpl  0 implies that eypl – ezpl  expl  2eypl. Therefore, Tanaka’s efficient 

non-proportional hardening model [7] can be directly computed in the proposed E5p formulation, 

without requiring any additional plastic strain projection. 

Similarly to the E5s stress sub-space, 3D and 2D versions of the strain spaces can also be defined 

respectively under free-surface and tension-torsion conditions, resulting in 

el el el el el
el el

pl pl pl
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               (24) 

Note that the plastic 2D sub-space where pl2De  is represented is equivalent to the classic Mises 

diagram xpl xypl/3 multiplied by 3/2. But the common practice of representing the elastoplastic 

strain history in tension-torsion tests using an x  xy/3 diagram is only appropriate if plastic strains 

dominate, i.e. if x  xpl,xy  xypl and thus pl2D 2De e . Otherwise, el2De  and pl2De  should be stud-

ied in separate elastic and plastic diagrams, or altogether in a single elastoplastic diagram 2De  using 

the effective Poisson ratio. 

2.4 Direct and inverse transforms between the adopted 6D and 5D spaces 

The inverse transform from the 5D to the 6D space is now calculated using the projection matrix 

A defined in Eq. (8). Two important properties of A are T
5 5A A 1.5 I     and T

6DA A 1.5 A   , where 

I55 is the 55 identity matrix and A6D is the projection matrix onto the 6D deviatoric space in Voigt-

Mandel’s notation, shown in Eq. (2). These identities would also be valid for any other projection ma-

trix A(ks  1, s), independently of the orientation s of the chosen s1-s2 coordinate frame. However, A 

is a 5 6 matrix, thus it cannot be inverted since it is not square. But its right pseudo-inverse could be 

used instead.  

The right pseudo-inverse of a matrix X, defined as pinv(X)  X
T(XXT

)
1

, is a generalization of the 

inverse that is valid even for non-square matrices. If XXT
 is invertible, then it is easy to show that 

Xpinv(X)  (XXT
)(XXT

)
1

 is equal to the identity matrix, analogously to the properties of a square in-

verse matrix. The right pseudo-inverse of A becomes then 

T T 1 T 1 T
5 5pinv( A) A ( A A ) A (1.5 I ) 1.5 A 
                  (25) 

which can be used to calculate the inverse transform from the considered 5D stress sub-space back to 

6D. But, even though s A    , in general it is not true that pinv( A) s  is equal to the original 6D 

stress  . Instead, this product results in the 6D deviatoric stress s  

T
6 D

2 2 3
pinv( A ) s A ( A ) A s s pinv( A ) s

3 3 2
                            (26) 

The reconstruction of the 6D   would also require the knowledge of the 6D hydrostatic stress 

vector  
T

h h 1 1 1 0 0 0    to obtain hs   . In an analogous way as done for stresses, the 

pseudo-inverse can also be used to project 5D strains back to their 6D space. The direct and inverse 

transformations using the proposed projection matrix A are summarized in Tables 1 and 2. 



 

Table 1: Direct and inverse matrix transforms between Voigt-Mandel’s 6D and the proposed 5D   

spaces, where T
5 5A A 1.5 I     and T

6DA A 1.5 A   . 

transform From 6D to 5D From 5D to 6D 

stress s A A s A s        T
hs (2 3)A s     s       

elastoplastic 

strain 
e A A e       T

he (2 3)A e     e        

elastic 

strain 
el el ele A A e       T

el el el el he (2 3)A e     e        

plastic 

strain 
pl pl ple A A e       T

pl pl ple e (2 3)A e      (since h  is elastic) 

Table 2: Direct and inverse scalar transformations between the 6D and 5D representations. 

transform From 6D to 5D From 5D to 6D 

stress 

y z1 x

2 y z

3 xy 4 xz

5 yz

s ( ) 2

s ( ) 3 2

s 3,  s 3

s 3

    

   

   

 

 

hx 1

hy 1 2

hz 1 2

xy 3 xz 4 yz 5

s 2 3

s 3 s 3

s 3 s 3

s 3 ,  s 3 ,  s 3

   

   

   

     

 

elastoplastic 

strain 

y z1 x

2 y z

3 xy

4 xz

5 yz

e ( ) 2

e ( ) 3 2

e 3 2

e 3 2

e 3 2

     

   

 

 

 

 

,    

hx 1

hy 1 2

hz 1 2

xy 3 xz 4

yz 5

e 2 3

e 3 e 3

e 3 e 3

e 2 3 e 2 3

e 2 3

    

    

    

     

  

 

elastic 

strain 

el elel el

el el el

el el

el el

el el

y z1 x

2 y z

3 xy

4 xz

5 yz

e ( ) 2

e ( ) 3 2

e 3 2

e 3 2

e 3 2

     

   

 

 

 

 

,    

el el

el el el

el el el

el el el el

el el

hx 1

hy 1 2

hz 1 2

xy 3 xz 4

yz 5

e 2 3

e 3 e 3

e 3 e 3

e 2 3 e 2 3

e 2 3

    

    

    

     

  

 

plastic 

strain 

pl plpl pl

pl plpl

pl pl

pl pl

pl pl

y z1 x

y z2

3 xy

4 xz

5 yz

e ( ) 2

e ( ) 3 2

e 3 2

e 3 2

e 3 2

     

    

  

  

  

 

,    

pl pl

pl pl pl

pl pl pl

pl pl pl pl

pl pl

x 1

y 1 2

z 1 2

xy 3 xz 4

yz 5

e 2 3

e 3 e 3

e 3 e 3

e 2 3 e 2 3

e 2 3

  

   

   

     

  

 

In summary, the 5D representation of stresses and strains is highly recommended, since it reduces 

the dimensionality of the stress-strain relations from 6D to 5D. For either free-surface conditions, un-

notched tension-torsion, or uniaxial histories, respectively 3D, 2D, or 1D sub-spaces of the 5D repre-



 

sentation can be used, significantly decreasing computational cost. Recall that, even for a uniaxial his-

tory in x, Voigt-Mandel’s 6D deviatoric representation would need to use three dimensions due to its 

redundant formulation, since x is present in all three normal deviatoric components sx, sy and sz. On 

the other hand, with a uniaxial x present only in the s1 expression, the 5D representation could use a 

single component in this case without problems. 

The proposed 5D stress and strain formulation will be used in Part II of this paper to better de-

scribe non-linear incremental plasticity models, which are required for predicting ratcheting and mean 

stress relaxation effects. Such effects are discussed next, in the light of the proposed 5D formulation. 

3. Uniaxial Ratcheting Behavior and Definitions 

Uniaxial unbalanced histories are essentially cyclic histories with a significant mean stress com-

ponent. Such histories may present plastic strain accumulation in the direction of the mean stress, 

called uniaxial ratcheting. Uniaxial ratcheting is a result of a different non-linear behavior of the mate-

rial in tension and in compression, i.e. anisotropy between tension and compression. Masing [8] as-

sumed that the elastoplastic hysteresis loop curves should be geometrically similar to the cyclic stress-

strain curves magnified by a scale factor of two, implying that cyclically-stabilized constant-amplitude 

elastoplastic loops should always close. Uniaxial ratcheting behavior, however, is one in which the 

steady-state of a cyclic uniaxial loading is an elastoplastic loop that does not close, causing the materi-

al to accumulate a net strain during each cycle. From a microscopic point of view, this non-Masing 

behavior indicates an unstable microstructure in the fatigue process. 

Consider the uniaxial load history shown in Fig. 2, with stresses varying between a peak 

 1D maxs   (max > SYc) and a valley  1D Ycs S  , where SYc is the cyclically-stabilized yield 

strength. For simplicity, the material stress-strain behavior is assumed bi-linear and without any iso-

tropic hardening transient. The stress levels reproduced in Fig. 2 are compatible with kinematic hard-

ening, where yielding in the opposite direction occurs after a stress variation x  ±2SYc, but the hys-

teresis loops do not close. This is caused by a non-Masing behavior, where plastic straining along the 

path AB is larger than in CD, even though both paths are subjected to the same stress variation. This 

non-Masing asymmetrical behavior causes the slope of the tension path AB to be lower than the slope 

of the compression path CD, resulting in a net increase in plastic strain after each loop. Note that such 

increase in plastic strain levels cannot be explained by isotropic softening, since all paths AB, A’B’ 

and A”B” are parallel, representing a stabilized strain hardening/softening behavior. Similarly, paths 

CD, C’D’ and C”D” are also parallel, even though they are not parallel to AB due to the non-Masing 

behavior. 

Since isotropic softening under stress control can also cause a net increase in plastic strain per 

loading cycle, it is useful to separate ratcheting from isotropic softening effects by defining the ratch-

eting strain as the mean strain along each cycle. In Fig. 2, the ratcheting strain ri is thus defined after 

the first cycle as r1  (B + D)/2, after the second cycle as r2  (B’ + D’)/2, after the third cycle as 

r3  (B” + D”)/2, and so on. The ratcheting rate per cycle is then the difference d/dN  (ri+1  ri) 

between the ratcheting strains from consecutive cycles.  
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Fig. 2: Uniaxial ratcheting for a bi-linear material subjected to an unbalanced stress history between 

max > SYc and SYc, under stress control, in the absence of strain hardening or softening. 

This definition of the ratcheting rate is able to account only for the non-Masing asymmetrical be-

havior. It is independent of any isotropic transient, since isotropic hardening or softening in fully-

reversed (zero mean stress) tension-compression under stress control would result in zero mean 

strains, therefore ri  0 and thus d/dN  0, even though there is an increase (or decrease) of the max-

imum strain per cycle due to cyclic softening (or hardening, respectively). 

In summary, cyclic softening and ratcheting are two different processes, the first caused by a 

symmetrical softening behavior in both tension and compression, and the second by a tension-

compression asymmetry in the stress-strain behavior that may happen even after the strain harden-

ing/softening transient. Both effects should be separately modeled to independently predict their simi-

lar capability to cause a net increase in plastic strain per loading cycle, even though sometimes their 

effects are shown superposed in the literature and simply called a ratcheting process. 

The ratcheting rate d/dN may increase with both the stress range and the mean stress [9], howev-

er it is normally much more sensitive to the mean stress [10]. The ratcheting rate usually varies with 

the number of cycles, even for constant amplitude loadings. For high stress ranges, the ratcheting rate 

d/dN tends to increase at each cycle, until the component fails due to exhaustion of the material duc-

tility, see Fig. 3(a). For lower stress ranges, the ratcheting rate tends to decrease until reaching steady-

state with d/dN = 0, associated with a stable hysteresis loop that fully closes, see Fig. 3(b). Note also 

that uniaxial ratcheting may induce a significant increase in dislocation density when compared to ze-

ro-mean-strain low-cycle fatigue loading, which can cause an additional strain-hardening in certain 

materials, as reported in [11]. 

4. Multiaxial Ratcheting Analysis using Deviatoric Spaces 

Multiaxial load histories can also result in gradual plastic strain accumulation along a certain di-

rection, a phenomenon called multiaxial ratcheting, which can happen for unbalanced histories even if 

the material follows the Masing behavior, without any asymmetry in the hysteresis loops under tension 

and compression. The most common multiaxial ratcheting example can be seen in Fig. 4, which shows 

an elastoplastic cyclic torsion history with amplitude a applied to a shaft, combined with a constant 

axial stress m (a static “mean” stress). This example can adopt a 2D sub-space of the defined E5s 

space, representing stress states in an s1 × s3 diagram from the 2D vector 2Ds  defined in Eq. (17). 
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Fig. 3: Uniaxial ratcheting for a bi-linear material subjected to an unbalanced stress-controlled history 

under (a) high stress ranges; (b) low stress ranges. 

Initially, the uniaxial path OO’ causes elastic straining in the normal direction  
T

1s 0  until m is 

reached, in a linear elastic process inside the yield surface. The yield surface is the locus of all points 

associated with a yielding criterion, which in this example is a circle since it is defined from the Mises 

criterion 2D| s | S , where S is the monotonic or cyclic yield strength. Since the path O’A0 is inside the 

yield surface, it will cause an elastic shear strain, but without any axial component.  

After the stress state reaches the initial yield surface at point A0, the yield surface starts translating 

towards point A, during which plastic straining occurs. In most materials, such plastic straining hap-

pens along a direction An  normal to the yield surface, what is known as the normality condition or 

normality rule, discussed in detail in Part II of this work. Since the normal vector An is not vertical in 

the example from Fig. 4(a), plastic straining along the path A0A will not only induce an elastoplastic 

shear level a, but it will also cause a purely plastic tensile strain increment (the ratcheting increment), 

where the resulting strain path describes a slope in the x × xy/3 diagram approximately equal to the 

slope of An . 

The path A0A causes the yield surface to translate until its center (the backstress) reaches the posi-

tion T
2D 3[0 ]   in the 2D sub-space shown in Fig. 4(b), where 3 is the torsional component of 

the backstress vector in this s1 × s3 diagram. Elastic unloading of the shear component follows along 

the path AB1, until the stress state reaches the translated surface at B1, associated with a normal vector 

Bn . Then, the yield surface starts translating towards point B, causing plastic straining in both shear 

and axial components, along a direction in the x × xy/3 diagram approximately equal to the direction 

of Bn , see Fig. 4(b). 

Figure 4(c) shows the translated yield surface after the stress state reaches B, with center at a new 

backstress T
2D 3[0 ]   with 3 < 0. Elastic loading follows along the path BA1, until reaching 

again the yield surface at point A1. Yielding along the path A1A causes once again ratcheting, associat-

ed with the slope An . The process continues, resulting in this example in a constant ratcheting rate, see 

Fig. 4(c). Note that yielding occurs at point A0 only in the first cycle, while in all subsequent cycles it 

will happen at the A1 stress state due to the kinematic hardening process. 
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Fig. 4: Cyclic torsion history with shear amplitude a and constant axial stress m applied to a shaft, 

defined by the path ABA in the 2Ds  diagram x × xy3, and resulting multiaxial ratcheting in 

the axial direction of the x × xy/3 diagram. 

In this example, yield surface translations were all assumed in the vertical (shear) direction. How-

ever, the surface translation direction in most materials is a function of the directions of the normal 

vectors An or Bn  and of the backstress vector  , as it will be detailed in Part II of this work. The actu-

al surface translation direction ends up changing the directions of An and Bn  in the subsequent cycles, 

which in turn will change the translation direction, in a highly-coupled plasticity process. When im-

proved surface translation equations are used to model these effects, it is found that the ratcheting rate 

may vary from cycle to cycle instead of being constant. 

Ratcheting can also be an important problem in pressure vessels or pressurized pipelines that suf-

fer additional cyclic shear, tension, or bending loads. Internal pressure causes a hoop stress  that acts 



 

as the mean component associated with ratcheting problems. If the combination of  with the cyclic 

shear, tension, or bending stresses causes cyclic yielding, then ratcheting may occur in the hoop direc-

tion after each loading cycle, causing the vessel pipe to radially expand until eventually exhausting its 

ductility. Increasing ovalization of the cross section may also happen under cyclic bending, since the 

vessel/pipe walls will only suffer ratcheting in the highly stressed regions farther away from the neu-

tral bending axis.  

In the tension-torsion shaft example, the stress state and the yield surface were represented in the 

usual diagram s1  s3  x × xy3, a sub-space of the E5s stress space, since there were no other normal 

(or shear) components y or z. However, for representing cyclic tension or bending problems on a 

pressurized vessel/pipe, which involve three normal components x, , and z acting on the inner 

walls, another sub-space of E5s needs to be used instead, the stress diagram s1  s2 defined by the devia-

toric components s1  x – ( + z )/2 and s2  (  z )/2, where z  p accounts for the compres-

sive stresses on such inner walls under a pressure p > 0. Even though a different sub-space of the E5s 

stress space would be adopted, a behavior very similar to the one illustrated in Fig. 4 could be ob-

tained. The use of the 5D formulation or its sub-spaces makes it systematic to predict ratcheting ef-

fects, with the ability to consider altogether all 6D stress or strain components, as long as a proper kin-

ematic hardening model is adopted [12-13], as studied in Part II of this work. 

5. Mean Stress Relaxation under Strain Control 

Mean stress relaxation can happen during strain-controlled deformation with an initial mean 

stress [14], a phenomenon closely related to ratcheting. The mean stress gradually relaxes towards ze-

ro, both in uniaxial and multiaxial unbalanced histories. Consider the strain-controlled uniaxial history 

shown in Fig. 5, applied to the same bi-linear material from Figs. 2-4, without isotropic hardening 

transients. Non-Masing behavior causes the slope of paths AB, A’B’ and A”B” to be smaller than the 

slopes of CD, C’D’ and C”D”, resulting in an asymmetrical behavior with open hysteresis loops that 

gradually decrease the mean stress component. As the mean stress tends towards zero, the non-Masing 

behavior diminishes, making the hysteresis loops become once again symmetric and closed. 
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Fig. 5: Uniaxial mean stress relaxation for a bi-linear material subjected to an unbalanced strain histo-

ry between min and max, under strain control. 



 

Mean stress relaxation caused by high plastic strain ranges is one of the reasons why low-cycle 

fatigue lives are less influenced by the mean stress effect than high-cycle fatigue lives. It can also ex-

plain why the mean stress correction in the plastic term of Morrow’s elastoplastic strain-life curve 

usually leads to very conservative fatigue life or damage predictions. 

Isotropic hardening and softening compete with mean stress relaxation mechanisms in strain-

controlled cyclic deformations of structural alloys. To separate their effects, it is necessary to evaluate 

the relaxation of the mean stress, not of the maximum stress. Strain-controlled isotropic softening 

causes a gradual reduction of the maximum stress even in the absence of mean stress relaxation. 

Hence, the transient effects of mean stress relaxation and isotropic strain softening/hardening can be 

separated in uniaxial histories by studying, respectively, the evolution of the mean stress and the varia-

tion of the stress amplitude or range. 

Mean stress relaxation is also found in multiaxial histories, caused by yield surface translations in 

unbalanced strain-controlled paths. It is present as well in multiaxial elastoplastic paths with mixed 

stress and strain control, as long as the relaxation direction is under strain control with an initial mean 

stress. For instance, exposed portions of buried pipelines may bear high static tensile and bending 

stresses in the axial direction due to ground or seabed displacements. Axial loadings in such long pipe-

lines are usually assumed as strain controlled, therefore superimposed pressure cycles that cause plas-

tic straining may result in a gradual relaxation of the axial stresses, increasing the fatigue life. Even 

though both hoop and radial histories are stress-controlled in the exposed pipeline portion due to the 

applied internal pressure, mean stress relaxation may happen in the strain-controlled axial direction of 

such partially-buried pipeline. 

Mean stress relaxation can be quantitatively predicted from incremental plasticity simulations 

[15], if non-linear kinematic models are used to describe the associated asymmetrical behavior of the 

stress-strain curves, as studied in Part II of this work. 

 

6. Conclusions 

In this work, five-dimensional (5D) stress and strain spaces were proposed, representing a scaled 

version of Ilyushin’s 5D spaces. These 5D spaces have several important properties, such as a metric 

proportional to Mises equivalent stresses or strains, the ability to represent yield surfaces using simple 

equations without scaling factors, and the possibility to work in reduced-order sub-spaces under free-

surface conditions by simply removing appropriate rows from the stress and strain vectorial represen-

tations. The transformations to and from the proposed 5D spaces have been presented, providing an 

efficient framework to define incremental plasticity equations. These 5D spaces were applied to the 

qualitative study of uniaxial ratcheting, multiaxial ratcheting, and mean stress relaxation, through ten-

sion-torsion loading examples in 2D sub-spaces, and an unbalanced stress-controlled uniaxial loading 

example with significant mean stress. In Part II, a computationally-efficient incremental plasticity 

formulation is presented in the proposed 5D spaces, with the ability to model isotropic, non-

proportional and non-linear kinematic hardening and thus to quantitatively predict ratcheting and 

mean stress relaxation effects, as verified from experimental measurements. 
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Abstract 

Part I of this work introduced efficient reduced-order five-dimensional (5D) stress and strain 

spaces that can be used to predict ratcheting and mean stress relaxation phenomena at a much lower 

computation cost than in traditional 6D formulations. These 5D spaces were then applied to the quali-

tative study of uniaxial ratcheting, multiaxial ratcheting, and mean stress relaxation. Several non-

linear kinematic (NLK) hardening models have been proposed to capture and quantify these effects in 

incremental plasticity simulations. In this Part II, an incremental plasticity formulation is proposed in 

the adopted 5D spaces, while its advantages over the classical 6D formulation are discussed. The 5D 

version of the main NLK models proposed in the literature are presented, which allows the definition 

of a unified generalized equation. The physical and geometrical interpretation of the hardening, dy-

namic recovery, and radial return terms from the proposed generalized equation are presented. Several 

surface translation rules can be represented as a particular case of the proposed model, including the 

ones by Chaboche (1983), Burlet-Cailletaud (1987), Ohno-Wang (1993), Jiang-Sehitoglu (1996), Ba-

ri-Hassan (2002) and Chen-Jiao (2005), among others. The adopted hardening surface representation 

can be used not only for the studied NLK models, but also to reproduce the Mróz-Garud multi-surface 

approach. Uniaxial ratcheting, multiaxial ratcheting, and mean stress relaxation experiments with 

316L and 1020 steel tubular and cylindrical specimens are conducted to validate the proposed models. 

Keywords: Multiaxial fatigue; Ratcheting; Incremental plasticity; Non-linear kinematic hardening; 

Non-proportional loading. 

1. Introduction 

The Bauschinger effect, observed under cyclic elastoplastic loading and also called kinematic 

hardening, is a change in the absolute value of the opposite yield strength after strain hardening, due 

to the microscopic stress distribution induced by the rearrangement of the dislocation structure inside 

the material associated with the plastic strains. Figure 1 exemplifies the Bauschinger effect for a uni-

axial load history represented in the x × xy3 von Mises diagram. In this example, the Mises yield 

surface Mises  SY, which is the equation that describes the combinations of stress components that 

cause yielding, is allowed to translate with no change in its shape or radius S = SY. If the center of the 

yield surface is translated in the x direction of the Mises stress space by (max SY), then the resulting 

surface will intersect the x axis in the new tensile yield stress (max SY SY)  max and in the new 

compressive yield stress (max SY SY)  (max 2SY). 
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The new center of the yield surface is commonly called backstress, represented here by the stress 

vector  , which is responsible for storing such plastic memory efects. In this 2D example, the tensile 

yielding from the first cycle would change the backstress in the x × xy3 diagram from its initial val-

ue 0 0T T
x y[ ] [ ]     to 0T T

x y max Y[ ] [ S ]      , see Fig. 1. 
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Fig. 1: Kinematic hardening in the x direction and associated Mises yield surface translation in the    

x × xy3 diagram. 

For a general multiaxial stress state, a 6D (instead of 2D) yield surface equation Y = 0 is adopted, 

usually based on the Mises criterion if the material is isotropic. So, the Mises yield surface can be rep-

resented as a hyper-sphere with radius S 2 3  in Voigt-Mandel’s 6D deviatoric space, since 

T
x y z xy xz yzs s s s 2 2 2   

 
  2 2Y ( 3 2 ) |s | ( S 2 3 ) 0         (1) 

However, a much more convenient and computationally-efficient representation uses the E5s 

stress space defined in Part I of this work, where the yield surface becomes a 5D hyper-sphere with 

radius S, since |s' | S , with the 5D deviatoric stress vector defined as 

 
T

y z y zT
1 2 3 4 5 x xy xz yzs s s s s s 3 3 3 3

2 2

  
   

  
    

 
  (2) 

It was likewise shown in Part I that the 6D and 5D spaces are related by a 5×6 transformation ma-

trix A through  

,  ,  el el el pl pl pl' 's A A s e A A e e A A e                       (3) 

where  , e , and 'e  are respectively the 6D strain, 6D deviatoric strain, and 5D deviatoric strain, 

while the el and pl subscripts stand for their elastic and plastic components, and   is the 6D stress. 

Note that the prime superscript refers to stresses and strains defined in the 5D space. 

Hooke’s law is essentially represented in the same way in both 6D and 5D deviatoric spaces, be-

cause the relations s A s    and el ele A e    imply that 

el el ele s 2G     A e A s 2G     e s 2G                       (4) 

hence the deviatoric stress s  and elastic strain ele  vectors are parallel and related by the scalar con-

stant 2G, a simple and convenient relation that further justifies the use of 5D stress and strain spaces. 



 

Yet still not as popular as they should be, 5D formulations are not new. They have been originally 

proposed by Ilyushin [1], and have already been used in several multiaxial problems to calculate e.g.: 

(i) yield surface equations and failure criteria; (ii) path-equivalent stresses and strains using convex 

enclosures [2] or the Moment Of Inertia method [2-3]; (iii) multiaxial rainflow in the Modified Wang-

Brown method [4]; and (iv) non-proportional hardening, using a 5D plastic strain space defined by 

Tanaka [5]. Nevertheless, incremental plasticity models are usually presented in a 6D formulation, 

performing 5D projections only after the calculation of the multiaxial stress-strain behavior, to per-

form multiaxial rainflow or path-equivalent calculations; or using a mixed 6D-5D formulation to com-

pute non-proportional hardening transients, where 6D plastic strain increments are transformed to a 

5D space at every cycle to compute Tanaka’s 5×5 polarization matrix [5]. 

On the other hand, in this work the entire incremental plasticity formulation is presented in proper 

5D spaces, through a formulation that is surprisingly almost identical to the 6D formulation, except for 

scaling factors such as the 2 3  from the yield surface equations. One of the main advantages of the 

proposed 5D spaces is that the entire incremental plasticity formulation can be easily reduced to 3D, 

2D, or 1D only from the removal of appropriate rows from the deviatoric stress and strain vectors, as it 

was shown in Part I of this work. For instance, incremental plasticity calculations for a tension-torsion 

history could be performed in the 2D sub-spaces  
T

2D 1 3s s s  and  
T

2D 1 3e e e  defined in Part I. 

This dimensional reduction would decrease computational cost in more than 50%, especially if non-

proportional hardening transients are modeled, adopting a 2×2 polarization matrix instead of Tanaka’s 

original 5×5 version defined in [5]. 

Kinematic hardening e.g. can be modeled in the 5D formulation (or in its 3D, 2D, or 1D sub-

spaces) by allowing the yield surface |s' | S  to translate its center from the origin of the E5s space to a 

5D backstress position ' , becoming represented by |s' ' | S  , with no change in its radius S or 

shape. Such translation is associated with plastic straining, usually assumed from the normality rule in 

the direction of the unit normal to the yield surface, defined as n  for the 6D and n'  for the adopted 

5D formulation, evaluated at the current stress point. The Prandtl-Reuss plastic flow rule assumes that 

the magnitude of the plastic strain increment pld  (in 6D) or pl'd  (in 5D) depends on the applied 

stress increment, being inversely proportional to the generalized plastic modulus P that defines the 

slope between stress and plastic strain increments. The Prandtl-Reuss rule is usually defined in tensor 

or 6D notation, but it is easy to show from the relations n A n 2 3    , Tn A n 2 3   , and 

T
5 5A A 1.5 I     (where I55 is the 55 identity matrix) that it has an almost identical version in the 

proposed 5D spaces, using the same P without even the need for a scaling factor: 

T T T
pl pl'd (1 P ) ( d n ) n (1 P ) ( ds n ) n  d (1 P ) ( ds' n') n'                  (5) 

There are several models to calculate the current value of the generalized plastic modulus P as the 

yield surface translates, as well as the direction of such translation, to obtain the associated plastic 

strain increments. Most of these strain-hardening models can be divided into three classes: multi-

surface [6-7], two-surface [8-9], and non-linear [10] kinematic hardening models.  



 

Multi-surface kinematic hardening models assume that P is piecewise constant, resulting in a 

multi-linear description of the stress-strain curve, i.e. the non-linear shape of the stress-strain relation 

is approximated by several linear segments. Non-linear kinematic hardening models, on the other 

hand, are more general since they adopt non-linear equations to describe the surface translation direc-

tion and the value of P, leading to a more precise non-linear description of the stress-strain curve. A 

third class of kinematic hardening models involves the so-called two-surface models, which use a ra-

ther simplified formulation that combines elements of both non-linear and multi-surface kinematic 

models. 

A major limitation of multi-surface models is that they cannot predict any uniaxial ratcheting or 

mean stress relaxation caused by unbalanced loadings, because their unrealistic perfectly symmetric 

hysteresis loops always close. In addition, under several non-proportional loading conditions, these 

models predict multiaxial ratcheting with a constant rate that never decays, severely overestimating 

the ratcheting effect measured in practice [11]. As a result, multi-surface kinematic hardening models 

should only be confidently applied to balanced proportional loading histories. 

To correctly predict the stress-strain history associated with unbalanced loadings, it is necessary 

to use non-linear kinematic (NLK) hardening models. The original Armstrong and Frederick formula-

tion [12] was improved by Chaboche [13], who indirectly introduced some multi-surface elements into 

the NLK models, however in a better non-linear instead of the simplistic multi-linear formulation. 

In the following sections, the main NLK hardening models applicable to the prediction of ratchet-

ing and mean stress relaxation are reviewed. A general hardening equation is presented, from which 

all NLK models are a special case. Moreover, this general equation is presented in the reduced-order 

five-dimensional space E5s detailed in Part I of this work, which significantly decreases the computa-

tional cost in incremental plasticity calculations. 

2. Multi-Surface and Non-Linear Kinematic (NLK) Hardening Models 

Even though multi-surface models will not be simulated in this work, due to their inability to 

properly predict ratcheting and mean stress relaxation, their framework is detailed as follows. That is 

because Chaboche’s 1979 contribution [13] to the original NLK models indirectly made them adopt 

essentially the same multi-surface formulation, as proven by Ohno and Wang in [14], however associ-

ated with non-linear instead of multi-linear incremental rules. The multi-surface formulation is pre-

sented next, in the proposed stress space E5s. 

2.1. Multi-surface formulation in 5D 

Multi-surface models describe the strain-hardening behavior of elastoplastic solids from a family 

of nested yield surfaces in the stress space [6], the innermost being the yield surface associated with 

the initial yield strength S. In this work, instead of defining the nested surfaces in the 6D stress or 6D 

deviatoric stress spaces, the 5D reduced-order deviatoric stress space E5s defined in Part I is adopted, 

using the Mises yield function to describe each surface. As mentioned before, this 5D space has sever-

al advantages over the 6D formulations, since it is a non-redundant representation of the deviatoric 



 

stresses, which decreases the computational cost of stress-strain calculations. Although all kinematic 

hardening equations are presented here in the 5D space, their conversion to and from their original 6D 

versions is trivial, as it will be shown later. 

Figure 2 shows the family of nested yield surfaces that store plastic memory, represented in a 

sub-space s1 × s2 of the 5D space E5s. The first and innermost circle in Fig. 2 is the initial yield surface 

(either monotonic or cyclic), with radius r1  S (without the need for the scaling factor 2 3 ). In addi-

tion, M 1 hardening surfaces with radii r1 < r2 < … < rM + 1 are defined, along with an outermost fail-

ure surface whose radius rM + 1 is equal to the true rupture stress U of the material. Their centers are 

located at points cis  with i  2, 3, …, M  1, respectively. These M  1 nested circles cannot cross each 

other, must have increasing radii, and for a virgin material must be initially concentric at the origin of 

the E5s space, i.e. initially their cis 0  . Moreover, the failure surface never translates, i.e. its center is 

always at the origin of the E5s space, M 1cs 0  . Indeed, any stress point that reaches its boundary 

causes the material to locally fracture due to ductility exhaustion, which is equivalent to the failure cri-

terion M 1 U| s | r    .  
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Fig. 2: Initial yield, hardening, and failure surfaces for M  3 in the s1  s2 deviatoric stress sub-space of 

E5s, showing the backstress vector    that defines location of the yield surface center 1cs  and 

its components 1  , 2  , and 3   that describe the relative positions between the centers of con-

secutive surfaces. 

However, all other hardening surfaces can translate while the material strain-hardens, as shown in 

the arbitrary arrangement in Fig. 2. The surface centers move as the material plastically deforms and 



 

hardens. The difference between the radii of each pair of consecutive surfaces in the proposed E5s 

space is defined as ri  ri + 1  ri. In principle, all radii ri may change during plastic deformation as a 

result of isotropic and non-proportional hardening effects, whose description would require additional 

equations such as the Voce and Tanaka’s rules [5]. 

The backstress vector   , which locates the current yield surface center 1cs  , can be decom-

posed as the sum of up to M surface backstresses 1  , 2  , …, M   that describe the relative positions 

i i 1i c cs s 
    between centers of consecutive yield surfaces, see Fig. 2 (which depicts a simple case 

with M = 3). Note that the length (norm) i
  of each surface backstress in this 5D representation is 

always between i 0  , if the surface centers ics  and i 1cs 
  coincide (as in the unhardened condition 

from Fig. 3), and i ir   , if the surfaces are mutually tangent (a saturation condition with maximum 

hardening for the i
th

 surface, see Fig. 3). In the saturated condition for surface i, the surface backstress 

i   is aligned with the normal vector n  that is perpendicular to these mutually tangent surfaces at the 

current deviatoric stress state s , see Fig. 3, resulting in i i 1 i in ( r r ) n r        . 
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Fig. 3: Unhardened (left) and saturated (right) configurations of consecutive hardening surfaces i and 

i1 in the proposed E5s stress space, respectively associated with i 0   and 

i i 1 i in ( r r ) n r        . 

2.2. Piecewise-constant multi-surface model drawbacks 

The original multi-surface models proposed by Mróz [6] and Garud [7] use the above formulation 

(either in the original 6D version or in the proposed 5D spaces), however they assume that each hard-

ening surface has its own generalized plastic modulus P, therefore it is piecewise-constant, generating 

a multi-linear description of the associated stress-strain curves. Such description usually provides good 

results for balanced proportional loadings, explaining their successful use in several multiaxial fatigue 

problems involving balanced loadings. 



 

However, such multi-linear models cannot predict any uniaxial ratcheting or mean stress relaxa-

tion caused by unbalanced proportional loadings. This shortcoming is due to the linearity of the multi-

surface translation rules and the resulting multi-linearity of the stress-strain representation, which de-

scribes all hysteresis loops using multiple straight segments, instead of predicting the experimentally 

observed curved paths caused by non-linear effects. Such straight segments generate unrealistic per-

fectly symmetric hysteresis loops that always close under constant amplitude proportional loadings, so 

this simplified formulation is unable to predict uniaxial ratcheting or mean stress relaxation. 

In addition, for NP loadings, piecewise-constant multi-surface hardening models may predict 

multiaxial ratcheting with a constant rate that never decays, severely overestimating the ratcheting ef-

fect measured in practice. As a result, such multi-surface kinematic hardening models should only be 

applied to balanced loading histories, severely limiting their application. 

These major drawbacks are a consequence of multi-surface kinematic hardening models being of 

an “uncoupled formulation” type, as qualified by Bari and Hassan in [15], meaning that the general-

ized plastic modulus P in the multi-surface formulation is not a function of the straining direction. 

Such “uncoupled procedure” provides undesirable additional degrees of freedom to the multi-surface 

models that allow, for instance, 90
o
 out-of-phase tension-torsion predictions with resulting plastic 

strain amplitudes that are not a monotonic function of the applied stress amplitudes, as they should be 

[16]. These wrong multi-surface predictions are both qualitatively and quantitatively dependent on the 

number of yield surfaces adopted in the model, without any clear convergence. 

To correctly predict the stress-strain history associated with unbalanced loadings, it is necessary 

to couple the values of the generalized plastic modulus P and the straining direction, in addition to in-

troducing non-linearity in the surface translation equations, generating the non-linear kinematic (NLK) 

models. Note that the same multi-surface formulation presented in Section 2.1 can be used for NLK 

models, using ideas presented in the seminal work by Chaboche [13], who indirectly introduced multi-

surface elements into NLK models. 

2.3. Multi-surface formulation in 5D for NLK hardening models 

The first non-linear kinematic hardening model was proposed by Armstrong and Frederick in 

1966 [12]. Their original single-surface model did not include any additional hardening surface, but 

their single yield surface already translated according to a non-linear rule. Since then, several im-

provements on Armstrong-Frederick’s original NLK model have been proposed in the literature. 

Fortunately, the exact same representation of the hardening behavior defined in Section 2.1 for 

the piecewise-constant multi-surface hardening models, which includes one inner initial yield surface, 

M 1 hardening surfaces, and one failure surface, can be used in the NLK hardening formulation, as it 

was demonstrated in [14]. Once again, instead of defining these yield surfaces in the 6D stress or devi-

atoric stress spaces, the proposed 5D reduced order deviatoric stress space E5s is adopted, using the 

Mises yield function to describe each surface. Due to its many advantages, all kinematic hardening 

equations are presented in this 5D space, but their conversion to the 6D versions is trivial, as summa-

rized in Table 1. 



 

Table 1: Incremental plasticity equations using the proposed 5D or the classical 6D deviatoric  

      formulations. 

 proposed 5D Formulation 6D Formulation 

Vector 

norm Mises|s |    Mises| s | 2 3   

Hooke’s 

law ele s 2G  , elde ds 2G    ele s 2G ,  elde ds 2G  

Plastic  

flow rule 
T

plde (1 P) (ds n ) n        
T

pl pld de (1 P) (ds n) n       

Direct  

problem 

Tde (ds 2G) (1 P) (ds n ) n          

T
hd (2 3) A de d 3      K  

Tde (ds 2G) (1 P) (ds n) n      

hd de d 3    K  

Inverse  

problem 

T2G (de n ) n
ds 2G de

2G P

     
     

 

T
hd 2A ds 3 3 d     K  

T2G (de n) n
ds 2G de

2G P

   
    

 

hd ds 3 d    K  

Normal  

vector Mises

s
n A n 2 3

 
    


 

T

Mises

s
n A n 2 3

2 3


   


 

Consistency        T Tds n d n dS       T Tds n d n dS 2 3  

Surface  

radii ir  (with ri  ri + 1  ri) i ir * r 2 3  (with i ir * r 2 3   ) 

NLK 

hardening 

,   if 

,   if 

i i i i
i

i i

p v d | | r
d

0 | | r

      
  

  

p
 

i i i i i

T
i i i i

v n r * m *

        [ (1 ) ( n ) n ]

         

            
 

,  if  

,   if  

iT m T
i i i

i
T

i

( n | |) n 0
m *

0 n 0

          
 

   

 

i
i i i* (| | r )

     

TM
i i i i i i

i 1

2p ( r * m * n )
P

3

        
   

,   if 

,   if 

i i i i
i

i i

p v d | | r *
d

0 | | r *

     
  

  

p
 

i i i i i

T
i i i i

v n r * * m *

        [ (1 ) ( n) n]

      

         
 

,  if  

,   if  

iT m T
i i i

i
T

i

( n | |) n 0
m *

0 n 0

      
 

  

 

    i
i i i* (| | r*)  

M
T

i i i i i i
i 1

2 *P p ( r * m * n )
3 

          

 

Similarly to the piecewise-constant multi-surface models, the backstress vector    that locates 

the center of the current yield surface can be decomposed as the sum of M surface backstresses 1  , 

2  , …, M   that describe the relative positions i i 1i c cs s 
     between the centers of consecutive 

yield surfaces, as proposed by Chaboche [13], significantly improving the Armstrong-Frederick model 

capabilities by indirectly introducing the concept of multiple hardening surfaces. Therefore, Figs. 2 

and 3 and all their variables defined for the piecewise-constant multi-surface models can also be used 

in the NLK formulation.  

One of their main differences is that in the piecewise-constant multi-surface models each harden-

ing surface would only translate if the stress point was located on its border, while in NLK multi-



 

surface models all yield and hardening surfaces translate during a plastic straining process (but with 

different rates). The initial yield and the additional hardening surfaces from the NLK hardening mod-

els behave as if they were all attached to one another with non-linear spring-slider elements, causing 

coupled translations even before they enter in contact. Therefore, any yield surface translation causes 

all hardening surfaces to translate, usually with different magnitudes and directions, even before they 

become tangent to each other. Such coupling among surfaces allows the NLK models to introduce the 

necessary non-linearity in the stress-strain description. 

Pairs of consecutive yield surfaces i and i  1 eventually become mutually tangent if i i| | r    

(the 5D saturation condition), when their respective translations icds  and i 1cds 
  will have the same 

magnitude and direction, therefore i i 1i c cd ds ds 0 
     , i.e. a zero surface backstress variation. In 

other words, in the proposed 5D formulation for the NLK hardening models, plastic straining causes 

increments id 0   in all backstress components, except for the saturated surfaces, therefore during 

plastic straining 

i i i
i

i

p v dp,   if | | r
d

0,   if | | r

 


 

    
  

 
 , i  1, 2, …, M                      (6) 

where iv  is the translation direction vector for surface i, dp is the equivalent plastic strain increment, 

calculated in the proposed 5D E5p plastic strain space as pldp ( 2 3 ) |de |  , and pi is a generalized 

plastic modulus coefficient that must be calibrated for every yield surface used in the calculation of of 

the generalized plastic modulus P. 

The main difference among the several NLK hardening models proposed in the literature rests in 

the equation of the surface translation direction iv . In the next section, a generalized surface transla-

tion rule is proposed in the adopted 5D E5s stress space, which is able to unify all major NLK models 

into a single equation. 

3. Generalized Surface Translation Rule 

The generalized surface translation rule proposed in this work can be written as 

T
i i i i i i i i i

Prager- dynamic radial
Ziegler recovery return

v n r * m* [ (1 ) ( n ) n ]                                            (7) 

where the scalar functions i
*
 and mi

*
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              (8) 

This function is a further generalization of the (already general) class of hardening rules defined 

by Jiang and Sehitoglu in [17], which only included the Prager-Ziegler and dynamic recovery terms 

from Eq. (7), but not the radial return term (discussed later on), i.e. it always assumed that i = 1. 



 

The calibration parameters for each hardening surface i are the ratcheting exponent i, the multi-

axial ratcheting exponent mi, the ratcheting coefficient i, and the multiaxial ratcheting coefficient i, 

which are scalar values listed in Table 2 for several popular models. Note that several references rep-

resent the NLK hardening parameters ri, pi and i using respectively the terms r
(i)

, c
(i)

 and (i)
, how-

ever this notation is not used in this work to avoid mistaking the (i) superscripts for exponents, as well 

as to emphasize the geometrical meaning of the ri parameters, which are differences between radii of 

consecutive surfaces. 

Table 2: Calibration parameters for the general translation direction from Eqs. (7-8). 

Year Kinematic model i mi i i 

1949 Prager [18] 0 0 0 1 

1966 Armstrong-Frederick [12] 0 0 0  i  1 1 

1967 Mróz [6] 0 0 1 1 

1979 Chaboche [13] 1 0 1 1 

1986 Burlet-Cailletaud [20] 0 0 0  i  1 0 

1993 Ohno-Wang I [21-22] ∞ 1 1 1 

1993 Ohno-Wang II [21-22] 0  i < ∞ 1 1 1 

1995 Delobelle [24] 0 0 0  i  1 0  i  1 

1996 Jiang-Sehitoglu [17, 23] 0  i < ∞ 0 1 1 

2004 Chen-Jiao [26] 0  i < ∞ 1 1 0  i  1 

2005 Chen-Jiao-Kim [25] 0  i < ∞ ∞ < mi < ∞ 1 1 

The 5D translation direction iv  of each yield surface from Eq. (7) can be separated into three 

components: (i) the Prager-Ziegler term, in the normal direction n  perpendicular to the yield surface; 

(ii) the dynamic recovery term, in the opposite direction i  of the backstress induced by that yield 

surface, which acts as a recall term that gradually erases plastic memory with an intensity proportional 

to the product i
*
mi

*
ii; and (iii) the radial return term, in the opposite direction n  of the normal 

vector, which affects multiaxial ratcheting predictions, calibrated from T
i i i i i* m* (1 ) ( n )          . 

Figure 4 shows the geometric interpretation of these three components. The dynamic recovery 

term deviates the surface translation direction iv  from the normal direction n , while the radial return 

term reduces the magnitude of the normal component from its original Prager-Ziegler term in r  . 

Both dynamic recovery and radial return terms from each surface i are influenced by all four calibra-

tion parameters i, mi, i and i, which are further explained as follows. 

Among the models included in Table 2, Prager’s [18] translation direction i iv n r    is not able 

to predict uniaxial ratcheting since it only uses the Prager-Ziegler term, which is linear. For multiaxial 

ratcheting, it only predicts a very short transient that almost immediately arrests reaching a shakedown 

state, highly underestimating multiaxial ratcheting rates. The translation direction i i iv n r       



 

from Mróz [6] includes a dynamic recovery term, however in a linear formulation that highly overes-

timates multiaxial ratcheting effects. As discussed before, the Mróz rule cannot predict any uniaxial 

ratcheting at all when used in a multi-surface formulation, where the outer surfaces not touched by the 

current stress point are not allowed to translate. But when applied to the NLK formulation, where all 

surfaces translate during plastic straining, the Mróz translation direction becomes capable of predict-

ing uniaxial ratcheting, albeit largely overestimating it. 

ds'

n'

i
'd

ci
's





 

i

i 1 i

r

n' (r r )

       T
i i i

'* (1 ) ( n' ) n'

    i i i
'*

i
'

iv '

  

 

T

T
i

(ds ' n') n'

(d ' n') n'

i *

i

i 1 

i 0 

i* 0 
i* 1 

ci 1
's

ir


  c ci i 1 i

'' s s'

radial return

Prager-
Ziegler

dynamic
recovery

n''s

yield surface

ds'

center of
surface i

center of
surface i+1

stress
increment

common
projection

current
stress

surface
normal

 

Fig. 4: Geometric interpretation of the three components of the translation direction iv  of a hardening 

surface i, in the proposed E5s stress space: Prager-Ziegler’s, dynamic recovery, and radial re-

turn terms, where the equivalent parameter i
*
  i

*mi
*i. 

Armstrong and Frederick proposed the use of a ratcheting coefficient 0  i  1, originally intend-

ed to be a scalar function of the plastic strain path, adding non-linearity to their hardening model [12]. 

This parameter has been included in the proposed 5D general surface translation rule. However, in 

many practical implementations, i was assumed as a constant, turning their translation equation 

i i i iv n r         into a linear rule that suffers the same drawbacks of the Mróz translation rule in 

the NLK formulation, with a large overestimation of both uniaxial and multiaxial ratcheting. Even 

though i can calibrate ratcheting rates, with the limit values i  0 (Prager’s rule) for no ratcheting 

andi  1 (Mróz rule) for large ratcheting rates, the linearity associated with a constant i makes it im-

possible to predict multiaxial ratcheting rate decay and arrest (shakedown) observed in several con-

stant amplitude experiments. In addition, for constant coefficients i < 1, the Armstrong-Frederick 

translation rule would result in id 0   in the saturated condition, which would allow the surfaces to 



 

pass through one another. To avoid this, it has been proposed to simply enforce i  1 in the saturation 

condition i i| | r   , while allowing the use of a calibrated i < 1 for i i| | r    [19]. Both Armstrong-

Frederick and Mróz rules are a particular case of the proposed generalized surface translation rule 

from Eqs. (7-8), for i = mi = 0, i = 1, and an adjustable 0 ≤ i ≤ 1 that for Mróz is set to i = 1. 

Chaboche [13] replaced the constant ratcheting coefficient i with a saturation ratio, which in the 

proposed 5D formulation is represented as i i| | r  , ranging from 0 in the unhardened condition to 1 

at saturation, eliminating the discontinuity problem caused by i  1. But even though the resulting 

surface translation rule (represented in its 5D version) 

i i i i iv n r ( | | r )            (5D Chaboche)                  (9) 

is an improvement over the constant i models such as Mróz and most implementations of Armstrong-

Frederick, it is unable to predict multiaxial ratcheting rate decay and arrest. This model predicts a 

short ratcheting transient followed by a constant ratcheting rate that never decays, overestimating its 

effects in multiaxial experiments. Chaboche’s model is also a particular case of Eqs. (7-8), for i = 1, 

mi = 0, and i = i = 1. 

Burlet and Cailletaud noticed that multiaxial experiments generally show lower ratcheting rates 

than the uniaxial ones for equivalent conditions on stress or strain amplitudes [20]. To lower the mul-

tiaxial ratcheting rate predictions without altering the uniaxial response, they replaced the dynamic re-

covery term with a radial return term. In the 5D formulation adopted in this work, their surface transla-

tion direction becomes 

T
i i i iv n r ( n ) n              (5D Burlet-Cailletaud)             (10) 

Burlet-Cailletaud’s strain-hardening model is also obtained from the proposed Eqs. (7-8), assum-

ing i = mi = i = 0 and an adjustable 0 ≤ i ≤ 1. 

The product T
i n   used in the radial return term measures the non-coaxiality between the sur-

face backstress i   and the plastic strain increment direction n . As a result, it is a measure of the non-

proportionality of the loading, since parallel i   and n  usually found in proportional loadings result 

in T
i in | |      , while 90

o
 out-of-phase loadings where plastic straining happens in a direction n  

perpendicular to the surface backstress i   gives T
i n 0   . Such different products allow the model 

to predict non-proportional effects in multiaxial ratcheting. 

In addition, the Burlet-Cailletaud’s radial return term becomes identical to the Armstrong-

Frederick’s dynamic recovery term for uniaxial loadings, where parallel backstress i   and the normal 

to the yield surface n  vectors make T
i i i i( n ) n           ; therefore, both models behave identi-

cally under uniaxial conditions, overpredicting uniaxial ratcheting rates. Note that Burlet-Cailletaud’s 

yield surface translation direction iv  is always parallel to n , therefore it behaves similarly to Prager’s 



 

rule under multiaxial loading conditions, largely underpredicting multiaxial ratcheting rates, which 

always rapidly decay in the simulations causing premature shakedown. 

Ohno and Wang used the non-proportionality product (calculated in our 5D general formulation 

from T
i n  ) in a different way [21-22]. For plastic straining in a direction n  that makes an obtuse 

angle with i  , i.e. when T
i n 0    (usually during an elastoplastic unloading process), they assumed 

that the translation direction follows Prager’s linear rule i iv n r   . Otherwise, when T
i n 0    

(usually during an elastoplastic loading process), they introduced in their model a scalar function (giv-

en by i
i i i0 * ( | | r ) 1      in the proposed 5D formulation) and a non-proportionality term (de-

fined in 5D as T
i i0 ( n | | ) 1      ), resulting in the “Ohno-Wang II” (OW-II) surface translation di-

rection, whose 5D version in the E5s stress space becomes 

i T
i i i i i i iv n r ( | | r ) ( n | | )                   (5D Ohno-Wang II)         (11) 

where i (0  i  ∞) is the ratcheting exponent. Surfaces calibrated with a very large i (such as in 

their “Ohno-Wang I” OW-I model version that assumes i  ∞) have i
*
  0, which results in Prag-

er’s linear rule i iv n r    for most of the range i i0 | | r 1    before saturation, becoming unable to 

predict uniaxial ratcheting. The dynamic recovery term would only be activated when the surfaces are 

closer to contacting each other, i.e. when i i| | r 1   . Lower calibrated values of i, on the other 

hand, allow the dynamic recovery term to be partially operative in the entire i i| | r   range, increas-

ing the predicted uniaxial ratcheting rates. So, in summary, lower calibrated values of i result in high-

er uniaxial ratcheting rate predictions. Note that both OW-I and OW-II Ohno-Wang models are a par-

ticular case of the proposed Eqs. (7-8), adopting mi = i = i = 1, and an adjustable 0 ≤ i < ∞ that 

tends to infinity for the OW-I. 

However, the ratcheting parameter i influences both uniaxial and multiaxial ratcheting predic-

tions. When i is calibrated to fit uniaxial ratcheting data, the OW-II model ends up overestimating 

multiaxial ratcheting. In addition, although the OW-II model is able to predict multiaxial ratcheting 

rate decay, the use of a single calibration parameter i renders it unable to model experiments with 

constant multiaxial ratcheting rates. 

Jiang and Sehitoglu [17, 23] improved the OW-II model to solve this last problem by simply re-

moving the non-proportionality term ( T
i in | |     in our 5D formulation) from its translation rule. 

When represented in the proposed E5s stress space, Jiang-Sehitoglu’s surface translation direction is 

expressed as 

i
i i i i iv n r ( | | r )            (5D Jiang-Sehitoglu)              (12) 

where 0  i < ∞. This equation is used even during an elastoplastic unloading T
i n 0   , instead of 

switching to Prager’s linear rule as it had been proposed by Ohno and Wang. 



 

Jiang-Sehitoglu’s equation is also a particular case of Eqs. (7-8), for mi = 0 and i = i = 1, simi-

lar to Chaboche’s model [13], and with an adjustable 0 ≤ i < ∞. As a result, Jiang-Sehitoglu’s equa-

tion is a generalized version of Chaboche’s original model [13], which would be obtained for the par-

ticular case i  1. Since Chaboche’s model has the ability to predict constant ratcheting rate for both 

uniaxial and multiaxial loadings, Jiang-Sehitoglu’s equation overcomes the inability of the OW-II 

model to predict constant multiaxial ratcheting rates. Multiaxial ratcheting rate decay can also be pre-

dicted, if a ratcheting rate exponent i  1 is chosen in the calibration. Nevertheless, Jiang-Sehitoglu’s 

model still relies on a single calibration parameter i to predict both uniaxial and multiaxial ratcheting 

rates. 

Calibrating a kinematic hardening model using different parameters to independently control uni-

axial and multiaxial ratcheting allows for a much better description of the material behavior. This sep-

aration is necessary because both ratcheting types are caused by different phenomena: uniaxial ratchet-

ing is a consequence of anisotropy between the tension and compression behaviors, as discussed in 

Part I of this work, while multiaxial ratcheting is associated with elastoplastic deviatoric stress incre-

ments ds  that are not parallel to the normal n  to the yield surface at the current state, causing plastic 

strains not only in the direction of ds  but also ratcheting strains in perpendicular directions. For in-

stance, a material with a significant strength difference between tension and compression could have 

almost the same multiaxial ratcheting behavior as a perfectly isotropic one, even though only the for-

mer could suffer uniaxial ratcheting. It would be impossible to accurately calibrate both independent 

behaviors with a single scalar parameter for each surface such as i. 

Since Armstrong-Frederick’s model largely underpredicts while Burlet-Cailletaud’s largely over-

estimates multiaxial ratcheting rates, Delobelle et al. [24] decided to interpolate them using a multiax-

ial ratcheting coefficient i (0  i  1). In the proposed E5s space, Delobelle’s surface translation di-

rection becomes 

T
i i i i i i iv n r [ (1 ) ( n ) n ]                      (5D Delobelle)           (13) 

The limit value i  0 gives exactly the Burlet-Cailletaud model, associated with a large radial re-

turn term and zero dynamic recovery, a “radial evanescence” condition that results in low multiaxial 

ratcheting rates with large rate decay. The other limit value i  1 gives exactly the Armstrong-

Frederick model, with a large dynamic recovery term and zero radial return, the usual “backstress eva-

nescence” condition that results in overestimated multiaxial ratcheting without rate decay, as discussed 

before. If 0 < i < 1, then the predictions are somewhere in between the two limit cases, with i acting 

as a weighting factor to calibrate the multiaxial ratcheting rates. The value of i influences both uniax-

ial and multiaxial ratcheting estimations. However, the uniaxial ratcheting response is not affected by 

i because, for uniaxial loadings, i
'  and n  are always parallel to the uniaxial direction, therefore the 

relation T
i i i i( n ) n            causes a translation direction 

1i i i i i i i i iv n r [ ( )] n r                        (5D Delobelle – uniaxial case)       (14) 



 

that is independent of i. So, i must be calibrated first for every surface to fit uniaxial ratcheting data, 

and after that the i values can be freely calibrated to multiaxial ratcheting data without affecting the 

previous uniaxial calibration. Delobelle’s model is obtained from the generalized surface translation 

rule from Eqs. (7-8) for i = mi = 0, and adjustable 0 ≤ i ≤ 1 and 0 ≤ i ≤ 1 to independently calibrate 

uniaxial and multiaxial ratcheting. Note however that, similarly to both Armstrong-Frederick and Bur-

let-Cailletaud equations, the Delobelle model still overpredicts uniaxial ratcheting rates, since the 

ratcheting coefficient i is not as efficient as the ratcheting exponent i to model uniaxial ratcheting 

rate decay or even growth as a function of the stress amplitude. 

On the other hand, the Chen-Jiao-Kim model [25], in addition to the use of the better parameter i 

to calibrate uniaxial ratcheting, is able to independently calibrate uniaxial and multiaxial ratcheting 

behaviors by incorporating a multiaxial ratcheting exponent mi in the non-proportionality term 

T
i in | |    from the OW-II model. Therefore, for a multiaxial elastoplastic loading process with 

T
i n 0   , the scalar function iT m

i i im* ( n | | )      is used to multiply the dynamic recovery term. 

In the proposed 5D formulation, Chen-Jiao-Kim’s surface translation direction becomes 

i iT m
i i i i i i iv n r ( | | r ) ( n | | )                   (5D Chen-Jiao-Kim)        (15) 

where 0  i < ∞ and ∞ < mi < ∞. For an elastoplastic unloading process with T
i n 0   , Prager’s 

linear rule i iv n r    is used instead. For uniaxial load histories during elastoplastic loading, where 

the relation T
i in | |      is always valid, the scalar function im*  simply becomes im

im* (1) 1  , 

therefore uniaxial ratcheting predictions are not affected by the calibrated value of mi. Thus, i should 

be calibrated first for the yield and every hardening surface to fit uniaxial ratcheting rate data, and af-

ter that the mi values could be freely calibrated to correctly describe measured multiaxial ratcheting 

rates and decays without affecting the previous uniaxial calibration. Chen-Jiao-Kim’s model can also 

be obtained from the general Eqs. (7-8) proposed in this work, adopting i = i = 1, and independently 

adjustable 0 ≤ i < ∞ and ∞ ≤ mi ≤ ∞. 

A different approach for obtaining a simultaneous correct description of uniaxial and multiaxial 

ratcheting was adopted in the Chen-Jiao model [26]. This model uses Delobelle’s [24] multiaxial 

ratcheting coefficient i (0  i  1) instead of the multiaxial ratcheting exponent mi, incorporated into 

Jiang-Sehitoglu’s model to give, in the adopted E5s space version, 

i T
i i i i i i i iv n r ( | | r ) [ (1 ) ( n ) n ]                        (5D Chen-Jiao)        (16) 

As in Delobelle’s model, i can calibrate multiaxial ratcheting data without affecting uniaxial 

ratcheting calculations. The exponent i (0  i < ∞) of the yield or every hardening surface should be 

calibrated first to accurately match uniaxial ratcheting data, and only then the i should be fitted to de-

scribe multiaxial ratcheting rates and decay. Chen and Jiao also refined the multiaxial ratcheting de-

scription, allowing the i parameter from each surface to vary between an initial value and a target 

value ti, with an evolution equation i ti i CJd ( ) b dp       controlled by the equivalent plastic 



 

strain increments dp, where bCJ is the Chen-Jiao evolution rate. Note however that this refinement in-

troduces the additional parameters ti (one for each surface i) and bCJ, which would need to be cali-

brated in proper tests. Finally, note that Chen-Jiao’s model is also a particular case of the proposed 

Eqs. (7-8), adopting mi = i = 1, and independently adjustable 0 ≤ i < ∞ and 0 ≤ i ≤ 1. 

Table 2 summarizes the calibration parameter choices for the general translation direction from 

Eqs. (7-8), showing that all presented models are a particular case of the proposed expression. Table 3 

summarizes the advantages and disadvantages of the various equations that intend to describe the yield 

surface translation direction iv . Note that independent calibration of uniaxial and multiaxial ratcheting 

rates can only be achieved using equations with at least two parameters per surface (i.e. a total of at 

least 2M parameters for M yield and hardening surfaces), such as the Delobelle, Chen-Jiao, and Chen-

Jiao-Kim equations. However, Delobelle’s model still overpredicts uniaxial ratcheting rates, due to the 

use of the ratcheting coefficient i instead of the better ratcheting exponent i to calibrate them. Never-

theless, if the studied load history only causes significant uniaxial or multiaxial ratcheting, but not 

both, then Jiang-Sehitoglu’s equation would also be a good modeling choice, since it can calibrate ar-

bitrary uniaxial or multiaxial ratcheting rates, including multiaxial ratcheting with constant rate or rate 

decay, using only the M ratcheting exponents i from the M surfaces, without requiring the (possibly 

less robust) calibration of 2M or more parameters. 

Table 3: Characteristics of the various NLK surface translation direction models regarding number of 

parameters to be calibrated (NPC) for M surfaces (assuming that the ri and pi from each yield 

surface have been identified) and ability to accurately model all uniaxial ratcheting conditions 

including rate decay (UR), or all multiaxial ratcheting conditions with constant rate (MRC) or 

with rate decay (MRD), to calibrate arbitrary uniaxial (U) or multiaxial ratcheting rates (M), 

and to independently calibrate arbitrary uniaxial and multiaxial ratcheting rates (UM). 

Year Kinematic model NPC UR MRC MRD U M UM 

1949 Prager [18] 0       

1966 Armstrong-Frederick [12] M       

1967 Mróz [6] 0       

1979 Chaboche [13] 0       

1986 Burlet-Cailletaud [20] M       

1993 Ohno-Wang I [21-22] 0       

1993 Ohno-Wang II [21-22] M       

1995 Delobelle [24] 2M       

1996 Jiang-Sehitoglu [17, 23] M       

2004 Chen-Jiao [26] 2M       

2004 Chen-Jiao (refined) [26] 3M + 1       

2005 Chen-Jiao-Kim [25] 2M       

The fitting of the generalized plastic modulus coefficients pi from each surface for a given ri, see 

Eq. (6), as well as the calibration of the ratcheting coefficients i, mi, i, and/or i, depend on the 

adopted NLK model. Approximate fitting algorithms for the parameter pairs (pi, i) or (ri, i) are 

shown in [23] for Jiang-Sehitoglu’s model, which can be easily adapted from the 6D to the proposed 



 

5D formulation, however they are precise only for materials with very large ratcheting exponents i. 

For other cases, a least-squares fitting approach should be adopted to calibrate such parameters, com-

paring experimental measurements with incremental plasticity simulations. 

4. Consistency Condition Formulation in 5D 

Any straining process within the yield surface is assumed purely elastic, so from Hooke’s law in 

Eq. (4) the stress and elastic strain increments in 5D are related by elde ds 2G  . A plastic straining 

process beyond the yield surface would make it translate according to Eq. (6), preventing the stress 

state from crossing outside its boundary. The mathematical condition that guarantees that the new 

stress state s ds   during a plastic process will remain on the yield surface border, without crossing 

outside it, is called consistency condition. Such infinitesimal condition can be calculated in the pro-

posed E5s space forcing the yield surface equation T 2Y ( s ) ( s ) S 0           to remain valid 

throughout the surface translation process, thus 

T TdY 2 ds (s ) 2 d (s ) 2 S dS 0                                  (17) 

and, since the normal unit vector is such that n (s ) | s | (s ) S             , then 

T Tds n d n dS         (5D consistency condition)                (18) 

The scalar dS term in the consistency condition accounts for the variation of the yield surface ra-

dius S, gradually changing from the monotonic S  SY to the cyclic S  SYc in isotropic hardening and, 

in non-proportional (NP) loadings, to an NP-hardened yield strength YNPS S . 

In the proposed incremental plasticity formulation, without loss of generality, instead of varying 

the radii r1 = S of the yield and ri of the hardening surfaces (and consequently the radius differences 

ri  ri + 1  ri), they are assumed constant, while isotropic and NP hardening effects are accounted for 

by changing the generalized plastic modulus coefficients pi (instead of the ri). Therefore, in this for-

mulation where the yield surface radius r1 = S is assumed constant and thus dS = 0, the 5D consisten-

cy condition from Eq. (18) simplifies to T Tds n d n      . Since the backstress increment d  con-

sists of the sum of the various backstress component increments 1 2 Md d d ... d          , where 

each one has been defined in Eq. (6) as i i id p v dp    , it follows that the consistency condition 

T Tds n d n       gives 

T T T T T
1 1 2 2 M Mds n d n ( p v n p v n ... p v n ) dp                                 (19) 

In this formulation with the various yield surface radii ri assumed constant, the values of pi are in-

itially calibrated to each surface using e.g. the monotonic stress-strain curve, and then corrected at 

every load cycle assuming they are directly proportional to the isotropic or NP hardening factors. For 

instance, after uniaxial isotropic hardening stabilization, every pi would be multiplied by the SYc/SY ra-

tio between the cyclic and monotonic yield strengths. In this way, it would be possible to assume con-

stant yield and hardening surface radii without altering the stress-strain predictions. 



 

The plastic flow rule in the proposed 5D deviatoric representation gives 

T
T T T

pl pl

( 3 2 ) dp

1 2 ds n
de ( ds n ) n ds n P de n P

P 3 dp


                              (20) 

Therefore, the generalized plastic modulus P needed to compute plastic straining can be ex-

pressed as a function of iv  (as it would be expected for any “coupled formulation” [15]) through 

T T T
1 1 2 2 M MP ( 2 3 ) ( p v p v ... p v ) n                          (21) 

The projections T
iv n   of the generalized surface translation directions from Eq. (7) are given by 

T T T
i i i i i i i i i i i i iv n r * m* [ (1 )] n r * m* n                                      (22) 

which, when combined to Eq. (21), allow the calculation of the associated generalized plastic modulus 

M T
i i i i i ii 1

P ( 2 3 ) p ( r * m* n )   


                       (23) 

For a given 5D stress increment ds' A d  , such P could then be used in the 5D version of the 

Prandtl-Reuss flow rule in Eq. (5) to obtain the total strain increment 

T
el pl

ds 1
de de de ( ds n ) n

2G P


                           (24) 

On the other hand, for a given 5D total strain increment de' A d  , the 5D inverse problem 

could be solved (after some algebraic manipulation) by 

T2G
ds 2G de 2G de n n

2G P
          
  

                 (25) 

After the entire stress or strain incremental integration in the computationally-efficient 5D spaces, 

the corresponding 6D values could be retrieved from the transformations described in Part I of this 

work: 

T
h

T
h

( 2 3 ) A s

( 2 3 ) A e'

 

 

   


  

               (26) 

where the linear elastic hydrostatic components (assuming pressure-insensitive materials such as most 

metals) are easily calculated from the elastic relation h h3K   , where K  E/[3∙(1 2)] is the 

bulk modulus of the material. 

5. Isotropic and NP Hardening Formulation in 5D 

Isotropic and non-proportional (NP) hardening transients could also be incorporated into the pro-

posed 5D NPH formulation, through the varying values of the generalized plastic modulus coefficients 

pi from each yield and hardening surface. From the Voce isotropic law and Tanaka’s NP hardening 

equations [5], the values of pi could be calculated as a function of the accumulated plastic strain 

p dp   from 



 

chr p
i ci NP NP mi ci

NP evolution isotropic evolution

p ( p) p [1 F ( p)] ( p p ) e                      (27) 

where pmi and pci are the pi coefficients calibrated respectively under uniaxial monotonic and cyclic 

conditions, hrc is the material-dependent isotropic hardening rate, NP is the material-dependent addi-

tional hardening coefficient caused by non-proportional loads (with 0 ≤ NP ≤ 1), and FNP(p) is the 

load-path-dependent non-proportionality factor (with 0 ≤ FNP(p) ≤ 1). 

The FNP(p) values are obtained in Tanaka’s model [5] from a 5×5 polarization tensor [PT], whose 

evolution is given by 

   T
T T TdP ( n n P ) hr dp                       (28) 

where hrT is the material-dependent polarization rate and n  is the unit plastic straining direction in 

the proposed E5p plastic strain space. From Tanaka’s original model, it can be shown that the evolution 

equation of FNP(p) is given by 

 

    

2
T

NP NP NP
T

T T

2 P n
dF ( p) 2 F ( p) hr dp

tr P P

 
      

 
 

           (29) 

where tr(.) is the trace function, and hrNP is the material-dependent NP hardening rate. Note that histo-

ries under free-surface conditions could adopt 3D or 2D sub-spaces of the defined 5D spaces, where 

Tanaka’s tensor would be represented respectively as 3×3 or 2×2 matrices, greatly reducing computa-

tional cost while evaluating Eq. (28) at every cycle. This is another major advantage of the 5D incre-

mental plasticity formulation proposed in this work. 

6. Notch Formulation in 5D 

The presented 5D spaces could also consider notch effects, without having to deal with 6D or ten-

sor formulations. Two major 5D approaches for accounting for stress/strain concentration effects at 

notch tips could be followed: Pseudo-Material and Incremental Neuber or Molski-Glinka. Their appli-

cation to the 5D formulation is discussed next. 

6.1. Pseudo-material approach in 5D 

For a given nominal stress history, the Pseudo-Material approach [27] could be used in 5D 

through the calibration of the generalized plastic modulus coefficients pi to a fictitious material (a 

pseudo-material) with stress-strain behavior given by a nominal stress  notch strain curve, calculated 

under uniaxial conditions from a strain concentration rule such as Neuber or Molski-Glinka [28]. The 

5D incremental plasticity formulation calibrated to this pseudo-material would then be used to calcu-

late the notch-root strain history from the given multiaxial nominal stresses. After the entire notch 

strain history is obtained, the 5D incremental plasticity formulation is applied once more, but calibrat-

ed to the actual material properties (not the pseudo-material properties) to find the multiaxial notch 

stresses from the previously calculated multiaxial notch strains. 



 

Conversely, for a given nominal strain history, a pseudo-material would be calibrated with stress-

strain behavior given by a notch stress  nominal strain curve, calculated from a uniaxial model such 

as Neuber or Molski-Glinka. The notch-root stresses would then be calculated in the 5D formulation 

from the given nominal strains using the pseudo-material properties. The notch stress history is then 

input to a 5D incremental algorithm calibrated to the actual material properties, to find the correspond-

ing multiaxial notch strains. 

6.2. Incremental Neuber or Molski-Glinka 

The original Neuber rule was derived for prismatic bodies loaded in pure shear, stating an equiva-

lence between distortional strain energy densities, without including dilatational energies (which are 

zero under pure shear). Since Neuber’s original relation did not include the dilatational strain energy 

density, Neuber’s rule should assume that the total distortional strain energy density is constant for the 

pseudo and notch stress-strain curves [29]. Therefore, Neuber’s incremental rule [30] adopts an equiv-

alence of deviatoric stress and strain products, eliminating the influence of the hydrostatic compo-

nents. Using the 6D-to-5D transformations defined in Part I of this work, it can be shown that Neu-

ber’s incremental rule can be represented in the proposed 5D formulation simply from 

i i i i i i i is de e ds s de e ds         (5D Incremental Neuber)             (30) 

for i = 1, 2, …, 5, where is  and ie  are pseudo-values calculated (e.g. in a Finite Element program) as-

suming linear-elastic conditions, and si and ei are the associated elastoplastic notch-tip values. Molski-

Glinka’s rule [28] could also be used in an incremental deviatoric way in the proposed 5D formulation 

resulting, for i = 1, 2, …, 5, in 

i i i is de s de     (5D Incremental Molski-Glinka)               (31) 

One inconvenience of this approach (either in the original 6D or in the proposed 5D versions) is 

that it requires the solution of a set of equations such as the ones from Eq. (30) or (31), which can be 

computationally costly in an implicit integration formulation. 

Finally, a Modified Boundary Condition approach [31] could also be followed, easily adaptable to 

the proposed 5D formulation since a single strain energy equation is required, with the remaining 

equations coming from assumptions on the ratios of pseudo and notch components. Such problems are 

most important for practical applications, and they will be further explored in future works.  

7. Experimental Validation 

The proposed 5D incremental plasticity formulation has been implemented in the ViDa 3D soft-

ware [32] to predict multiaxial elastoplastic stress-strain relations. Isotropic, non-proportional (NP), 

and all presented non-linear kinematic hardening models were simulated in the 5D formulation for 

various representative loading paths. The numerical robustness of the algorithm was verified using the 

same model in both stress and strain control, as recommended in [33], i.e. the stress history is calculat-

ed in the code from a given strain history, and then the computed stresses are used as input to the same 

code to predict the original strain history, with negligible errors of the order of the computation resolu-



 

tion. A large number of conducted simulations using unbalanced load histories confirmed all conclu-

sions summarized in Table 3 about the characteristics of different kinematic hardening models. Like 

the notch problems, such simulations will be further explored elsewhere. However, a few experimental 

problems are discussed following to illustrate the power of the proposed methodology.  

For the experimental verification, simulations were performed using the proposed generalized 

surface translation rule from Eqs. (7-8), calibrated to describe Jiang-Sehitoglu’s model. To improve 

the calculation accuracy, the backstress was divided into 10 additive components, following 

Chaboche’s idea [13], with stress increments at each integration step limited to only 2MPa. Jiang-

Sehitoglu’s material parameters were calibrated from uniaxial data using the procedure described in 

[23]. 

Tension-torsion experiments were performed on tubular annealed 316L stainless steel specimens 

in an MTS multiaxial testing machine, see Fig. 5. The cyclic properties of this steel were obtained 

from uniaxial tests. Engineering stresses and strains were measured using a load/torque cell and an 

MTS axial/torsional extensometer. 

 

Fig. 5: Tubular specimen mounted in an MTS tension-torsion machine, showing the axial/torsional ex-

tensometer. 

One of the experimented strain-controlled tension-torsion tests adopted strain paths describing a 

square pulse in the x × xy/3 strain diagram, see Fig. 6. The predicted and measured stress paths after 

isotropic and NP hardening stabilization show good agreement even in the presence of significant 

mean stress relaxation, as it can be observed from the low resulting mean stresses in the almost sym-

metrical stress paths, despite the high applied mean strains. The same calibrated parameters from the 

proposed generalized surface translation rule were later used to predict multiaxial ratcheting under 

stress control, also showing a very good experimental agreement. These results confirm that ratcheting 

and mean stress relaxation are indeed two aspects of the same phenomenon, which become evident re-

spectively under stress and strain control. 

To evaluate the ability of the proposed formulation to predict as well uniaxial ratcheting, uniaxial 

tension-compression experiments were performed on cylindrical specimens made of 1020 steel with 



 

yield strength 365MPa and ultimate strength 542MPa. An unbalanced history between 200 and 

350MPa was imposed under stress control, with a mean stress component that induced uniaxial ratch-

eting, see Fig. 7. As shown in the figure, by adopting a calibration that describes Jiang-Sehitoglu’s 

kinematic hardening model, the proposed formulation is able to predict reasonably well the ratcheting 

rate decay observed in the first 100 cycles of such unbalanced loading. 
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Fig. 6: Stress path predictions from the proposed formulation for a strain-controlled square pulse on a 

tension-torsion 316L steel tubular specimen, showing a good experimental agreement in the 

presence of significant mean stress relaxation. 

x

x1020 steel

 



 

Fig. 7: Uniaxial ratcheting predictions from the proposed formulation for a 1020 steel cylindrical spec-

imen, showing the predicted and measured uniaxial loops after 1, 10, 30, 50, 70, and 100 cy-

cles. 

Note that all tension-torsion simulations were performed in 2D sub-spaces of the proposed 5D 

stress and strain spaces, significantly decreasing computational cost, especially since both isotropic 

and NP hardening transients were considered. The simulations were repeated adopting a traditional 6D 

incremental plasticity formulation, resulting in the exact same path predictions but with a computa-

tional time about 100% higher than the one spent using the proposed formulation. Therefore, the pro-

posed 5D framework is recommended due to its significantly lower computational cost, without any 

loss in calculation accuracy while considering isotropic and NP hardening transients, non-linear kine-

matic hardening, and notch effects. 

 

8. Conclusions 

In this work, an incremental plasticity formulation was proposed, entirely represented in efficient 

reduced-order five-dimensional (5D) stress and strain spaces. A generalized surface translation equa-

tion was proposed in 5D, from which all main non-linear kinematic (NLK) hardening models are a 

special case. The proposed 5D formulation can be easily transformed into 3D, 2D, or 1D representa-

tions of stresses and strains, to most efficiently calculate the stress-strain behavior under free-surface, 

tension-torsion, or uniaxial conditions, respectively. Such representations in lower dimensions can re-

duce in more than half the computational cost of incremental plasticity calculations, without altering 

the resulting predictions. Experiments with 316L and 1020 steel specimens confirmed the efficiency 

of the proposed framework to compute ratcheting and mean stress relaxation, which can have im-

portant effects on fatigue lives due to premature exhaustion of the material ductility and to changes in 

mean and maximum stresses. 
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