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Abstract 

The best multiaxial fatigue damage models require the knowledge of both stress and corresponding strain histories to quantify 
damage. Under variable amplitude (VA) non-proportional (NP) loadings, efficient correlation between multiaxial stresses and 
strains requires incremental plasticity models including non-linear kinematic (NLK) hardening. In this work, the formulation of 
the main NLK models is unified in a generalized equation, represented using engineering notation in a reduced-order five-
dimensional space that may lower in half the associated computational cost. NP tension-torsion experiments with 316L steel tubular 
specimens are conducted to validate the proposed approach. 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Czech Society for Mechanics. 
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1. Introduction 

The Bauschinger effect, observed under cyclic loading, is a change in the absolute value of the opposite yield 
strength after strain hardening, due to the microscopic stress distribution. In other words, loading a specimen above 
its yield limit in one direction reduces (in absolute value) the yield strength in the opposite direction. 

For instance, assume the yield surface currently has a radius S  SY. Tensile cold working up to a stress level max 
> SY increases the tensile yield strength from SY to max in the load direction for subsequent cycles, but it also reduces 
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in absolute value the compressive yield strength, from –SY to roughly ( max 2SY), and vice-versa after a compressive 
strain hardening. This is a general phenomenon found in most polycrystalline metals, the most significant hardening 
type after the material becomes cyclically stable. 

Figure 1 exemplifies the Bauschinger effect for a uniaxial load history represented in the x × xy 3 Mises diagram. 
In this example, the yield surface Mises  SY is allowed to translate with no change in its shape or radius S. If the 
center of the yield surface is translated in the x direction of the Mises stress space by ( max SY), then the resulting 
surface will intersect the x axis in the new tensile yield stress ( max SY SY)  max and in the new compressive yield 
stress ( max SY SY)  ( max 2SY). Since this phenomenon only involves the kinematic translation of the yield 
surface, it is called kinematic hardening. The new yield surface center is named backstress, represented by a vector 

, which stores plastic memory. In Fig. 1, x is the x component of such backstress.  
 

 

Fig. 1: Kinematic hardening in the x direction and associated yield surface translation in the x × xy 3 Mises diagram. 

A simple rheological model of the kinematic hardening process has been proposed in [1], as shown in Fig. 2 for 
uniaxial histories, based on the values of Young’s modulus E and a “generalized plastic modulus” C, which describes 
the slope decrease in the stress-strain curve beyond yielding. The model consists of an elastic spring with stiffness E 
in series with an inelastic element defined by a spring and a slider in parallel, loaded by a force numerically equal to 
the stress x. The deformation of the elastic spring is thus the elastic strain xe = x/E, while the plastic strain xp is 
associated in this analogy with the deformation of the inelastic element, see Fig. 2(a). The elastic spring from the 
inelastic element, which has a stiffness C and is loaded by a force numerically equal to the backstrain component x, 
can be interpreted as an elastic strain on the microscale level caused by dislocation-induced lattice deformation [2]. 
The slider is a Coulomb friction element that only moves when the absolute value of the resulting “force” ( ) 
acting on it is large enough to overcome a threshold, the yield stress SY. 

In a virgin specimen, the backstress component in the x direction is initially x  0, therefore plastic straining will 
only happen in traction when ( x x)  x ≥ SY, see Fig. 2(a). After reaching a maximum stress max ≥ SY, the 
backstress component has changed from zero to x  ( max SY), see Fig. 2(b). During elastic unloading, the slider 
element will not move until its “force” reaches SY, causing reverse yielding. This reverse yielding condition is then 
given by ( x x)  { x ( max SY)} ≤ SY, which agrees with the model prediction x ≤ max 2SY.  

Note that, during plastic straining, as the slider moves, the material stiffness becomes the combination of the 
springs E and C in series, resulting in the lower slope EC/(E+C), shown in Fig. 2(b). A more precise multi-linear 
approximation of the stress-strain curve can be obtained if multiple inelastic elements are arranged in parallel, as in 
the non-linear kinematic (NLK) models. Such NLK models use multiple surfaces that can translate, with the innermost 
being the yield surface, contained within the remaining hardening surfaces. 
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Fig. 2: Uniaxial rheological model for kinematic hardening, showing the (a) elastoplastic loading and (b) elastic unloading process. 

A key element of NLK models is the direction in which each yield and hardening surface translates. In uniaxial 
problems the translation direction is the same as the loading direction, however this is not the case in multiaxial 
loadings, which in general can have 6 components. In this case, both the backstress vector  and its incremental 

translation d  must be represented in six dimensions (6D). Each NLK model defines a different equation for the 6D 
direction of such translations. But such directions can be also represented in 5D, without any information loss, using 
a 5D projection of the stresses, discussed as follows. 

2. Five-Dimensional Representation of Stresses and Strains 

When dealing with multiaxial stress-strain calculations, it is a good idea to work in stress or strain spaces with 
reduced dimensions, to save computational effort without modifying the results. By working in the deviatoric space, 
several equations can be simplified, e.g. Hooke’s law becomes a scalar operation instead of involving multiplications 
by 9 9 or 6 6 stiffness matrices or their inverse. The 5D Euclidean sub-space E5s adopted in this work to convert 6D 
stresses into 5D deviatoric components is: 

x
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This sub-space has several useful properties. First, all 6D stresses can be reconstructed from such 5D vector as 
long as the hydrostatic stress component is known. In addition, this sub-space has a metric based on a von Mises 
stress, i.e. the absolute value of any 5D component is equal to the von Mises stress at that point. Furthermore, the 
distance between two 5D stress states becomes the relative von Mises stress between them, a range that is often used 
in multiaxial damage models such as Sines [3] and Crossland [4]. 

A similar 5D projection can be defined for strains. Using such 5D stresses and strains, it is possible to calculate 
stress-strain relations in general multiaxial problems, with a kinematic hardening behavior controlled by the translation 
rule from the adopted NLK model. The main NLK models are discussed next. 



288   Marco Antonio Meggiolaro et al.  /  Procedia Engineering   101  ( 2015 )  285 – 292 

3. Non-Linear Kinematic (NLK) Models 

The first non-linear kinematic hardening model was proposed by Armstrong and Frederick in 1966 [5]. Their 
original single-surface model did not include any additional hardening surface, but their single yield surface already 
translated according to a non-linear rule. Since then, several improvements on Armstrong-Frederick’s original NLK 
model have been proposed in the literature. 

In the 5D representation, the backstress vector is defined as , which locates the center of the yield surface. This 

vector can be decomposed as the sum of M surface backstresses 1 , 2 , …, M  that describe the relative positions 
between the centers of consecutive hardening surfaces. In the context of NLK hardening models, such decomposition 
was proposed by Chaboche et al. [6-7], significantly improving the Armstrong-Frederick model capabilities by 
indirectly introducing the concept of multiple hardening surfaces. 

As mentioned above, the main difference among the several NLK hardening models proposed in the literature 
rests in the equation of the yield or hardening surface translation direction iv . In this work, it is shown that most NLK 
model translations can be condensed into a unified translation direction 

T
i i i i i i i i i

dynamicPrager- radial
recoveryZiegler return

v n r * m * [ (1 ) ( n ) n ]                      (2) 

where n  is the 5D plastic straining direction, ri is the difference between the radii of two consecutive surfaces, and 
the scalar functions i
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The calibration parameters for each yield surface i are the ratcheting exponent i, the multiaxial ratcheting 
exponent mi, the ratcheting coefficient i and the multiaxial ratcheting coefficient i, scalar values that are listed in 
Table 1 for several popular models.  

                                   Table 1: Calibration parameters for the general translation direction from Eq. (2). 

Year Kinematic model i mi i i 

1949 Prager [8] 0 0 0 1 

1966 Armstrong-Frederick [5] 0 0 0  i  1 1 

1983 Chaboche [7] 1 0 1 1 

1986 Burlet-Cailletaud [9] 0 0 0  i  1 0 

1995 Delobelle [10] 0 0 0  i  1 0  i  1 

1996 Jiang-Sehitoglu [11-12] 0  i < ∞ 0 1 1 

2004 Chen-Jiao [13] 0  i < ∞ 1 1 0  i  1 

2005 Chen-Jiao-Kim [14] 0  i < ∞ ∞ < mi < ∞ 1 1 

The translation direction iv  of each surface from Eq. (2) can be separated into three components: (i) the Prager-
Ziegler term, in the normal direction n  perpendicular to the yield surface; (ii) the dynamic recovery term, in the 
opposite direction i  of the backstress of the considered surface, which acts as a recall term that gradually erases 
plastic memory with an intensity proportional to the product i

* mi
*

i i; and (iii) the radial return term, in the opposite 
direction n  of the normal vector, which affects multiaxial ratcheting predictions, calibrated from the product 
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T
i i i i i* m * (1 ) ( n ) . Both dynamic recovery and radial return terms from each surface i are influenced 

by all four calibration parameters i, mi, i and i. 
Among the models from Table 1, Prager’s [8] translation direction i iv n r  is not able to predict uniaxial 

ratcheting since it only uses the Prager-Ziegler term, which is linear. For multiaxial ratcheting, it only predicts a very 
short transient that almost immediately arrests (shakedown), highly underestimating multiaxial ratcheting rates. 

Armstrong and Frederick proposed the use of a ratcheting coefficient 0  i  1, originally intended to be a scalar 
function of the plastic strain path, including non-linearity in their hardening model [5]. However, in many practical 
implementations, i was assumed as a constant, turning their translation equation i i i iv n r  into a linear rule 
that suffers the same drawbacks of linear hardening models, with a large overestimation of both uniaxial and multiaxial 
ratcheting. Even though i can calibrate ratcheting rates, with the limit values i  0 (Prager’s rule) for no ratcheting 
and i  1 for large ratcheting rates, the linearity associated with a constant i makes it impossible to predict multiaxial 
ratcheting rate decay and arrest (shakedown) observed in several constant amplitude experiments. 

Chaboche replaced the constant ratcheting coefficient i with the ratio i i| | r , which ranges from 0 in the 
unhardened condition to 1 at saturation, eliminating the discontinuity problem caused by i  1 [6]. However, even 
though the resulting surface translation rule i i i i iv n r (| | r )  is an improvement over the constant i 
models such as most implementations of Armstrong-Frederick, it is unable to predict multiaxial ratcheting rate decay 
and arrest. This model predicts a short ratcheting transient followed by a constant ratcheting rate that never decays, 
overestimating its effects in multiaxial experiments. 

Burlet and Cailletaud noticed that multiaxial experiments generally show lower ratcheting rates than the uniaxial 
ones for equivalent conditions on stress or strain amplitudes [9]. To lower the multiaxial ratcheting rate predictions 
without altering the uniaxial response, they replaced the dynamic recovery term with a radial return term, which results 
in the surface translation direction 

T
i i i iv n r ( n ) n              (4) 

Jiang and Sehitoglu [11-12] proposed the translation rule 

i
i i i i iv n r (| | r )                           (5) 

where 0  i < ∞. Jiang-Sehitoglu’s equation becomes a generalized version of Chaboche’s original model [6], which 
would be obtained for the particular case i  1. Multiaxial ratcheting rate decay can be predicted, if a ratcheting rate 
exponent i  1 is chosen in the calibration. 

Furthermore, other translation rules are also represented in Table 1, proposed in [13-14], showing that such unified 
rule is very versatile. In the next section, Eq. (2) is used to predict the tension-torsion elastoplastic behavior of 316L 
stainless steel specimens, to show the accuracy of the proposed unified translation direction.  

4. Experimental Results 

To verify the prediction capabilities of the presented unified translation model, tension-torsion experiments are 
performed on annealed tubular 316L stainless steel specimens in an MTS 809.25 multiaxial testing machine, shown 
in Fig. 3. Engineering stresses and strains are calculated from load/torque cell measurements and from an MTS 632.68 
axial/torsional extensometer, and then converted to true stresses and strains.  

The engineering shear stresses include the elastoplastic gradient correction recommended by ASTM E2207-08 
[15], otherwise they could be overestimated by 10% or more. In this correction, instead of assuming elastic conditions 
across the tubular specimen wall, ASTM E2207-08 adopts a uniformly-distributed shear stress given by 

eng
ASTM 2 2

ext extint int

16 T

(d d ) (d d )
         (6) 
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where T is the applied torque, and dext and dint are the specimen outer and inner diameters at the critical section. 
The tests consist of strain-controlled tension-torsion load cycles applied to the tubular specimens shown in Fig. 4, 

until the material cyclically stabilizes, for non-proportional constant and variable amplitude loadings. Non-
proportional hardening is modeled using Tanaka’s polarization tensor approach [16], adopting an additional hardening 
coefficient NP = 0.8, typical of 316L steel values in room temperature under the maximum adopted stress levels. 
Figure 5 shows an experiment for normal strain amplitudes x/2 and effective shear strain amplitudes xy/(2 3) 
varying from 0.2% to 0.8%, following a non-proportional path that describes a square in the x  xy/ 3 strain diagram, 
where only the 0.2% and 0.8% amplitude cycles are plotted for clarity. 

 

 

Fig. 3: Tension-torsion testing machine and extensometer. 

 

Fig. 4: Typical tubular specimen used in the multiaxial tension-torsion experiments. Normal and shear strains are usually measured by a special 
clip-gage. For experiments involving large compression strains, the minimum wall thickness is sometimes increased from 1.5 to 2.0 or even 
2.5mm to avoid buckling. 

The stress paths predicted by the presented incremental plasticity approach for Jiang-Sehitoglu’s model, shown in 
the x  xy 3 stress diagram from Fig. 5, have a very good agreement with the experimentally measured values. Note 
however that the stress-level dependence of NP discussed in [17] was confirmed, requiring a lower NP = 0.5 (instead 
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of 0.8) for the lower 0.2% normal strain amplitudes. It was found that NP monotonically increased from 0.5 to 0.8 
for stabilized non-proportional hysteresis loops with normal amplitudes varying from 0.2% to 0.8%. 

 Figure 6 shows the same paths from Fig. 5 but represented as stress-strain hysteresis loops, both for normal and 
shear components. Note that the almost vertical portions of the x  x normal hysteresis loops in the left figure 
represent the torsion cycles, while the almost vertical portion in the shear loops on the right represent the tension-
compression cycles. 

   
Fig. 5: Square normal-shear strain input path from tension-torsion loads, and resulting normal-shear stress path. 

   
Fig. 6: Stress-strain hysteresis loops associated with the Fig. 5 loading. 

From the simulations using the several surface translation rules modeled in Eq. (2), it is found that all rules with 
adjustable i, i, mi, or di allow the calibration of multiaxial ratcheting rates, but the ability to predict both constant 
rate and rate decay requires either i or i. Moreover, rules with at least two adjustable i, i, mi, or di allow independent 
calibration of uniaxial and multiaxial ratcheting rates. Table 2 summarizes the capabilities of each kinematic hardening 
translation model that can be represented by the unified Eq. (2), regarding the ability to accurately reproduce uniaxial 
ratcheting conditions including rate decay, or multiaxial ratcheting conditions with constant rate or with rate decay. 
Their ability to calibrate arbitrary uniaxial or multiaxial ratcheting rates, as well as to independently calibrate arbitrary 
uniaxial and multiaxial ratcheting rates, is also evaluated. These models can be readily used to predict the stress-strain 
behavior in variable-amplitude non-proportional loading histories. 
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Table 2: Characteristics of the various NLK surface translation direction equations regarding number of parameters to be calibrated (NPC) for M 
surfaces and ability to accurately model all uniaxial ratcheting conditions including rate decay (UR), or all multiaxial ratcheting conditions 
with constant rate (MRC) or with rate decay (MRD), to calibrate arbitrary uniaxial (U) or multiaxial ratcheting rates (M), and to 
independently calibrate arbitrary uniaxial and multiaxial ratcheting rates (UM). 

Year Kinematic model NPC UR MRC MRD U M UM 

1949 Prager [8] 0 No No No No No No 

1966 Armstrong-Frederick [5] M No Yes No Yes Yes No 

1983 Chaboche [7] 0 No Yes No No No No 

1986 Burlet-Cailletaud [9] M No No Yes Yes Yes No 

1995 Delobelle [10] 2M No Yes Yes Yes Yes Yes 

1996 Jiang-Sehitoglu [11-12] M Yes Yes Yes Yes Yes No 

2004 Chen-Jiao [13] 2M Yes Yes Yes Yes Yes Yes 

2005 Chen-Jiao-Kim [14] 2M Yes Yes Yes Yes Yes Yes 

5. Conclusions 

In this work, the formulation of the main non-linear kinematic models was unified in a generalized equation, which 
describes the translation direction of yield and hardening surfaces in a five-dimensional (5D) deviatoric space. The 
use of a 5D formulation instead of 6D was able to lower in about half the associated computational cost of the 
predictions. Non-proportional constant and variable amplitude tension-torsion experiments with 316L steel tubular 
specimens were conducted to validate the proposed approach, showing good multiaxial stress-strain predictions based 
on uniaxial material properties, the unified translation rule, and Tanaka’s non-proportional hardening model. 
Conclusions about the abilities of each kinematic hardening rule represented by the unified equation to model uniaxial 
and multiaxial ratcheting were also evaluated. 
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