
 Procedia Engineering   101  ( 2015 )  69 – 76 

Available online at www.sciencedirect.com

1877-7058 © 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Czech Society for Mechanics
doi: 10.1016/j.proeng.2015.02.010 

ScienceDirect

3rd International Conference on Material and Component Performance  
under Variable Amplitude Loading, VAL2015 

Invariant-Based and Critical-Plane Rainflow Approaches for 
Fatigue Life Prediction under Multiaxial Variable Amplitude 

Loading

Marco Antonio Meggiolaroa, Jaime Tupiassú Pinho de Castroa,*, Hao Wub

aDept. of Mechanical Engineering, Pontifical Catholic University of Rio de Janeiro, Brazil 
bSchool of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, P.R. China 

Abstract 

Multiaxial variable amplitude histories usually require a rainflow algorithm to identify individual cycles. A computationally- 
efficient 5D multiaxial rainflow algorithm that can deal with any 1D to 6D history has been proposed by the authors, based on the 
representation of 6D stresses and strains in 5D deviatoric sub-spaces that use a von Mises metric. These spaces provide simple 
geometric interpretations for the identified load cycles while highly reducing computational cost. In this work, the most efficient
multiaxial rainflow algorithms for variable amplitude histories are presented and compared, detailing their individual advantages 
and disadvantages. 
© 2015 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the Czech Society for Mechanics. 

Keywords: Multiaxial rainflow; Multiaxial fatigue; Critical plane approach; Non-proportional loading. 

1. Introduction 

The identification of individual cycles of variable amplitude loading (VAL) histories is required for applying most 
fatigue damage models, but the traditional rainflow algorithm cannot be directly applied to multiaxial histories, since 
it can count only one stress or strain component. A possible approach to solve this problem is to project the multiaxial 
stress or strain VAL history onto a so-called candidate plane, where the crack is assumed to initiate at the critical point 
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of the structural component. The number of such planes can be narrowed down to a manageable size assuming that 
the fatigue failure mechanism is associated with a single dominant crack [1], as usual in most metallic alloys, and free 
surface conditions, i.e. xz  yz  0 and xz  yz  0, where z is perpendicular to the surface. The free-surface 
formulation can allow the presence of a compressive surface stress z  –p  0 caused by a surface pressure p  0.
Under these conditions, the stresses and strains projected onto a candidate plane rotated at ( , ) from the surface, as 
illustrated in Fig. 1, become 
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where  and  are the normal stress and strain perpendicular to the candidate plane, A and A are the shear stress 
and strain parallel to the free surface, and B and B are the shear stress and strain in the depth direction, see Fig. 1, 
while x, y, xy, x, y and xy are the time-varying stress and strain components caused by the VAL history. Under 
such free-surface conditions, the expected fatigue cracks can be classified into three types: Case A tensile, Case A 
shear, and Case B shear cracks, explained as follows. 

Fig. 1: Stress and strain components acting on a candidate plane ( , ) under free surface conditions, possibly with a surface pressure p  – z  0.

If the surface is unpressurized (p  0), then for any given  and any loading history it follows from Eq. (1) that 
both the ranges and the magnitudes of , A,  and A are maximized for planes which obey sin2   sin   1, i.e. 
for candidate planes ( , 90o) perpendicular to the free surface. This conclusion is valid even for non-proportional (NP) 
VAL histories, since the factors sin2  or sin  multiply these stresses and strains for every single cycle. Fatigue cracks 
that initiate in planes with   90o are called Case A cracks, which can be driven either in Mode I if  and  dominate, 
or in Mode II if A and A dominate the damage process, generating respectively the Case A tensile and Case A shear 
cracks.  

If a surface pressure p > 0 is applied, Case A cracks would not be affected because the magnitude of the normal 
stress perpendicular to their planes ( , ) would still be maximized for   90o, hence in such cases all terms 
involving p would vanish in the above equations. Note that large pressure variations p, due e.g. to Hertzian contact 
fatigue, could maximize the normal strain range ( , ) for   0o, however a   0o critical plane parallel to the 
free surface would be unlikely since the associated normal stress ( , 0o)  p would always be compressive, so it 
would inhibit the crack propagation process. 

On the other hand, Eq. (1) shows that the ranges and magnitudes of B and B are maximized for planes with sin 

2   1, i.e. in candidate planes making 45o with the free surface. The cracks that initiate in such   45o inclined planes 
are called Case B cracks, which are always driven in Mode III (due to the maximization of the B and B ranges and 
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magnitudes) with the possibility of a Mixed II-III behaviour (if A and A in such   45o plane are also significant 
when compared to B and B). 

For each candidate plane projection, a special critical plane rainflow algorithm can be used to identify individual 
half-cycles and the corresponding fatigue damage caused by the VAL. For Case A cracks, a uniaxial rainflow count 
is enough, if it is applied to the main stress or strain component responsible for fatigue damage, such as the normal 
stress (or strain) for Case A tensile and the shear stress (or strain) for Case A shear cracks. For Mode III Case B cracks, 
a uniaxial rainflow is enough if applied to the Mode III shear stress (or strain) component. However, mixed Mode II-
III Case B cracks suffer the combined influence of two shear components (responsible for Modes II and III), which 
requires a bi-dimensional rainflow count, explained in the next sections. 

Several candidate planes must be studied to find the critical plane where the crack should initiate. This process 
requires, for each candidate plane, a critical-plane rainflow count procedure followed by the determination of 
equivalent stress or strain ranges associated with each counted half-cycle, which are then used to calculate the 
associated fatigue damage. The critical plane where the crack should initiate is then the candidate plane with the 
highest accumulated fatigue damage. 

Another approach is to use a truly multiaxial rainflow algorithm such as the one proposed by Wang and Brown 
[2], or its improved version from [3], which identify individual half-cycles within multiaxial NP histories 
simultaneously considering all six stress or strain components, based on a Mises metric. No stress or strain projections 
are necessary, as opposed to the critical plane approach. So this method is more straightforward, since it requires a 
single rainflow counting procedure for each multiaxial VAL history, as opposed to the critical plane approach, where 
each projection of the VAL history onto a candidate plane is individually rainflow counted. 

Both multiaxial rainflow approaches use as inputs both stress and strain paths, which for elastoplastic VAL 
histories can be correlated from proper incremental plasticity calculations. The rainflow outputs are multiaxial path 
segments associated with each individual half-cycle. Depending on the damage model, scalar equivalent strain or 
stress ranges and mean components must be calculated from such multiaxial segments, which can be performed e.g. 
using a convex enclosure approach or the moment of inertia (MOI) method [4]. In the next sections, the two most 
adopted multiaxial approaches for the rainflow counting method are described and compared. 

2. Wang-Brown Multiaxial Rainflow 

Wang and Brown [2] proposed a multiaxial generalization of the rainflow count that is applicable to any 
proportional or NP strain history. It can also be applied to stresses, with simple modifications to the algorithm. The 
original Wang-Brown algorithm requires the computation of a relative Mises strain range Mises between each loading 
state and all remaining loading states in the history. This algorithm focuses on periodic load histories where each 
period consists of a relatively few number of cycles. Therefore, such formulation is impractical for truly VAL histories, 
where no simple periodic loading blocks can be identified. In addition, the formulation of the Wang-Brown algorithm 
in the 6D strain (or stress) space requires the calculation of the intersection between 6D hyper-ellipsoids to identify 
the rainflow cycles [3]. 

The Modified Wang-Brown method proposed in [3] solves all such problems, working in the reduced 5D deviatoric 
stress E5s or strain E5e spaces, or in a lower dimension sub-space of them. In this way, a general multiaxial strain 
history is represented by a set of 5D points 

y zi 1 2 3 4 5 x y z xy xz yzP (e ,  e ,  e ,  e ,  e ) 0.5 2 ( ),  ( ) 3,  3,  3,  3   (2) 

while a multiaxial stress history defines instead the 5D points 
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Wang-Brown’s multiaxial rainflow algorithm is rather simplified when working in such 5D spaces, because the 
distance between two points A and B is already proportional to the relative Mises or Mises between them, since 

B A Mises|s s |  and B A Mises| e e | (1 )       (4) 

When applied to invariant-based equivalent stress or strain multiaxial fatigue damage models, such as the Sines 
[5] and Crossland [6] models, a measure of an equivalent strain range is required for each half-cycle. The Mises 
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relative strain range Mises between the two strain states from each half-cycle cannot be used as such equivalent range, 
because it would assume that all half-cycles are straight lines without any NP effect. The NP effects can only be 
accounted for if the path shape between any two counted strain states is considered, e.g. using the MOI method or 
other equivalent range approaches from [4]. Wang-Brown’s original multiaxial rainflow rules have been improved in 
[3], generating the so-called modified Wang-Brown (MWB) counting. 

This 5D algorithm implementation is applicable to invariant-based equivalent stress or strain models, such as the 
Sines [5] or Crossland [6] models, or to any other fatigue damage model that allows the mixture of stress or strain 
components happening on different planes. Note however that such 5D-counted half-cycles should not be applied to 
a critical plane approach, because the original history was not projected onto candidate planes before the rainflow. 

If, on the other hand, a critical plane approach is used, the MWB rainflow algorithm must be applied exclusively 
to the 2D shear path in the B× A or B× A diagram, to find the rainflow-counted equivalent shear ranges for the 
specific search of Case B mixed Mode II-III shear cracks. The MWB algorithm must be applied in this case to every 
Case B candidate plane to search for the Case B mixed Mode II-III shear crack with maximum damage. Note that the 
critical plane search for Case A Mode I, Case A Mode II and Case B Mode III cracks does not need the MWB, only 
a uniaxial rainflow count is required, as discussed in the next sections. 

3. Critical Plane Approach 

The Wang-Brown algorithm performs a multiaxial rainflow count on the original 6D stress or strain history, 
calculating the path segments associated with each half-cycle. The Modified Wang-Brown results in similar 6D 
rainflow counts, but performed on a more efficient 5D deviatoric space. However, such half-cycles should not be 
projected onto candidate planes to be used in a critical plane approach, because each candidate plane could have a 
very different rainflow count. 

So, to deal with VAL histories, the critical plane approach needs to first project the 6D stress or strain history onto 
each candidate plane, and only after that a rainflow count should be evaluated. The actual procedures are different 
depending on the tensile or on the shear nature of the crack, as described next. 

3.1 Case A tensile and shear cracks 

The initiation of Case A cracks, which grow along a critical plane perpendicular to the free surface, is controlled 
by the combination of the four stresses and strains obtained from Eq. (1) for   90o:
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where x, y, xy, x, y and xy are time-varying components defined by the load history.  
Figure 2 shows the stress states and Mohr circles associated with Case A cracks, which reflect the above equations. 

As discussed before, Case A cracks can be divided into shear or tensile types. The dominant failure mechanism of 
several materials is Mode II shear crack nucleation and growth. Case A shear cracks will most likely initiate in these 
shear-sensitive materials in  directions that maximize the ranges of the shear components A and A, with the normal 
components  and  only playing a secondary role affecting microcrack closure. But other materials, such as 304 
stainless steel (under certain load histories) and cast irons, fail predominantly by Mode I microcrack and crack growth 
on planes of maximum tensile strain or stress. Case A tensile cracks will most likely initiate in these tensile-sensitive 
materials in  directions that maximize the ranges, the means and/or the maxima of the Mode I normal components 

 and  (with little or no influence of A and A).
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Fig. 2: Stress states and Mohr circles for a Case A crack in a ( , 90o) plane under free surface conditions with a surface pressure p.

3.2 Case B shear cracks 

The initiation of Case B cracks (with   45o), on the other hand, is always controlled by shear. These cracks are 
the ones described by the intrusion-extrusion model, where the slip bands are mainly caused by the range of the shear 
stress B( , 45o), which induces Mode III out-of-plane tearing at the maximum crack depth. The presence of B( , 45o)
parallel to the crack plane along its depth makes Case B (Mode III) surface microcracks become much deeper than 
Case A (Mode II) microcracks, which are usually shallow due to B( , 90o)  0. However, the damage process is not 
caused solely by the range of B. Combinations of all shear stresses and strains A, B, A, and B parallel to crack plane 
are the main cause of Case B crack initiation, maybe with some influence of the maximum or mean normal stress 
(and perhaps even ) due to the opening and closure of microcracks. The six stress and strain components from a 
Case B candidate plane ( , 45o) are then obtained from replacing   45o in Eq. (1), giving 
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Figure 3 shows the stress states and Mohr circles associated with Case B cracks, which reflect these equations.  

Fig. 3: Stress states and Mohr circles for a Case B crack ( , 45o) for a free surface with surface pressure p.

4. Critical Plane Rainflow 

For Case A cracks, which initiate along a plane perpendicular to a free surface (   90o), a sequential uniaxial 
rainflow count can be performed on the main stress or strain channel. Shear-based damage models require a uniaxial 
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rainflow count applied to the shear strain A (or stress A) acting on the candidate plane, while tensile-based damage 
models must count the normal strain  (or stress ) perpendicular to such plane. The other stress and strain 
components can be regarded as auxiliary channels [7], which will provide the additional parameters needed by each 
multiaxial fatigue damage model, such as mean or maximum stresses.  

For instance, Fatemi-Socie’s [8] shear-based model combines A and max to calculate the accumulated damage 
for each Case A candidate plane, which is maximized for the critical plane where the crack is expected to initiate. 
Therefore, the main channel A must be rainflow counted using a uniaxial algorithm, while the associated max (the 
maximum normal stresses  along each counted half-cycle) must be identified from the auxiliary channel . This 
procedure involving a uniaxial count on a main channel and the tracking of other auxiliary channels is called here the 
critical plane rainflow algorithm. 

On the other hand, Smith-Watson-Topper’s (SWT) [9] tensile-based damage model combines  and max for 
each Case A candidate plane, therefore the critical plane rainflow must be applied to the main channel  while the 
associated max are obtained from the auxiliary channel .

As a general rule, damage models used to predict Case A tensile cracks must apply the critical plane rainflow to 
the main channel  (Generalized Goodman) or  (SWT [9], Liu-I [10]), while for Case A shear cracks the main 
channel should be A (Findley [11], McDiarmid-A [12]) or A (Fatemi-Socie [8], Brown-Miller [13], Liu-II [10]). For 
Case B shear cracks, the main rainflow channel should be B (Findley [11], McDiarmid-B [12]) or B (Fatemi-Socie 
[8], Brown-Miller [13], Liu-II [10]), with the remaining components acting as auxiliary channels. Table 1 summarizes 
for each damage model the main channel to be rainflow counted, the auxiliary channels to be tracked, and the resulting 
identified parameters for each half-cycle. Note that, in addition to the use of either the stress ratio R  min/ max or 
the mean m ( max  min)/2  the main difference among the critical plane implementations of Liu’s energy model 
is that the main rainflow channel is either  for Case A Mode I tensile cracks, A for Case A Mode II shear cracks, or 

B for Case B Mode III shear cracks. 

Table 1: Main and auxiliary input channels involved in the critical plane rainflow algorithm, along with the 
identified main output range and remaining output parameters used in each damage model for Case A Mode I tensile 

(AI), Case A Mode II shear (AII) and Case B Mode III (BIII) shear cracks. 
Model Main Auxiliary Range Parameters 

AI 
Generalized Goodman - m = max  
Smith-Watson-Topper max

Liu-I , A, A , A, A, R

AII 

Findley, McDiarmid-A A A max

Fatemi-Socie A A max

Brown-Miller A A

Liu-II A , , A A , , A, m

BIII 

Findley, McDiarmid-B B B max

Fatemi-Socie B B max

Brown-Miller B B

Liu-II B , , B B , , B, m

A very efficient uniaxial rainflow algorithm that is capable of dealing with auxiliary channels has been proposed 
in [7]. It is based on the four-point rainflow algorithm [14], which is able to count very long histories in real time as 
the peaks and valleys are entered as input, without requiring an a priori knowledge of the entire load history. In this 
“critical plane rainflow” algorithm, each stack entry stores not only the main channel to be counted (e.g. A for Fatemi-
Socie’s model), but also the maximum and minimum values of any auxiliary channel required by the chosen multiaxial 
fatigue damage model (such as the minimum and maximum normal stresses min and max). Then, every time a half-
cycle is counted and eliminated from the stack, the previous stack element inherits the minimum and maximum values 
of the auxiliary channel (e.g. min and max) among itself and the eliminated elements, automatically keeping track 
of their variation along each history path segment. Note that the counted half-cycle is associated with the minimum 
and maximum values of the auxiliary channel (e.g. min and max) only between the eliminated elements, not 
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including the previous stack element. 
After the half-cycles are counted, the associated min, max, and m are obtained from the variation of the normal 

stress  (perpendicular to the candidate plane) along each path segment. The equivalent range  is then calculated 
for each counted half-cycle from the A- B history using the MOI method or one of the convex enclosure methods 
presented in [4]. A shear-based model such as Fatemi-Socie’s is then applied to all counted strain range  with the 
associated max along each half-cycle to calculate the accumulated fatigue damage from Miner. 

Finally, among all Case A and Case B candidate planes used in the above calculations, the one with maximum 
accumulated damage according to the chosen multiaxial fatigue damage model is then the critical plane where the 
microcrack is expected to initiate. 

But it has been argued that Case B cracks suffer not only the Mode III tearing influence of B at the maximum 
crack depth, but also the Mode II influence of the usually non-zero A at the surface. The associated ranges B and 

A synergically interact, causing the crack to grow respectively in the depth and width directions under mixed Mode 
II-III. Under NP VAL histories, the B and A histories need to be counted using a two-dimensional (2D) version of 
the MWB multiaxial rainflow algorithm, performed on a A B diagram. The equivalent range  of each counted 
half-cycle should then be calculated from the associated 2D path segments in the A B diagram, using a convex 
enclosure or the MOI methods from [4]. The accumulated Mode II-III shear damage is then obtained from Miner’s 
rule adding the damage contributions of the equivalent /2 and max of each half-cycle using Findley’s or 
McDiarmid’s models. Analogously, for strain-based and energy-based criteria, for each Case B candidate plane, the 

B and A histories are counted using a 2D version of the MWB multiaxial rainflow algorithm, performed on a A B

diagram. The equivalent range  of each counted half-cycle is then calculated from the associated 2D path segments 
using a convex enclosure or the MOI methods [4], used in Fatemi-Socie’s, Brown-Miller’s, or Liu-II’s multiaxial 
fatigue damage models to calculate the mixed Mode II-III damage from Miner’s rule. 

An alternate approach has been proposed by Carpinteri et al. in [15], where the normal stress  perpendicular to 
the crack plane is taken as the cycle counting variable, i.e. it is the main channel of a modified uniaxial rainflow 
algorithm. The shear components A and B are retained during the filtering and rainflow counting process applied to 
the  history. This method does not separate the behaviour of tensile-sensitive and shear-sensitive materials, whose 
damage is usually calculated respectively by SWT’s and Fatemi-Socie’s models. Instead, a non-linear combination of 

, A and B is used to define an equivalent stress amplitude and thus obtain the associated damage for each rainflow-
counted event, which are combined using Miner’s linear rule. Such Carpinteri-Spagnoli approach has been formulated 
as well in the frequency domain [16], where the determination of the critical plane orientation is obtained  through the 
Power Spectral Density matrix of the stress tensor. 

5. Comparison between Critical Plane and Wang-Brown Approaches 

Although very general and capable of rainflow counting 6D NP histories, both the original WB and the MWB 
algorithms have drawbacks. In their search for individual cycles with maximum Mises, they intrinsically assume that 
the highest fatigue damage is associated with the highest Mises. This is not necessarily true, since several fatigue 
damage models assume a dependence on both strain amplitude and maximum or mean stresses that open or close 
microcracks. A path segment with a slightly lower Mises but with a much higher mean stress could cause higher 
fatigue damage, but it might not be identified by such algorithms, which search for load path segment combinations 
that maximize Mises regardless of the associated stresses. This issue would only be solved if both the stress and strain 
paths could be represented in a single hypothetical diagram whose metric (distance between two stress-strain states) 
would be proportional to the fatigue damage according to some damage model.   

Another issue with rainflow counting NP multiaxial histories is whether or not to use a critical plane approach. 
The Wang-Brown multiaxial rainflow algorithm is general enough to be directly applied to a multiaxial history 
involving all six strain components. But its rainflow-counted half-cycles will probably occur on different planes, not 
reproducing the crack initiation mechanism from most metals. 

Instead, the multiaxial VAL history could be projected onto a candidate plane, and only then should a multiaxial 
rainflow count be used, as performed in the critical plane rainflow approach. 

This observation that some loading events may cause fatigue damage on some planes but not on others is consistent 
with the directional nature of fatigue damage, however it is not applicable to all materials. Critical plane models 
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assume that some stress or strain components may not contribute at all to the damage on the critical plane, which 
might not be true for certain materials, e.g. if the damage process is influenced by the hydrostatic stress. Critical plane 
models also implicitly assume that the crack plane does not change significantly during the early propagation of the 
dominant microcrack. However, despite these criticisms, the critical damage models are probably the most successful 
in predicting fatigue lives under multiaxial VAL [17] for materials that fail due to a single dominant crack, as in the 
fatigue behaviour of most metals. For such materials, the best predictions should be the ones from multiaxial models 
that use the critical plane idea, where the damage parameters are maximized. 

6. Conclusions 

In this work, the most commonly adopted rainflow approaches for variable amplitude non-proportional multiaxial 
histories have been detailed and compared. The Modified Wang Brown method is a practical tool to perform the 
rainflow count in 6D stress or strain histories, since the counting process only needs to be applied once for the entire 
6D history. However, the resulting rainflow count might miss half-cycles that could induce significant damage on 
certain possible crack planes. The critical plane approach, on the other hand, requires a uniaxial or bi-dimensional 
rainflow counting method to be applied to every candidate plane projection of the loading history. Although 
computationally intensive, especially if several candidate planes are considered, the resulting rainflow-counted half-
cycles better reproduce the directional nature of fatigue damage, predicting not only the accumulated damage but also 
the direction of the critical plane where the crack is expected to initiate. Therefore, for materials which fail due to a 
single dominant crack, the critical plane rainflow results in more consistent predictions than the WB or MWB methods. 
If, on the other hand, the material failure mechanism involves a combination of damage parameters acting on different 
planes, such as in certain brittle or ductile materials that fail due to a global defect caused by the coalescence of 
multiple microcracks or microvoids, respectively, then an invariant-based rainflow approach such as WB or MWB 
might be a better option to account for the contribution of all stress/strain components through the Mises metric. 
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