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ABSTRACT. Notches and cracks are usually approximately modeled as two-dimensional problems using solutions from 
plane elasticity to quantify localized stress/strain concentration effects around their tips. However, they may be associated 
with high gradients that can severely restrict local Poisson-induced transversal strains and cause important 3D stress fields 
around those tips. Fatigue crack initiation and growth, plastic zone sizes and shapes, and localized constraint effects that 
affect toughness are typical problems associated with such 3D effects, which may lead to non-conservative damage and 
life predictions if neglected. To quantify how important they can be, first finite element techniques are used to simulate 
thickness and notch-tip radius effects in the fields around such tips, and to evaluate their importance from the structural 
design point of view. Then, versatile sub-modeling techniques are used to study similar effects along the fronts of short 
and long cracks, and a stepwise re-meshing routine is used to show how an initially straight crack must slightly curve its 
front during its propagation by fatigue, due to the unavoidable 3D effects that always surround real crack tips.     
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INTRODUCTION 
 

or design purposes, the maximum stresses max that act at notch tips are usually calculated using a linear elastic (LE) 
stress concentration factor (SCF) Kt to multiply the nominal stress n that would act there if the notch had no 
effect on the stress and strain fields that surround it: 

 

max  Ktn  (1) 

Since Kirsch and Inglis studied circular and elliptical notches in infinite plates, a few analytical and many numerical and 
experimental SCF have been obtained for many other notch geometries from their 2D approximations, assuming idealized 
plane stress (pl-σ), plane strain (pl-ε), or axisymmetric conditions [1-2]. Creager and Paris [3] estimated SCF from stress 
intensity factors (SIF) of similar cracks, but most SIF assume planar geometries as well [4]. However, 2D models of 
notched components have limitations, even in simple cases like a notched plate loaded by a uniform nominal stress. 
Indeed, in such cases the material works under pl- far from the notch tips, but the stress/strain fields that surround the 
tips are in fact 3D, due to the Poisson restriction induced by the stress/strain gradients that act there. If  is the Poisson 
ratio, a transversal constraint factor Tz can be defined to quantify this transversal restriction at any point by 
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Since very few analytical solutions are available for 3D fields around notches [5-6], numerical tools are needed to study 
most 3D SCF problems. Using finite element (FE) to model many notches, Guo et al. [7-10] and Yang et al. [11] 

F 

http://www.gruppofrattura.it/pdf/rivista/numero33/Audioslides/Megg2/index.html


 

R.C.O. Góes et alii, Frattura ed Integrità Strutturale, 33 (2015) 89-96; DOI: 10.3221/IGF-ESIS.33.12                                                                  
 

90 
 

investigated 3D LE fields on tensioned plates, concluding that SCF along 3D notch tips depend on their shape and 
thickness-to-tip-radius ratio B/. Although the stresses along the notch front y0 may vary significantly, the stress ratio 
distributions ahead of the notch tips at any given z’ plane y(x, z’)/y0(z’) are almost z-independent. Particularly, the 
ymp(x)/y0mp ratio along the notched plate mid-plane z  0 is almost insensitive to the plate thickness B and to the notch 
shape up to x/  0.75, and can be approximated by its 2D solution. Moreover, the 3D affected zone is almost 
independent of the notch shape for notches with a/ρ ≥ 1, and it is limited to a distance of about 3B/8 from the notch tip. 
The transversal constraint along the notch tip Tz0 is maximal at the notch mid-plane and decreases to zero close to the 
plate free surface. The through-thickness variation of the transversal constraint along the notch tip Tz0(z)/Tz0mp is also 
nearly independent of the notch shape, and the constraint level decays with the distance from the notch tip.  
Unlike cracks, notches have finite tip radii and cannot provide enough constraint to reach limit pl- conditions along the 
notch tip thickness. So, instead of the single SCF value traditionally used in 2D analyses Kt  max/n max/n, 
independent stress and strain concentration factors K  max/n and K max/n must be used to analyze 3D notch 
problems, even in LE cases. The constraint gradient along the x-direction at the mid-plane (z  0) of notched plates 
Tzmp(x)/Tz0mp is almost independent of the notch tip radius and depth, and can be well fitted by  
 

   
0
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             (3) 
 

3D crack solutions are scarce as well. Bazant and Estenssoro [12] related the stress field singularity of ideal crack tips at 
the free surface with the angle  with which the crack intersects it. For pure mode I cracks they showed that the SIF KI 
must be zero on the free surface for   /2. For the crack to achieve a r1/2 singularity, the   /2 value solely depends 
on . Nakamura and Parks [13-14] studied 3D LE fields around ideally straight crack fronts in thick plates within the SIF-
dominated zone, modeling that region as a disk of radius R centered at the tip, assuming the crack size a long compared to 
the cracked plate thickness (a >> B). The disk boundary (r  R) was assumed loaded by the displacement field generated 
by the 2D SIF KI and KII applied on the plate, the so-called Boundary Layer (BL) model. Strong 3D effects were observed 
within a distance r  B/2 from the crack tip, with a 3D-2D transition occurring within B/2 < r < 3B/2. The SIF was 
shown to significantly vary along the crack front when compared with 2D predictions.  
However, albeit ingenious, 3D BL models have some limitations. They assume that the cracks are much longer than the 
thickness, thus they do not model well small cracks, with size a  B or smaller, an important problem for fatigue 
predictions. In addition, the cracked plate stress field is obtained assuming that the plate is far-field loaded by the 2D 
stresses induced by the SIF applied on it. Hence, all K-field assumptions are incorporated by BL models. For instance, K-
description for the (assumed LE) stress fields in cracked components is strictly valid only very close to the crack tips, 
exactly where plasticity-induced perturbations tend to invalidate it. Such assumptions also fail to describe the situation 
where the 3D affected zone surpasses the K-dominated region. Moreover, since K-fields do not reproduce the nominal 
stresses far from the crack tips [15], non-negligible effects induced by high n cannot be accounted for by them. 
Furthermore, ideally straight cracks are just a convenient mathematical hypothesis, as tests show that they propagate with 
slightly curved fronts, a phenomenon known as crack tunneling. Extensive research on this phenomenon shows that the 
curved front shape in a through-cracked plate can present a tunneling depth (amax  asurf) up to 0.05 B [16]. This slight 
curvature brings considerable impact on 3D SIF calculations along the crack front. 
This work first revisits the literature on 3D LE stress analysis around notch tips and discusses the importance of 3D 
effects on notch design issues. Then it uses powerful sub-modeling techniques, which eliminate the K-field domination 
and long crack hypothesis limitations, to numerically simulate 3D SIF distributions for large single-edge cracked plates 
with several B/a ratios, and to evaluate their influence on the KI distribution. To illustrate how 3D issues can be important 
to explain practical problems, the growth of an initially straight-front crack with initial length a0, assuming it can be 
described by the classical Paris rule, is simulated to evaluate how the crack front shape and the local SIF distribution along 
the crack tip front change as the crack grows until achieving a stable slightly curved front.  
 
 
3D EFFECTS ON STRESS FIELDS AROUND NOTCH TIPS 
 

o evaluate typical notch-induced 3D stress concentration effects around notch tips, several elliptical holes (EH) 
and semi-elliptical (SE) notches with semi-axes a and b in large tensioned plates of width W and height H were 
simulated in ABAQUS, using finite sizes W/a  H/a  60 to avoid boundary effects within 1% error. To verify 

similar previously published results, E  200GPa and   0.33 are used, although   0.29 would better match the chosen 
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modulus, a typical value for steels. The models were built with symmetry with respect to the xy plane at the plate mid-
thickness and to the xz plane. The EH models received additional symmetry with respect to the yz plane. The uniform 
load is applied in the model as a uniform tensile stress on the upper plate face y  H. The notch tip region is described by 
structured meshes with a maximum element size of 0.1 at the notch tip, where   b2/a is the notch tip radius. The 
dimensions of the analyzed notches are listed in Tab. 1. 
 

notch b/a /a B/ 

 
elliptical

1 1 0.1, 0.2, 0.4, 0.6, 1, 1.5, 2, 3, 4, 6, 8, 10, 20 

0.5 0.25 0.4, 0.8, 2, 2.8, 4, 6, 8, 12, 16, 32, 48 

0.2 0.04 3, 6, 10, 15, 20, 30, 50, 75, 100 

0.1 0.01 0.4, 0.6, 1, 2, 4, 6, 10, 20, 40, 60, 100 

 
semi- 

elliptical

1 1 0.2, 0.3, 0.5, 0.7, 1, 2, 3, 5, 7, 10, 20, 30 

0.5 0.25 0.16, 0.24, 0.4, 0.8, 2, 4, 8, 12, 16 

0.2 0.04 0.5, 1, 3, 10, 20, 30 

0.1 0.01 0.6, 6, 10, 20, 40, 60, 100, 200, 400 
 

Table 1: Elliptical and semi-elliptical notch parameters analyzed in the present FE models. 
 

 

Figure 1: K/Kt distribution along the notch tip front, for a large 
plate with an elliptical hole with b/a = 0.5 and /a = 0.25. 

Figure 2: K/Kt distribution along the notch tip front, for a large 
plate with an elliptical hole with b/a = 0.5 and /a = 0.25. 

 
Fig. 1-2 shows typical K/Kt and K/Kt distributions along the notch tips of EH with b/a  0.5 and /a  0.25. Note that 
K  K, and that their maximum values occur close to the surface of thick plates (with B >> ), whereas for thinner 
plates they occur at the plate center. K/Kt ratios depend on B/, see Fig. 3. For relatively blunt notches (those with low 
B/ ratios), the maximum values of the stresses and strains along the notch tip max and εmax occur on the middle plane of 
the plate, but for sharper notches these values dislocate towards the plate free surfaces (located at z/B  0.5), in a slightly 
decoupled way. K and K can differ up to 15% in such plates. The maximum SCF at the notch tip Kmax can be up to 
about 8% higher than the 2D SCF Kt, a non-negligible difference. Therefore, even experimental Kt values, measured as 
usual at the notched component free surfaces, may underestimate the actual value of max at such notch tips, so 3D effects 
on stress/strain fields along notch tips may indeed be relevant for some practical applications.  
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Figure 3: Variation of Kmax/Kt, Kmp/Kt, and Ksurf/Kt with the thickness to notch tip radius ratio B/ for elliptical holes in large plates. 
 

Maximum stress and/or strain points indicate preferred locations for crack initiation along the notch front, whereas the 
stress gradients ahead of such critical points affect how short cracks propagates from them [17-19]. If cracks prefer to 
start at maxima stress or strain points, as reasonably assumed in most damage models, they should do so at the center of 
thinner notched plates (z/B  0) and closer to the free surfaces (z/B  0.5) of the thicker ones, but the growth of such 
initially small surface cracks is strongly dependent on the stress gradient around the notch tip, as discussed elsewhere [14]. 
Since the studied notches have much stronger stress gradients in the x than in the z-direction, the short crack driving 
force decrease is sharper ahead than along the notch tip direction. Therefore, cracks initiated at notch tips should prefer to 
advance first along them trying to become a passing crack, then along the x-direction, inwards the specimen. However, 
although reasonable, such speculations certainly need further investigation, see Góes et al. for further details [16]. 

  
 

FE MODELS FOR CRACKS AT THE BORDER OF LARGE PLATES 
 

he influence of the thickness-to-crack-size B/a ratio on the crack tip fields of large edge-cracked plates under 
uniaxial loads was investigated through several LE FE 3D analyses, using sub-modeling techniques to take 
advantage that the major part of such plates is expected to work under pl-, with 3D stress effects limited to the 

proximities of the crack tip. A large global model for the plates was built using plane elements, with overall dimensions 
Wglobal/a  Hglobal/a  1000, while several 3D sub-models of the region surrounding their cracks were built with B/a ratios 
varying from 0.1 to 100. In-plane displacement fields (ux,uy) from the global model solution were applied to every node of 
the sub-models boundary surfaces, while their out-of-plane displacements uz were left free. To maintain kinematic 
compatibility between global and local solutions, the sub-model dimensions Wsub/a, and Hsub/a were chosen so that Tz  
0 within the sub-model limits. Since the size of the 3D affected zone for an arbitrary B/a value was not known 
beforehand, the sub-models were built with both Wsub/a and Hsub/a > 5B/a. The results presented following show that 
such limits were adequately chosen. 
Besides numerically efficient, this procedure has some non-negligible advantages over the BL modeling approach. Its 
crack tip fields are calculated considering all the load characteristics, since they are not restricted by SIF-based hypotheses. 
It recognizes as well nominal stress effects far from the crack tips, which are ignored when K-conditions are assumed valid 
in the entire plate, even far from the crack tips. So, contrary to the BL models, it allows analyses of relatively shallow 
cracks with high B/a ratios. The behavior of such cracks is usually much more important for fatigue life estimations than 
the behavior of long cracks. The sub-models were built assuming symmetry with respect to xy and xz crack planes, using 
15 elements along their thickness (the z-direction) with sizes varying in geometric progression from the middle-plane 
(coarser) to the free surface (finer), with a progression ratio q  1.3. The circumferential direction is divided into 24 
elements. In the radial direction, the elements are built with size 0.003B at the very crack tip, coarsening in geometric 
progression with ratio q  1.15. This refinement is enough to guarantee convergence of the numerical simulations.  
A 2D solution can properly model such cracked plates’ far-field conditions because it is possible to establish 3 distinct 
domains for their (LE) stress/strain fields: (i) very far from the crack tip the crack is irrelevant, thus if the plate is large 
enough this domain works under constant nominal plane stress field conditions, which may be used to model it and thus 
the contour conditions of the sub-models; (ii) in the intermediate domain around the crack tip but not within its 
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dominance zone, the crack affects the stress/strain fields but they remain 2D, since there is no restriction to force them to 
vary along the z direction; (iii) close to the crack tip within its dominance zone such a restriction exists and 3D effects are 
clearly present, hence the stresses and strains vary along z. The main intent here is to investigate how such restriction 
affects short cracks. 3D FE are strictly needed only in this third zone, but it is not possible to precisely model its size prior 
to its simulation. Even so, sub-modeling allows the 3D model frontier to be reduced and located somewhere within the 
2nd domain without the need to assume a (questionable, to say the least) K-dominance there, recognizing the nominal 
stress effects that are not accounted for by the SIF fields and significantly saving computational effort at the same time. 
Therefore, the simulation results obtained from the sub-models can furnish more information than would be possible to 
get from assuming a K-field around the crack tip. 
Fig. 4 shows how much normalized SIF distributions along idealized straight crack fronts KI/KI,2D deviate from standard 
2D solutions, for a wide range of B/a values including short and long cracks. For long cracks with small B/a, the KI 
distribution along the crack front gets closer to standard SIF-dominated far field conditions as expected, but shallow 
cracks behave differently. Their SIF distribution tends to the 2D solution along most of the crack front, but it shows a 
peak close to the plate free surface, which does not appear for the long cracks. This difference may affect how they grow 
by fatigue, thus should not be neglected. Note that “long cracks” mean “cracks large in comparison to the plate thickness 
B”, not compared to the plate width W. The analysis of very deep cracks, those with large a/W ratios, which must include 
the influence of the back face plane on the LE fields ahead of the crack tip, is considered beyond the scope of this work. 
 

 

Figure 4: KI/KI,2D  distribution along the front of short and long 
cracks. 

Figure 5: KImax/KI,2D and KImp/KI,2D  variation with the crack size in 
large plates.

 
Fig. 4 also shows that the SIF drops near the free surface (z/B  0.5). As the crack front is assumed straight and 
perpendicular to it in such 3D analyses, KI should be null at that surface, as already mentioned above, but such a limit 
could not be achieved with any reasonable mesh refinement. Anyway, its importance is to force real cracks to slightly 
curve their fronts during their propagation, as studied next. Fig. 5 shows how the ratios KImax/KI,2D and KImp/KI,2D vary with 
B/a, and compares them with the long crack SIF-dominated limit solution from She and Guo [20]. The maxima SIF tend 
to the long crack solution for cracks with very low B/a, and the middle plate SIF KImp tend to the limit 2D solution KI,2D as 
B/a becomes large and the cracks get shorter. Moreover, the separation of the KImax/KI,2D curve from the KImp/KI,2D curve 
of the short cracks shows that their KImax value is higher than the reference KI,2D value, about 3% higher for the Poisson 
coefficient   0.3 used in these numerical simulations, see Góes et al. [16] for details. 

 
 

GROWTH OF EDGE CRACKS WITH INITIALLY STRAIGHT FRONTS IN LARGE PLATES 
 

he specialized FRANC3D code [21] was used to simulate the growth of large and small edge cracks with an 
idealized initially straight front in large plates, supposing LEFM conditions. Since the solution of LE problems is 
unique and proportional to the imposed load P, the calculated SIF Kcal along the crack front can be interpreted as a 

shape function, hence Kmax  PKcal, Kmin  PRKcal, R  Kmin/Kmax, and K  Kmax – Kmin. Without loss of generality, the 
analyses developed here considered R  0 and P  1, thus in the propagation cases described below K  Kmax  Kcal. 
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Moreover, it is assumed that the local crack advance at any specific point of the crack front follows Paris’ fatigue crack 
growth (FCG) rule. Since the material is assumed isotropic and homogeneous, its FCG behavior along the crack front is 
also assumed as so, and to depend only on the local crack driving force K, since Kmax, the other FCG driving force, is 

fixed. From the Kcal values at the crack front nodes in any given step, a crack growth vector a


 is obtained by a local 
increment a multiplied by a unitary vector p


 in the local crack growth direction, which must be parallel to the crack 

plane (xz in this work notation) and normal to the crack front at each point, as the model is symmetric with respect to the 
xz plane. Since FCG increments are assumed to follow Paris’ rule, they can be described for any given node i at every j-th 
growth step by 
 

 n

ji jmean ji jmeana a K K              (4) 
 

The SIF distribution along the crack front K(z) calculated using such (reasonable) hypotheses, and the ratios between the 
SIF increments at each crack front node and the mean SIF increment at each load step, ΔKji/ΔKjmean, are all a function of 
ai(z), the crack length at each node in that given step. Hence, Δajmean is an arbitrary analysis parameter, dissociated from the 
number of load cycles. The crack length at the plate free surface, asurf, is adopted as a descriptive parameter of its overall 
length, as it can be measured by optical methods. After solving each particular FCG step, the crack front increment is 
smoothed and fitted by a 7th degree polynomial to minimize the unavoidable numerical noise associated with the KI(z) 
solution. Such high order polynomial was chosen to capture the odd KI distributions typical of shallow cracks. The 
simulated edge-cracked plates are built with the same overall dimensions H, B, and W. The initial edge cracks are 
introduced with idealized straight fronts, but with different depths a0. Values of Δajmean between 0.002B and 0.05B are used 
along the FCG simulation, to deal with convergence issues in the calculation of the crack front in step j  1. The plate 
models assume symmetric boundary condition at the plate mid-plane z  0 and are supposed tensioned by a unitary 
uniformly distributed load at their upper and lower boundaries. Tab. 2 shows the parameters used in the various models. 

 

Poisson’s ratio  ν  0.3 

Young’s modulus  E  200GPa 

Plate Thickness  B  5 

Plate Width  W 4B 

Plate Height  H 2.5B 

Crack initial length  a0 0.02B, 0.2B, and B 

Paris’ rule exponent  n  2.0 and 4.0 
 

Table 2: Parameters used to model the edge-cracked plates. 
 
Fig. 6 shows how the 3D-to-2D SIF ratio KI(z)/KI,2D varies along the crack front with increasing values of asurf for a0/B  
0.02 and a Paris’ exponent n  2, and the crack front shape evolution along the plate thickness for the same crack growth 
stages, quantified by the (a(z) – amin)/B ratio. The shapes assumed by the crack front while it grows from the initially 
straight profile with a0/B  0.02 show first an anti-tunneling and then a tunneling effect, driven by the non-uniform KI(z) 
distribution along the crack front at each crack increment. This non-intuitive behavior occurs because the crack front 
naturally curves itself looking for a more uniform SIF distribution along it. The non-uniform SIF distribution along the 
initially straight crack front tends to disappear after the crack propagates for a while and gradually assumes its 
characteristic slight curved front. For other similar results see Góes et al. [16].  
Such results deserve some comments. Even though to assume that FCG rates are primarily controlled by SIF is an 
uncontested hypothesis, there is some dispute on which are the actual FCG driving forces. Some prefer K for the cyclic 
and Kmax for the static damage mechanisms, while others defend the use of Keff  Kmax – Kop based on Elber’s plasticity-
induced crack closure arguments [22], but this point is irrelevant for this work. Assuming fixed loading conditions, Paris’ 
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rule usually fits well the phase II of the FCG curves of many structural alloys. It has been successfully used for a long time 
to model 1D FCG assuming that the crack growth is controlled by K, and that it is uniform along the crack front in that 
phase, neglecting that the fatigue damage process may (and usually does) locally vary along such fronts due to microscopic 
non-homogeneities. Even when 2D corner and surface cracks are analyzed, they can be modeled in the same way, if it is 
recognized that their SIF values vary along their fronts. Such macroscopic procedures are acceptable if the cracks are large 
enough because the specimens used to measure FCG properties generate da/dN curves that are obtained by fitting the 
average behavior of their entire crack front.  
 

       
 
Figure 6: Evolution of the 3D to 2D SIF ratio along the crack front KI/KI2D and of the crack front shape as the crack grows from an 
initially straight front, for a0/B  0.02 and n  2. 
 
The original results presented in this paper show how such classical assumptions can explain as well why fatigue cracks 
like to propagate with a slightly curved crack front: they do so as a consequence of their attempt to achieve an iso-KI 
regime along their fronts. In this sense, such results quantitatively explain why real cracks do not grow by fatigue 
maintaining a straight front. Hence, albeit in a microscopic scale it is not possible to simulate what is actually happening at 
every instant along a real crack front by using the same Paris’ constants for every node along the modeled crack front, it 
certainly can be properly evaluated where this (macroscopically reasonable) assumption leads to. In this way, the results 
obtained here also demonstrate that deeper tunneling effects along the crack front should be associated with further 
details not included in this model, like plasticity-induced crack closure, for example. Indeed, if as expected closure effects 
vary significantly along the crack front inducing non-negligible variations on the Keff values along it, and if Keff is the 
actual driving force for FCG as assumed by the many supporters of the classical Elberian model, then more pronounced 
tunneling effects could be expected in such cases. However, such a fascinating argument cannot be further pursued here 
due to space limitations. 
 
 
CONCLUSIONS 
 

E analyses were used to simulate 3D effects on stress/strain fields close to notch and crack tips. It was observed 
that the stress and strain concentration along the notch tips is variable, but the y gradient ahead of it can be 
obtained from the planar 2D solution, although it causes an out-of-plane restriction on the material that tends to 

lead the notch tip to plane-strain conditions as the tip radius grows sharper ( → 0). Further on, sub-modeling techniques 
were used to examine 3D effects present in cracks on the edge of tensioned large plates with different thickness-to-crack-
length (B/a) ratios. Crack-tip LE stress/strain fields were obtained taking into account the full load description, not 
restricted to K-field limitations and long crack assumptions, intrinsically considering T-stress and nominal stress effects. 
SIF were observed to vary along the crack front, presenting maximum KI values always higher than the 2D solution. The 
influence of the B/a ratio on the KI,mp was obtained, which describes a smooth transient from the long crack solution 
presented before in the literature (for B/a  0.1) and the planar 2D solution (for B/a  100). It was observed that KI,max is 
always higher than the 2D predictions. Several FCG calculations were performed, showing that initially straight cracks 
progressively curved their front during propagation, simultaneously flattening the KI distribution along the front. After 
some transient propagation, all cracks converged to the crack propagation front with same regime, with tunneling depth 
close to 2.5% of B. 
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