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Abstract. A tension-torsion machine (TTM) has been developed at PUC-Rio’s Fatigue Laboratory to experimentally 
evaluate the non-proportional (NP) hardening behavior of materials subjected to multiaxial NP loadings. This 
machine independently applies over the test specimen tension/compression and torsion, which allows the generation of 
non-proportional multiaxial loading histories. To properly reproduce the stress-strain hysteresis loops in NP loading 
histories it is necessary to use incremental plasticity models. These models are based on three equations: the yield 
function, the plastic flow rule, and the hardening rule.  An incremental plasticity simulator is developed for tension-
torsion loads, incorporating the non-linear kinematic hardening model from Jiang-Sehitoglu, and the NP hardening 
model from Tanaka. The material parameters are calibrated using standard cyclic tests on uniaxial testing machines 
and tension-torsion tests on the developed TTM using 316-stainless steel cylindrical and tubular specimens. The 
simulations are able to predict the material behavior under different load histories, as well as different non-
proportional hardening rates. The simulator performance is evaluated comparing the predicted and measured strain 
paths under the same input stress history. The simulations confirm the suitability of the incremental plasticity simulator 
implemented, based on the non-linear hardening models from Jiang-Sehitoglu and Tanaka. 
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1. INTRODUCTION  
 

Many engineering components are submitted to multiaxial stresses, in which the principal directions vary with time 
(Varvani-Farahani and Topper, 2000). Many practical applications such as in nuclear reactor vessels there are non-
proportional stresses and strains under the combination of thermal and mechanical loadings. In specimen tests subjected 
to non-proportional stories, the phenomenon of NP hardening has an important role to predict the fatigue life. From the 
main works related to the study of non-proportional hardening models, one can mention those made by Sakane and Itoh 
(1999), which studied the microstructure of stainless steel 304 submitted to non-proportional strain paths (generated by 
tensile/torsion loading) at ambient temperature. In other work, Itoh (1999) studied the fatigue life in low cyclic of 
aluminum alloy 6061 subjected to 14 non-proportional strain paths (generated by tensile/torsion loading). The same 
author later studied the behavior of an alloy Ti-6Al-4V subjected to non-proportional loadings. 
 
2. INCREMENTAL PLASTICITY 
 

In most engineering applications, either the stress or the strain history is known, but not both. Generally, to design a 
new component, the stress history is calculated or estimated from measurements or specified design loads. In existing 
components, only the strain history can be measured, using strain gage rosettes. However, the best multiaxial fatigue 
damage models require the knowledge of both the stress and the corresponding strain histories to quantify the associated 
damage parameter. In the literature, several models correlate stress and strain for elastoplastic proportional stories, but 
to properly reproduce the stress-strain hysteresis loops in NP elastoplastic histories, which depend on the load path, it is 
necessary to use incremental plasticity models to correlate infinitesimal changes in all stress components with the 
associated strain components, and vice-versa. 
 
2.1 Representation of stresses and strains in 5D space 
 

A conventional way to represent incremental plasticity equations is to represent stress and strain tensors as 9-

dimension column vectors [         ]Tx y z xy yx zx xz zy yzσ σ σ σ τ τ τ τ τ τ=  and [         ]Tx y z xy yx zx xz zy yzε ε ε ε ε ε ε ε ε ε= , 
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where ij jiτ τ= , ij jiε ε= . The deviatoric stresses and strains are defined as the difference between stresses and strains 

and their hydrostatic components ( ) / 3h x y zσ σ σ σ= + +  and ( ) / 3h x y zε ε ε ε= + + , which can be represented as 

S [S  S  S        ]Tx y z xy yx zx xz zy yzτ τ τ τ τ τ=  and e [e  e  e       ]Tx y z xy yx zx xz zy yzε ε ε ε ε ε= , where Si i hσ σ= −  and 

ei i hε ε= − .  Other representations were proposed by Voigt and Mandel (1966), taking advantage of the symmetries 

=ij jit t  and =ij jie e  to express the stress or strain as 6-dimensional (6D) vectors. The deviatoric stresses Sx, Sy and Sz 

are linear-dependent, since Sx + Sy + Sz = 0, therefore it is possible to further reduce the dimension of deviatoric stresses 

from 6D to 5D, defining a 5D vector  5D 1 2 3 4 5S' S [S  S  S  S  S ]T≡ =  (Bishop, 2000). The coordinate transformation from 

6D space to 5D space involves a scaling factor ks and a rotation angle φs as s sS'=A(k , ).φ σ  (Ilyushin,1961). The 5D 

Euclidean sub-space E5s adopted in this work is similar to the one proposed by Papadopoulos, except that ks =1 to make 

its metric | S' |  equal to Misesσ (Papadopoulos, 1997). 
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  (1) 

 
This 5D sub-space has several useful properties. The norm of a deviatoric stress is equal to the Mises equivalent stress 

Mises| S' | =σ . Second, the distance between two stress states is equal to the von Mises stress range MisesσΔ   between 

them. Finally, the locus of points that have the same MisesσΔ  with respect to a point S'  is a hypersphere with center in 

S'  and radius MisesσΔ . For load histories consisting of a combination of only uniaxial tension xσ  and torsion xyτ , it is 

possible to represent their deviatoric components in a reduced-order 2D sub-space as 
 

 2D 1 3 2D 1 3S = S  S [  3]  and  e = e  e [ .(1+ )  3 / 2]
T TT T

x xy x xyσ τ ε ν γ= =         (2) 

 
The Von Mises yield criterion in the 5D deviatoric space is given by 

 

 2 2 2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 5[(S -β ) (S -β ) (S -β ) (S -β ) (S -β ) S ] |S'-β| S 0f = + + + + − = − =   (3) 

 

where S is the current yield strength, and β  is the center of the yield surface, usually called backstress. The increment 

of plastic strain is given by the Prandtl-Reuss plastic flow rule as 
 

 T
pde (d S' .n').n'/ P=   (4) 

 

where P is the generalized plastic modulus, and n ' ( / S)/| / S |f f= ∂ ∂ ∂  is the normal vector in 5D perpendicular to the 

surface 0f =  at the current state S' . 

 
2.2 Incremental non-Proportional Hardening 
 

Some materials subjected non-proportional (NP) multiaxial cyclic loads can lead to strain hardening much more 
than it would be expected from the uniaxial cyclic load. This phenomenon, called NP hardening, depends on the load 
history through the NP factor FNP (0 ≤ FNP ≤ 1), and the material through the additional hardening coefficient αNP 
(where 0 ≤ αNP ≤ 1) (Socie, 1999). The additional hardening coefficient αNP is a parameter that reflects the material 
sensitivity to the non-proportionality of the loads. The NP hardening can be modelled by the uniaxial cyclic Ramberg-
Osgood equation using a hardening coefficient HNP and the cyclic exponent hc, where 
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 NP c NP NPH H .(1 .F )α= +   (5) 

 
Figure 1 compares hysteresis loops produced by a NP out-of-phase tension-torsion history and a proportional 

history, both with the same normal strain amplitude Δε/2= 0.4 % (Socie, 1999). 
 

 
(a)                                                               (b) 

Figure 1. a) Effect of NP cyclic loadings in NP hardening b) proportional and NP loops caused by same range of Δε in 
stainless steel 304 (Meggiolaro and Castro, 2009) 

 
Tanaka’s NP hardening model (Tanaka, 1994) makes use of a polarization tensor CT that stores both the 

directionality and absolute value of the accumulated plastic strains through the eigenvalues and eigenvectors of CT, 
respectively. The NP evolution of FNP(p) can be derived from the evolution of the yield surface radius S from a 
cyclically stabilized yield strength SYc to a target value as 

 

 Yt Yc NP NPt NPm

Yt NP

S =S .[1 .(F F )]

dS (S S).b .d

α+ +
= − p

  (6) 

 
where FNPt is a target value of the NP factor, FNPm is a memory factor that stores permanent hardening, bNP is the NP 
hardening rate, and pd 2. | de ' | /3=p  is the equivalent plastic strain increment. The solution of the above evolution 

equation has the form 
 Yc NP NPS S .[1+ .F ( )]α= p   (7) 

 
If equation (7) is replaced into (6), then 
 

 Yc NP NPt NPm Yc NP NP NPdS [S . .(F F ) S . .F ( )].b .dα α= + − p p   (8) 

 
Finally, the evolution equation of the transient NP factor FNP(p) results in 
 

 NP NPt NPm NP NPdF ( ) [F F F ( )].b .d= + −p p p   (9) 

 
In this work, the 90° out-of-phase experiments applied to the specimens result in FNPt = 1, and the memory factor is not 
considered thus FNPm = 0. In addition, using Sy = Hm.(0.002)hc and Syc = Hc.(0.002)hc, it is possible to obtain a transient 
Ramberg-Osgood coefficient evolution: 
 

 c NP NPH( ) H .[1 . .F ]  NP evolutionα= + →p (p)   (10) 

 
Using the plastic strain amplitude of each reversion in the Ramberg-Osgood equation, the evolution of FNP(pi) and 
FNP(pi) at each cycle i are given by 

 
NP i NP NP NP

i c NP NP i

F ( ) [ .F ( )] /

H( ) H .{1 [ .F )]}= +

α α
α

p = p

p (p
  (11) 

where bNP is the NP hardening rate, FNP is the NP factor, and αNP is the additional hardening coefficient. 
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2.3 Surface translation rules 
 

The rule adopted for the kinematic translation of these surfaces is the one proposed by (Jiang and Sehitoglu, 1996). 
The translation direction of each surface i is defined as, 
 

 i i i i iv ' = n'. S (|β '| / S ) .β 'ixΔ − Δ   (12) 

 
where, xi  is a ratcheting exponent (0 ≤ xi < ∞). Then, the Generalized Plastic Modulus P is given by 
 

 T T T T
1 1 2 2 n nP (2 / 3).(p .v ' p .v ' ... p .v ' ).n ' (2 / 3).(p.v ' ).n '= + + + =   (13) 

 
where p is an effective generalized plastic modulus coefficient (pi are coefficients calibrated for each surface) and v '  is 
an effective translation direction. 
 
3.  EXPERIMENTAL SYSTEM 
 

The tension-torsion machine (TTM), developed at PUC-Rio’s Fatigue Laboratory, was used to evaluate the NP 
hardening model experimentally. This electromechanical system created for multiaxial fatigue testing consists of an 
arrangement of individual and interconnected components to provide traction and/or torsion on the test specimen. The 
TTM was designed to work with a maximum capacity of 25 kN in traction and 1300 N.m in torsion, which is able to 
produce the same effects on the specimen test in pure tension or pure torsion. Figure 4 shows the TTM machine. 

 

 
 

Figure 4. The TTM developed at PUC-Rio’s Fatigue Laboratory 
 

The TTM is composed of two mechanical actuators, load transmission elements, transducers to measure the variable 
to be controlled, a control system provided with user-machine interface, and its mechanical structure as shown in figure 
4. The electric connections of the TTM are constituted by two parts. First, data reading that includes the connection of 
load torque cell and LVDT’s to NI-9237 data acquisition module of  the CompactRio, a module provided by National 
Instruments; and second, the control system connection that includes the connection of  cRIO NI-9263 to an AX2550 
controller, which controls each TTM actuator (a DC motor) through proportional control. The TTM control system was 
developed using the compactRIO CRio-9004, using LabVIEW 9.0 to perform the tests on the experimental system 
described above, which includes acting on the system and reading data. The user can visualize the errors in real time, 
paths of the desired loads, paths of axial force and torque, paths of normal and shear stress, as well as position and 
rotation values. 

 
4.  SIMULATION AND EXPERIMENTAL RESULTS 
 

The NP hardening for stainless steel 316 was evaluated experimentally using the TTM machine. The cyclic 
hardening parameters of the material required by the simulator were obtained from experiments on an INSTRON-8501 
test machine. Afterwards, the experimental strain path measured in the TTM was compared with the one predicted by 
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the NP hardening model simulator. In the NP hardening testing, a tubular test specimen is used, with outer diameter 
14,9eφ = , inner diameter i 12.8φ =   and length c 140L = mm, subjected to a cyclic tension-torsion 90° out-of-phase 

load. The cyclic hardening parameters Hc and hc of the Ramberg-Osgood equation for 316 stainless steel were obtained 
by the linear fitting of the points at the peaks (Δσ/2, Δε/2) of the strain hysteresis loop in log-log (see figure 5). 

 

 
(a)                                                                                     (b) 

Figure 5. a) Fitting of the cyclic hardening parameters and b) hysteresis loops of the stainless steel 316. 
 
The NP hardening tests consist of subjecting the tubular specimen test to a desired tension ( ) .sin( )at tσ σ ω=  and a 

desired 90° out-of-phase torsion ( ) .cos( )at tτ τ ω=  in load and torque control, respectively, where . 3a aτ σ= . During 

the test, the strains xε , yε , xyγ  of the tubular specimen were measured using an image correlation module (VIC-3D - 

Correlated Solutions). The shear stress was determined from the normal stress, defined as the stress that produces the 
same von Mises stress under pure tension. In the first test, an axial stress ( ) 200.sin( )x t tσ ω=  MPa was chosen, able to 

generate an axial strain 0.1%xε = , and a 90º out-of-phase shear stress ( ) 115.cos( )t tτ ω=  MPa was chosen, generating 

a NP loading on the test specimen. 
 

 
                   (a)                                                   (b)                                                             (c) 

Figure 6. NP hardening test: a) hysteresis loop σx-εx; b) hysteresis loop τx-γxy; and c) strain path εx-γxy/ 3 . 
 
The NP load chosen for the first test did not generate NP hardening in the material. In a second test, the tubular 

specimen test was subjected to an axial stress ( ) 300.sin( )x t tσ ω=  MPa, generating an axial strain 0.25%xε =  , and 

with 90º out-of-phase shear stresses ( ) 173.cos( )t tτ ω=  MPa. The test results are presented in figure 7. 
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                                     a)                                                                                          b) 

Figure 7. NP hardening test: a) experimental strain path εx-γxy/ 3 ; b) simulated strain path εx-γxy/ 3 . 
 

In the third test, the tubular specimen was subjected to an axial stress ( ) 342.sin( )x t tσ ω=  MPa, generating an axial 

strain 0.31%xε = , and 90º out-of-phase shear stress ( ) 200.cos( )t tτ ω=  MPa. The test results are presented below. 

 

 
                                     a)                                                                                          b) 

Figure 8. Testing of NP hardening a) experimental strain path εx-γxy/ 3 b) simulated strain path εx-γxy/ 3 . 
 

Figures 7.a and 8.a show that the strain path begins with a larger radius, which decreases for each cycle due to NP 
hardening. The experimental strain path shows the same behavior as the simulated one. 

Figure 9 shows the strain path obtained for each NP hardening test. In the first test, the material didn’t show NP 
hardening, because the stress state in the material remained in the elastic zone, however in the second (2) and third (3) 
tests it exhibits significant strain hardening,  
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Figure 9. a) Imposed strain path; b) Strain path εx -γxy/ 3  in NP hardening tests of stainless steel 316 with εx=0,1%, 

εx=0,25% and εx=0,31%. 
 
5.  CONCLUSIONS 
 

In this work, it was verified that the 5D representation of deviatoric stresses and strains is highly recommended, 
since it reduces the dimensionality of the stress-strain relations from 6D to 5D, decreasing computational cost in 
incremental plasticity simulations. Moreover, for specimen tests without notches subjected to tension-torsion NP 
histories or uniaxial loading, it would be possible to use a 2D or 1D subspace of the 5D representation, respectively, 
further reducing computational cost. Experiments on 316 stainless steel showed that the implemented incremental 
plasticity simulation routines are able to predict the significant NP hardening effect. 
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