
 

A Unified Rule to Estimate Multiaxial Elastoplastic Notch 

Stresses and Strains under In-Phase Proportional Loadings 
 

 

M.A. Meggiolaro
1
, J.T.P. de Castro

1
, L.F.N. Marques

1
 and L.F. Martha

1 

 
1
 Pontifical Catholic University of Rio de Janeiro, PUC-Rio, Rua Marquês São Vicente, 

  Rio de Janeiro, RJ, 22451-900, Brazil, meggi@puc-rio.br, jtcastro@puc-rio.br 

 

 

ABSTRACT. Several methods have been proposed to estimate elastoplastic notch-tip 

stresses and strains from linear elastic calculations, the so-called elastoplastic notch 

correction. For uniaxial load histories, Neuber’s and Glinka’s rules are perhaps the 

most used. For non-proportional multiaxial histories, such corrections require 

incremental plasticity calculations to correlate stresses and strains at the notch root, a 

quite challenging task. But for in-phase proportional multiaxial histories, where the 

principal directions do not change and the load path in a stress diagram follows a 

straight line, approximate methods can be used without requiring an incremental 

approach. Most of these methods are based on Neuber’s rule, which results in 

conservative predictions especially under plane strain-dominated cases associated with 

sharp notches. In this work, a Unified Notch Rule (UNR) is proposed for uniaxial and 

in-phase proportional multiaxial histories. The UNR can reproduce Neuber’s or 

Glinka’s rules, and even interpolate their notch-tip behaviors, or extrapolate them for 

notches with increased constraint. Moreover, the UNR also allows a non-zero normal 

stress perpendicular to the free-surface. The proposed method is compared with 

elastoplastic Finite Element calculations on notched shafts. 

 

 

INTRODUCTION  

 

To calculate the elastoplastic (EP) strains from a given multiaxial stress history, it is 

usually necessary to adopt an incremental plasticity formulation, which integrates non-

linear differential equations to calculate the stress-strain behavior [1]. In the presence of 

notches, a much simpler approach is to perform a single linear elastic (LE) Finite 

Element (FE) calculation on the entire piece for a static unit value of each applied 

loading. The resulting values at the notch root are called pseudo-stresses and pseudo-

strains, which are fictitious quantities calculated using the theory of elasticity at the 

critical point of the piece, while assuming that the material follows Hooke’s law [2]. 

These pseudo values are represented here with a “~” symbol on top of each variable.  

Under in-phase proportional loadings, approximate models to obtain the stress and 

strain concentration factors K and K can be used to avoid computationally-intensive 

incremental plasticity calculations. They provide notch corrections that try to correlate 

pseudo and notch-tip values using a scalar parameter such as the von Mises equivalent 



 

stress. The main elastoplastic notch models for in-phase proportional histories are the 

constant ratio [3], Hoffmann-Seeger's [4-5], and Dowling's [6] models. These models 

require some variable definitions, namely: 

 i  and i : pseudo principal stresses and strains at the notch tip, where i  1, 2, 3. 

 i and i: actual elastoplastic principal stresses and strains at the notch tip. 

 2 and 3: biaxiality ratios between principal stresses, 2  2/1 and 3  3/1, both 

assumed between 1 and 1.

 2 and 3: biaxiality ratios between principal strains, where 2  2/1 and 3  3/1, 

also assumed between 1 and 1; and 

  : effective Poisson ratio, with 0 5  .   in the EP case. 

Dowling’s model [6] assumes that the principal stresses 1 and 2 act on the free 

surface of the critical point (thus 3  0), but it considers that both 2 and 2 are 

constant, estimating them from the pseudo-stresses and pseudo-strains: 
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The model then directly correlates 1 and 1 using effective Ramberg-Osgood 

parameters E
*
 and Hc

*
: 
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In notched components, assuming that the principal directions of the EP stresses and 

pseudo-stresses are equal, a variation of Neuber’s rule [7] could be used to calculate the 

EP notch-tip 1 (and then 1) from the pseudo 1 :  
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The above equation does not require a plastic term on the left hand side, because the 

pseudo-stresses and pseudo-strains are, by definition, LE. Finally, the other notch-tip EP 

principal stresses and strains are then obtained from 1 and 1: 
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THE UNIAXIAL UNIFIED NOTCH RULE (UNR) 

 

Noting that Glinka’s rule [8] usually underestimates while Neuber’s rule [7] 

overestimates notch-tip stresses and strains, when compared to experimental results and 

FE analyses, a unified incremental rule has been proposed in [9], which returns values 

in-between them. For a monotonic uniaxial loading in the x direction, it states that 
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where 0  ED  1 was called the energy dissipation coefficient, assumed in [9] as a 

material parameter, estimated from ED  (1  2hc)/(1  hc) based on an energy 

argument, where hc is the cyclic exponent of Ramberg-Osgood’s equation. However, 

ED might depend not only on the material but also on the notch geometry and 

constraint factor. This coefficient ED can also be regarded as a fitting parameter if 

experimental data or reliable EP FE analyses are available for its calibration. 

A deviatoric version of Eq. 6 is proposed in this work: 

 

x x U x x U x x x xs de ( ) e ds ( 2 ) s de e ds              (7) 

 

where   x x y zs ( 2 ) 3    and   x x y ze ( 2 ) 3    are deviatoric stresses and 

strains in the x direction, while U  (1  ED) is called the notch constraint factor, with 

values 1  U  2 to interpolate the Incremental Neuber rule [10-11] (U  1) and an 

Incremental Glinka rule (U  2). 

As the deviatoric stresses sx, sy and sz are linearly-dependent, since sx  sy  sz  0, it 

is possible to reduce the deviatoric stress and strain space dimensions using: 
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Assuming that Eq. 7 is valid for the transformed deviatoric stresses and strains from 

Eqs. 8 and 9, then 
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where, as explained before, the symbol “~”  is used for pseudo-values calculated from 

LE analyses. 

The Unified Notch Rule (UNR) proposed in this work can then be obtained from the 

integration of Eq. 10, which can be used for both uniaxial and in-phase proportional 

histories. For uniaxial histories, this integration results in the scalar UNR: 
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where U  is the effective notch constraint factor. This equation can reproduce Neuber 

for U  1 and thus U 1  , or Glinka’s rule for U  2 and thus U c2 /(1 h )   .  

Although different, U shares similarities with Newman’s constraint factor  [12], 

varying from 1.0 under plane stress conditions (where Neuber’s rule is recommended) 

to usually more than 3.0 under plane strain. Thus, both U and Newman’s  reflect 

increased stress-state constraint and associated plasticity decrease at the critical point, 

however using U at notch tips and Newman’s  at crack tips. 

 

 

THE MULTIAXIAL UNIFIED NOTCH RULE 

 

The multiaxial version of the UNR assumes in-phase proportional loading under 

free-surface conditions xz = yz = 0, but allows the presence of a surface normal z ≠ 0, 

where the z axis is assumed perpendicular to the surface, and the x and y axes aligned 

with the remaining principal directions, with x in the direction of the maximum absolute 

principal stress. Therefore, the principal stresses x  1, y  2, and z  3 are 

assumed to satisfy |x|  |y| and |x|  |z| during the entire history. The involved 

variables are the same as the ones defined before, in addition to an elastic and plastic 

separation of the strain biaxiality ratios, through: 

 2el and 3el: biaxiality ratios between principal elastic strains, where 2el  2el/1el and 

3el  3el/1el, both assumed between 1 and 1; and 

 2pl and 3pl: same definition, but for plastic strains (for pressure-insensitive materials, 

where 1pl  2pl 3pl  0, if follows that 1  2pl 3pl  0 and thus 2pl 3pl  1). 

Since the multiaxial loading history is assumed here to be proportional, the 

deviatoric stress increment is always parallel to the plastic straining direction, so the 

Prandtl-Reuss plastic flow rule [1] gives, for the normal deviatoric strain components, 
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where P is called the generalized plastic modulus (proportional to the slope of the stress 

vs. plastic strain curve at the current stress state), and all shear increments are zero since 

x, y, and z are defined in the principal directions. Integrating the above equation using 

the plastic biaxiality ratio definitions, then 
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Neglecting the isotropic hardening transient, let’s assume that the material follows 

Ramberg-Osgood with cyclic constant Hc and exponent hc. Moreover, assuming that 

this proportional loading is balanced, i.e. it does not cause ratcheting or mean stress 

relaxation, then a Mróz multi-surface hardening model can be adopted [1] (instead of 

the more general non-linear kinematic hardening models). To improve accuracy, let’s 

adopt an infinite number of hardening surfaces, as discussed in [13], see Fig. 1. From 

the calibration of the Mróz model, the generalized plastic modulus P  Pi for the 

hardening surface with radius ri becomes 
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Fig. 1: Mróz infinite-surface hardening model for a monotonic proportional loading. 

 

Consider a monotonic proportional loading departing from the origin of the 

deviatoric stress space, as shown in Fig. 1, assuming x, y and z as principal directions. In 

this case, the radius ri of the current active surface from the Mróz model is equal to the 

norm (and thus the von Mises equivalent value) of the current stress state. Replacing the 

values of P  Pi and ri into Eq. 13, and using the plastic strain incompressibility 

condition 2pl 3pl  1, it follows that 
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Dowling’s model for in-phase proportional loadings is a particular case of the more 

general in-phase proportional UNR, setting U 1  (to reproduce Neuber’s rule) and 

also 3  0 (free-surface with 3  0), assuming as well that 2pl  2el based on , and 

that 3pl  3el based on an effective Poisson ratio  . 

Both Dowling’s and UNR models assume the nominal section (away from the notch) 

remains LE. In other words, they are valid even under general yielding of the net cross 

section, but they do not account for yielding of the gross cross section. To perform this 

correction, the pseudo principal stress 1  is represented as the product of a LE stress 

concentration factor Kt multiplied by a nominal stress n1, i.e. n1 1 t/ K  , where n1 

is assumed to follow Ramberg-Osgood, giving 

 

c c1 h 1 h
n1 1n1 12

t U Un1 1* ** *
c c

K
H HE E

  
  

      
             

      
            (20)  

 

 

VERIFICATION OF THE UNR WITH ELASTOPLASTIC FINITE ELEMENTS 

 

The proposed UNR and Dowling’s classic notch rule are checked against 

elastoplastic (EP) Finite Element (FE) calculations, for multiaxial in-phase proportional 

tension-torsion problems. The comparison is based on the calculation of the peak EP 

stresses and strains at a notched solid shaft with largest diameter 2” and semi-circular 

U-notch with radius 0.5”. The shaft is assumed made of a heat-treated 1070 steel with 

Young modulus E  210GPa, Poisson ratio   0.3, and Ramberg-Osgood parameters 

Hc  1736MPa and hc = 0.199, measured by [14]. Figure 2 shows the adopted FE mesh 

from the ANSYS software, using the SOLID186 3D elements with 20 nodes each and 3 

degrees of freedom per node for the EP calculations. 



 

 

 
Figure 2: Adopted geometry and FE mesh for the EP calculations. 

 

Figure 3 shows the strain K and stress K concentration factors for a particular case 

under pure torsion, where the LE Kt = 1.17, for several nominal shear stresses n. It is 

important to note that the adopted n are EP values, obtained for the predictions from 

Ramberg-Osgood and from the FE calculations from the EP shear stress acting on a 

notch-free shaft with same net cross section and applied torsional moment. In this way, 

it is possible to account for plasticity effects in the nominal region away from the notch. 

The square and triangular markers show the carefully obtained EP output, overestimated 

by Neuber’s rule (U  1, the rule adopted in Dowling’s multiaxial model) and 

underestimated by Glinka’s rule (U  2). The dashed lines in-between Neuber’s and 

Glinka’s rule predictions are the better estimates obtained from the proposed UNR, 

calibrated for U  1.4. This shows that the proposed rule is able to effectively 

interpolate Neuber’s and Glinka’s models, improving its versatility for specimens with 

increased constraints. Finally, as expected, all predictions tend to the LE value Kt = 1.17 

under low stresses. 

 

 

CONCLUSIONS 

 

In this work, a Unified Notch Rule (UNR) was proposed to predict elastoplastic stresses 

and strains at a notch root from linear elastic calculations, for uniaxial and in-phase 

proportional multiaxial histories. The UNR can interpolate Neuber’s or Glinka’s rules 

from the U parameter calibration, or even extrapolate them to better reproduce 

increased constraint effects. The UNR allows biaxiality ratios 3  3/1  0, an 

improvement over Dowling’s model, which always assume 3 = 0. Even though the 

derivation of the UNR model assumed integration for a monotonic load, the resulting 

equations could be applied to cyclic loadings, as long as they are also in-phase and 

proportional, and the appropriate biaxiality ratios can be assumed constant. 
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Figure 3: Predicted and FE-calculated EP strain and stress concentration factors. 
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