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ABSTRACT. Multiaxial fatigue damage calculation under non-proportional variable 

amplitude loading is a very challenging task, since traditional techniques require cycle 

identification and counting to single out individual load events. Moreover, to account 

for the non-proportionality of the load path of each event, semi-empirical methods are 

required to calculate path-equivalent ranges, e.g. using a convex enclosure or the MOI 

(Moment Of Inertia) method. In this work, a novel Incremental Fatigue methodology is 

introduced to continuously calculate the accumulation of multiaxial fatigue damage, 

without requiring rainflow counters or path-equivalent ranges. The proposed approach 

is not based on Continuum Damage Mechanics concepts or on the integration of 

elastoplastic work. Instead, fatigue damage itself is continuously integrated, based on 

traditional fatigue models using in engineering practice. A framework of nested damage 

surfaces is introduced, allowing the calculation of fatigue damage even for general 6D 

multiaxial load histories. The proposed approach is validated on non-proportional 

tension-torsion experiments on tubular 316L stainless steel specimens. 

 

 

INTRODUCTION  

 

Most fatigue crack initiation models need to identify load cycles to compute the damage 

induced by them. This is because traditional fatigue models are discrete in nature, since 

they can accumulate damage only after a load event (e.g. a half-cycle) is properly 

identified, detected e.g. from a load reversal or from a hysteresis loop that closes. But 

the detection and counting of loading events can be a challenging task under multiaxial 

non-proportional (NP) histories. The existing multiaxial rainflow algorithms [1] are not 

robust, since they can output very different half-cycles depending on the choice of the 

initial counting point of a periodic load history [2]. Furthermore, fatigue damage 

computation requires the semi-empirical calculation of path-equivalent stress or strain 

ranges from the rainflow-counted paths [3]. 

On the other hand, a completely different fatigue calculation approach assumes 

damage as a continuous variable, with increments computed as the loading proceeds. 

Most works based on a continuous idea use Continuum Damage Mechanics concepts 



 

[4], which need to be supplemented by purely phenomenological damage evolution 

equations that are difficult to calibrate, to say the least.  

Other continuous damage approaches are based on an integration of elastoplastic 

work. However, the accumulated total work required to initiate a microcrack certainly is 

not a material property and still depends on the number of cycles, thus it is impossible 

to calculate without cycle and reversal detection, so it needs a rainflow counter. 

Alternatively, instead of integrating dubious strain energy or energy-based damage 

parameters, the so-called Incremental Fatigue approach integrates fatigue damage itself, 

until reaching 1.0 or any other critical value using traditional accumulation concepts, as 

performed for the uniaxial case in [5-6]. Fatigue damage is thus continuously calculated 

after each infinitesimal stress or strain increment, not requiring the identification of load 

cycles. In this work, the Incremental Fatigue approach is extended to multiaxial fatigue, 

based on a direct analogy with non-linear incremental plasticity, however calculating 

damage instead of plastic strains. 

 

 

INCREMENTAL FATIGUE APPROACH  

 

The Incremental Fatigue (IF) approach was proposed for uniaxial histories in Wetzel 

and Topper’s 1971 rheological model [5]. It makes use of the derivative of the normal 

stress  with respect to damage D, called here generalized damage modulus D, thus 

 

D d dD       D dD (1 D ) d               (1) 

 

Consider a uniaxial constant amplitude loading history with stress amplitude a. 

During a loading half-cycle, the excursion of the stress  from a to a could be 

integrated according to Eq. 1 to find the associated fatigue damage D = 1/2N, however 

without explicitly calculating the fatigue life N. The damage D from this half-cycle is 

initially zero in the valley when  = a and thus  = (a) = 0, and continuously 

grows toward D = 1/2N until  reaches the peak a, when  = (a) = 2a. 

For simplicity, Wöhler’s stress-based damage model is adopted below (strain-based 

models will be considered later). A simplified relation between the current stress state  

and the continuous damage D from the half-cycle excursion a  a can then be 

obtained from Wöhler’s curve e.g. written in Basquin’s notation: 
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The generalized damage modulus D during this half-cycle is such that 
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from which D = 1/2N can be calculated using the integral 
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If this conceptually simple procedure could be generalized to multiaxial NP variable 

amplitude loading (VAL) histories, integrating damage along a general multiaxial load 

path, then cycle identification, multiaxial rainflow counting, and stress (or strain) range 

calculations would not be required to obtain the fatigue damage D. But this statement is 

easier said than done, since D depends not only on the current stress state ( in this 

uniaxial case), but also on the previous loading history (the value a from the last 

reversal), see Eq. 3. So, Incremental Fatigue models need to allow D to vary as a 

function of the stress level and of the existing state of damage [7].  

The history dependence of D, often neglected or overly simplified in the few IF 

models proposed in the literature, is analogous to the load-order dependence of 

hysteresis loops. Chu [6] outlined the generalization of Wetzel’s rheological model to 

multiaxial loadings, indirectly detecting cycles using two simple rules. However, 

damage memory is not properly stored for NP VAL histories, where often no hysteresis 

loop actually closes and thus any virtual loop closure detection makes no sense.  

 

 

MULTIAXIAL INCREMENTAL FATIGUE APPROACH  

 

Stress-Based Incremental Fatigue Formulation 

In this work, instead of using rheological models, a direct analogy between IF and 

incremental plasticity is adopted to store damage memory, using internal material 

variables. In incremental plasticity, a 5D deviatoric stress increment ds  can be used to 

calculate the associated 5D plastic strain increment plde  from the current generalized 

plastic modulus P, using a plastic flow rule [8-9].  

In particular, in the non-linear kinematic (NLK) incremental plasticity formulation, 

plastic memory is stored by the current arrangement among the hardening surfaces 

defined by their backstresses i  , from which the surface translation directions iv  are 

calculated (according to some translation rule) and combined with material coefficients 

pi to calculate the current P [8-9]. No plastic straining occurs if the stress increment ds  

happens inside the yield surface, whose radius should be equal or smaller than the cyclic 

yield strength SYc. The accumulated plastic strain p is then proportional to the integral 

of the scalar norm plde  of the deviatoric plastic strain increments. 

Let’s now rephrase the previous paragraph for the desired IF model, based on the 

proposed direct analogy. In the IF model presented here, a 5D deviatoric stress 

increment ds  can be used to calculate the associated 5D damage increment dD  from 

the current generalized damage modulus D, using a damage evolution rule. In the IF 

formulation, damage memory is stored by the current arrangement among damage 

surfaces defined by their damage backstresses i  , from which the damage surface 



 

translation directions iv  are calculated (according to some translation rule) and 

combined with material coefficients di to calculate the current D. No damage occurs if 

the stress increment ds  happens inside the fatigue limit surface, whose radius should 

be equal or smaller than the fatigue limit SL. The accumulated damage D is then equal 

to the integral of the scalar norm dD  of the 5D damage increments. 

The damage backstress vector    locates the center of the current fatigue limit 

surface,  which can be decomposed as the sum of M damage backstresses 1 , 2 , 

…, M  that describe the relative positions between centers of consecutive damage 

surfaces, as illustrated in Fig. 1 for a 2D case. 
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Figure 1. Fatigue limit, damage, and failure surfaces in a 2D deviatoric stress space for 

three moving surfaces, showing the damage backstress vector that defines the location 

of the fatigue limit surface center, and its three components that describe the relative 

positions between the centers of consecutive surfaces. 

 

Each damage surface has a constant radius ri, while the radius differences between 

consecutive surfaces are ri  ri+1  ri. The fatigue limit and failure surfaces are 

defined, respectively, for i = 1 and i = M + 1, while the remaining i = 2, 3, …, M are 

the damage surfaces. The damage backstress lengths are always between i 0  , if 

consecutive centers coincide, and i ir   , if they are mutually tangent. 



 

The proposed IF model uses a 5D damage vector D [D1 D2 D3 D4 D5]
T
 that acts as 

an internal variable that stores the current damage state (to account for the damage 

memory). The scalars D1 through D5 are signed damage quantities associated with each 

of the directions of the 5D deviatoric stress vector s , defined in [10]. The accumulated 

damage D (analogous to the accumulated plastic strain p) is obtained from the length of 

the path described by the 5D damage vector D , calculated in either continuous or 

discrete formulations from 

 

D dD |dD | D | D |                  (5)  

 

If a given stress state s  is on the fatigue limit surface with a normal unit vector n , 

and if its infinitesimal increment ds  is in the outward direction, then Tds n 0    and 

a fatigue damage increment is obtained from a damage evolution rule (inspired on the 

Prandtl-Reuss flow rule [9]): 

 
T
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where MSf ( )  is a scalar mean stress function of the current 6D stress   to account 

for mean/maximum-stress effects, which can be defined e.g. from Goodman’s or 

Gerber’s am relations; and , NPf ( n )     is a NP function to account for the non-

proportionality of the load path. For materials that fail due to distributed damage in all 

directions, the mean stress function MSf ( )  could be based on the current hydrostatic 

stress h from  . On the other hand, for materials that fail due to a single dominant 

crack, like most metals (which require the critical-plane approach), then MSf ( )  could 

be based on the normal stress  perpendicular to the considered candidate plane. 

Except for the failure surface (which never translates), during this damage process 

the fatigue limit and all damage surfaces suffer translations 
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where di are coefficients calibrated for each surface, and iv  are the damage surface 

translation directions adapted e.g. from the general translation rule from [9]. 

The current generalized damage modulus D is then obtained from the consistency 

condition, which guarantees that the current stress state is never outside the fatigue limit 

surface, taken from an analogy to the NLK hardening formulation 

 

 M T
i ii 1

D d v n   
             (8) 

 

allowing the calculation of the evolution of the damage vector D  using Eq. 6.  



 

The (scalar) accumulated damage D is then obtained from Eq. 5. This formulation 

can deal with any multiaxial stress history, proportional or NP, and eliminates the need 

to count cycles and find equivalent ranges, or even to define them. For instance, Fig. 2 

shows IF damage predictions for a material whose elastic Coffin-Manson’s parameters 

are c = 772.5MPa and b = 0.09, under the uniaxial loading history x = {0  300  

300  300}MPa. Jiang-Sehitoglu’s translation rule was adopted with M = 16 

surfaces, calibrated between logarithmically spaced damage levels 10
8

 and 0.01. 
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Figure 2. Hysteresis loops relating applied stress and a signed damage state (left) and 

resulting accumulated damage (right) for a uniaxial constant amplitude loading history. 

 

Strain-Based Incremental Fatigue Formulation 

The above example assumed linear elastic histories, with damage calculated from SN 

models such as Wöhler-Basquin’s. But the proposed IF approach can be extended for 

elastoplastic histories, whose fatigue damage must be quantified by N models. So, 

instead of using fatigue limit and damage surfaces defined in stress spaces, strain spaces 

could be used instead. A generalized damage modulus D (instead of D) is thus 

defined, which for uniaxial histories becomes the derivative of the normal strain  with 

respect to damage D, thus D  d/dD. 

In the strain-based version of the proposed IF approach, a 5D deviatoric strain 

increment de , defined in [8], is used to calculate the associated 5D damage increment 

dD  from the current D, using a damage evolution rule. Damage memory is stored by 

the current arrangement among damage surfaces defined by their damage backstrains 

i  , from which the damage surface translation directions iv  are calculated according 

to some translation rule and combined with material coefficients di to calculate the 

current D. The accumulated damage D is then equal to the integral of the scalar norm 

dD  of the damage increments. The same equations from the stress-based version can 

be used in the strain-based one, as long as the M damage surface backstrains 1  , 2 , 



 

…, M , radii ri, and radius differences ri  ri+1  ri between consecutive damage 

surfaces are all defined as strain (instead of stress) quantities. 

 

 

RESULTS  

 

The proposed IF formulation is experimentally evaluated using complex 2D tension-

torsion stress histories, applied on annealed tubular 316L stainless steel specimens in a 

multiaxial servo-hydraulic testing machine. The Coffin-Manson curve for this material 

is 0.277 0.5822 0.0119 ( 2N ) 0.758 ( 2N )      , obtained from uniaxial tests. 

The experiments consist of strain-controlled tension-torsion cycles applied to eight 

tubular specimens, each of them following one of the eight periodic x×xy/3 histories 

from Figure 3. Table 1 compares the predicted and observed fatigue lives in number of 

blocks, where each block consists of a full load period. All predictions were performed 

using the strain-based version of the proposed incremental plasticity formulation, 

assuming for simplicity MSf ( ) 1   and , NPf ( n ) 1      in Eq. 6. 
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Figure 3. Applied periodic x×xy/3 strain paths on eight tension-torsion tubular 

specimens, all of them with normal and effective shear amplitudes 0.6%. 

 

As shown in Table 1, albeit the proposed method does not use any cycle detection or 

counting algorithm, all fatigue lives were predicted with relatively small errors, within 

the usual scatter of fatigue measurements. It also automatically applies Miner’s rule 

under VAL, as it can be seen in the loading path consisting of blocks of consecutive 

square and cross paths, since the predicted number of blocks 482 is such that 1/482  

1/751  1/1314. Similarly, the predicted 327 blocks of consecutive square, circle and 

diamond paths is such that 1/327  1/751  1/996  1/1436. Miner’s rule was also 

confirmed within the observed experimental results, since e.g. in this latter case it would 

predict a life of 1/(1/772  1/837  1/976) = 285 blocks, almost the same value as the 

measured 288 blocks. It is important to note that all the predictions were based only on 

uniaxial Coffin-Manson data, without any posterior curve fitting. 



 

Table 1. Predicted and observed lives, in number of blocks, for each applied path. 

 

Tension-Torsion path: predicted observed error 

Cross 1314 1535 14%

Diamond 1436 976 47%

Triangle 1 1135 842 35%

Triangle 2 1180 840 40%

Circle 996 837 19%

Square 751 772 3%

Square + Cross 482 342 41%

Square + Circle + Diamond 327 288 14%

 

 

CONCLUSIONS 

 

In this work, an Incremental Fatigue formulation was proposed, based on a direct 

analogy with incremental plasticity models. Both proposed stress and strain-based 

approaches can be formulated using traditional stress, strain, or even energy-based SN 

and N damage models, such as Wöhler-Basquin, Coffin-Manson, Smith-Watson-

Topper or Fatemi-Socie, becoming attractive and practical for engineering use. These 

models did not require additional fitting parameters, or complex calibration routines, as 

opposed to traditional Continuum Damage Mechanics approaches. The results show that 

the proposed method is able to predict quite well multiaxial fatigue lives of complex 

tension-torsion histories, even though it does not require cycle detection, multiaxial 

rainflow counting, or path-equivalent range computations.  
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