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ABSTRACT. In this work, the Multiaxial Racetrack Filter (MRF) is extended to 

incorporate mean or maximum stress effects, adopting a filter amplitude that depends 

on the current stress level along the stress or strain path. In this way, a small stress or 

strain amplitude event could be filtered out if associated with a non-damaging low-

stress level, while another event with the very same amplitude could be preserved if 

happening under a more damaging high-stress level. The variable value of the filter 

amplitude must be calculated in real time, thus it cannot depend on peak or mean 

stresses along a load event, because it would require cycle identification and as so 

information about future events. Instead, mean/maximum stress effects are modeled in 

the filter as a function of the current (instantaneous) hydrostatic or normal stress along 

the load path, respectively for invariant-based and critical-plane models. The MRF 

efficiency is evaluated from tension-torsion experiments in 316L stainless steel tubular 

specimens under non-proportional (NP) load paths, showing it can robustly filter out 

non-damaging events even under multiaxial NP variable amplitude loading histories.  

 

 

INTRODUCTION  

 

Unlike frequency filters that distort originally noisy signals, the uniaxial racetrack filter 

[1] is an efficient and well-proven technique to eliminate non-damaging events from 

uniaxial load histories without changing the original loading order and overall shape. Its 

generalization to multiaxial non-proportional (NP) variable amplitude loading (VAL) 

histories allows a dramatic reduction in computational cost while calculating fatigue 

damage from actual strain measurements, which are always noisy, oversampled, too 

long, and/or with too many non-damaging low-amplitude cycles.  

However, the removal from multiaxial VAL histories of all data points that are not 

reversals of any of their stress or strain components is not appropriate because: (i) the 

path between two load reversals is needed to evaluate the path-equivalent stress or strain 

associated with each rainflow count, e.g. using a convex-enclosure method [2]; and (ii) 

reversal points from a multiaxial rainflow algorithm might not occur at the reversal of 

one of the stress or strain components.  



 

A truly multiaxial racetrack filter (MRF) has been proposed in [3], performed on the 

load path represented in a sub-space from the 6D stress or strain space. The filter 

amplitude defines the radius of a hyper-sphere (or a sphere in 3D or a circle in 2D load 

histories, respectively), which translates along the load path while filtering out any 

small load oscillations happening within its interior region.  

The use of a 5D deviatoric stress or strain space allows the MRF to be applied to 

invariant-based damage models, which assume fatigue damage is controlled by 

invariants like the von Mises ranges and hydrostatic stresses, such as Crossland’s model 

[4]. For a given stress history, this 5D space is represented by the deviatoric vector 

 
T
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Since the norm of s  is equal to the von Mises stress, all distances and filter 

amplitudes in this 5D sub-space have a physical meaning, they are the von Mises range 

or the relative von Mises stresses Mises for a straight path between two stress states. 

Alternatively, for a given strain history, the 5D space is defined by the deviatoric vector 
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A sixth dimension could also be considered in the above 5D spaces, which would 

store the hydrostatic stress h or strain h of the current state, allowing the filtering of 

not only deviatoric components, but also of their hydrostatic components. 

For 2D tension-torsion histories with stress paths defined by the normal and shear 

components x and xy, it is found that y  z  xz  yz 0, while y  z   ∙x and  

xz  yz  0, where   is an effective Poisson ratio. In this case,  

 
T

x xys 0 3 0 0        and  
T
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therefore the stress or strain paths of such tension-torsion histories can be represented in 

the 2D deviatoric diagrams x xy 3   or x xy(1 ) 3 2     , which are sub-spaces 

from the 5D spaces from Eq. (3).  

Figure 1 shows an idealized tension-torsion history represented in the x xy 3   

normal-effective shear stress diagram, with the original path points represented as  

markers. For a (large) filter amplitude r = 80MPa (the radius of the circle shown in the 

figure), the MRF results in a much reduced number of points, represented with square 

and triangular markers. Note in the figure that many points from such oversampled 

example are filtered out. Note as well that small normal stress or effective shear stress 

oscillations are also filtered out, as seen in the upper part of the figure. The original 

1,315 data points of this idealized history are dramatically reduced to only 56, 

significantly reducing the computational cost of subsequent multiaxial rainflow or 

fatigue damage calculations. 
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Figure 1. Original points from an idealized x×xy3 stress path ( markers), and 

outputs from the MRF (square and triangular markers) for a filter amplitude r = 80MPa. 

 

The MRF can also be applied to project histories on a candidate plane, useful to 

reduce computational cost in calculations from the critical-plane approach [5]. For 

shear-based damage models, the 2D spaces [A B]
T
 or [A B]

T
 could be adopted in the 

MRF, where the subscripts A and B represent the in-plane and out-of-plane shear 

directions of a candidate plane. For tensile-based damage models, the traditional 

uniaxial racetrack filter could be applied to the 1D spaces [] or [], where  and  

are the normal stress and strain perpendicular to the considered candidate plane. 

Alternatively, for multiaxial models that mix both shear and tensile damage, the 3D 

stress or strain spaces [A B ]
T
 or [A B ]

T
 could be used instead in the MRF.  

 

 

MRF WITH MEAN/MAXIMUM STRESS EFFECTS 

 

The original implementation of the MRF [3] adopts a constant filter amplitude r. 

However, since tensile load histories tend to be more damaging due to mean/maximum 

stress effects in multiaxial fatigue, they would benefit from a choice of lower values of 

r, to avoid filtering out damaging events. On the other hand, compressive histories 

could allow the choice of higher filter amplitudes, filtering out more points without 

compromising the damage calculations.  

Such an improved MRF, optimized to consider mean/maximum stress effects, can be 

implemented adopting a filter amplitude r that depends on the current stress level. In 



 

this way, a small stress or strain amplitude event could be filtered out if associated with 

a non-damaging low-stress level, while another event with the same amplitude could be 

preserved if happening under a damaging high-stress level. 

However, this is easier said than done. The filter amplitude must be calculated in real 

time (or else it would lose efficiency), therefore it cannot be a function of the peak or 

mean stresses along a load event, which would require cycle identification and 

information about future events. Instead, mean/maximum-stress effects are modeled in 

the filter in a simplified way, as a function of the current (instantaneous) hydrostatic h 

or normal  stress along the load path, respectively for invariant-based and critical-

plane models, as briefly outlined in [6].  

Crossland’s invariant-based model [4], e.g., adopts an infinite-life criterion 
 

maxMises C h C2 ( 3 )              (4) 

 

where Mises is a path-equivalent von Mises shear stress range, hmax is the peak 

hydrostatic component, and C and C are material constants. If this damage model is 

adopted, then the stress history could be represented in the previously defined  5D 

deviatoric space s , assuming a h-dependent variable filter amplitude 

 

Mises Mises C C hr 2 3 2 ( 3 ) ( 3 3 )             (5) 

 

On the other hand, Findley’s critical-plane model [7] assumes that 

 

F Fmax2              (6) 

 

where  and max are the shear stress range and peak normal stress on the critical 

plane, and F and F are material constants. Using this damage model, the shear stress 

history on the considered candidate plane could be represented in the 2D shear stress 

space [A B]
T
, while adopting a -dependent variable filter amplitude 

 

F F maxr 2               (7) 

 

Fatemi-Socie’s critical-plane model [8] assumes that 
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where  and max are the shear strain range and peak normal stress on the critical 

plane, N is the associated fatigue life in cycles, G and SYc are the material’s shear 

modulus and cyclic yield strength, and FS, c, c, b and c are material constants. For 

this damage model, the shear strain history on the considered candidate plane could be 

represented in the 2D shear strain space [A B]
T
, while adopting a -dependent 

variable filter amplitude 
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    (9) 

 

where NL is the number of cycles associated with the stress-life fatigue limit, or any 

other user-defined fatigue life level.  

A high-cycle variation of the above variable filter amplitude can also be defined, 

based on a shear stress instead of shear strain amplitude, giving 
 

 L U Ur 1 S                      (10) 

 

where L is the shear fatigue limit under zero mean stresses, U is a material constant 

and SU is its ultimate strength. 

In all above cases for Crossland’s, Findley’s and Fatemi-Socie’s models or its 

variations, the filter amplitude r becomes instantaneously smaller for higher h or  

stress levels, to avoid filtering out damaging events. Analogously, similar expressions 

for such a variable r could be easily derived for other multiaxial fatigue damage models. 

 

 

RESULTS  

 

The improved version of the MRF presented in this work is evaluated using 

experimental and idealized tension-torsion 2D stress histories. The experiments are 

performed on annealed tubular 316L stainless steel specimens in a multiaxial servo-

hydraulic testing machine. The cyclic properties of this 316L steel are obtained from 

simple uniaxial tests. Its Ramberg-Osgood uniaxial cyclic hardening coefficient and 

exponent are 874MPa and 0.123, with Young’s modulus 193GPa and Poisson ratio 0.3. 

But note that this material presents a significant non-proportional (NP) hardening effect 

as well, which cannot be neglected in multaxial fatigue damage calculations, as 

discussed below. 

The experiments consist of strain-controlled tension-torsion cycles applied to two 

tubular specimens, one for the cross and one for the x-shaped paths from Fig. 2, 

represented in the normal-effective shear strain space x×xy/3. For each specimen, 

several load periods are applied for a given normal strain amplitude a, for chosen strain 

amplitudes a = 0.2%, 0.4%, 0.6% and 0.8%. The resulting normal-effective shear stress 

paths x×xy3 are very complex, involving high NP hardening effects and transients, 

see Fig. 3. 

Figure 3 shows the experimentally measured data points ( markers) from each of the 

two specimens, as well as the MRF output (solid lines) for a filter amplitude r = 7MPa. 

For the cross-shaped path, 95% of the measured points were filtered out, while for the 

x-shaped case 87% were eliminated, significantly reducing the computational costs of 

subsequent fatigue life calculations. Notice that, despite being highly filtered, the MRF 

outputs can almost exactly describe the original history, capturing not only all reversal 

points but also the path shape, which is a most important feature for equivalent-range 

calculations.  
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Figure 2. Applied x×xy/3 strain paths on two tension-torsion tubular specimens, with 

successively imposed amplitudes a = 0.2%, 0.4%, 0.6% and 0.8% in each case. 

 

  
 

Figure 3. Experimentally measured data points ( markers) from the x×xy3 stress 

paths induced by the cross and x-shaped inputs from Fig. 2, and associated outputs from 

the MRF (solid lines) for a chosen filter amplitude r = 7MPa. 

 

Figure 4 shows a random single period of each of the Fig. 3 paths, where the square 

markers represent the MRF output, filtering out most of the original stress points. 

To better evaluate the mean/maximum stress effects in the proposed modification of 

the MRF, the idealized tension-torsion stress history from Fig. 1 is now filtered 

according to a filter amplitude based e.g. on Fatemi-Socie’s model, shown in Eqs. (9) 

and (10) respectively for strain or stress histories. Figure 5 plots the idealized tension-

torsion stress history in a normal-effective shear stress diagram, with the original path 

points represented as  markers.  



 

 
 

Figure 4. Experimentally measured data points ( markers) for a single period and 

associated outputs from the MRF (square markers) for a filter amplitude r = 7MPa. 
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Figure 5. Original points from an idealized A 3    stress path ( markers), and 

outputs from the MRF (square and triangular markers), considering mean stress effects. 

 



 

Assuming Fig. 5 represents the A 3    history of the normal stress and in-plane 

shear stress components on a candidate plane, the variable filter amplitude from Eq. 

(10) could be used, but multiplied by 3  (due to the scaling from A  to A 3 ) to give 

 

 L U Ur 3 1 S             (11) 

 

For a hypothetical component with L 3 80MPa  , SU = 515MPa, and U = 0.66, 

the above variable filter amplitude becomes  r 80 1 0.66 515   . Figure 5 shows 

the MRF output adopting such a variable r, where the remaining (unfiltered) points are 

marked as squares or triangles. Notice how most of the normal oscillations were filtered 

out under a 300MPa compressive mean normal stress, while very few of them were 

filtered under +300MPa. And the small shear cycle near the 120MPa compressive 

normal stress was filtered out, while the same shear cycle at +180MPa was not, a 

desirable behavior for an amplitude filter that considers mean/maximum stress effects. 

 

 

CONCLUSIONS 

 

The Multiaxial Racetrack Filter (MRF) is an efficient amplitude filter applicable to 

multiaxial histories and fatigue damage models based on invariant or on the critical-

plane approach. The MRF is able to filter out low-amplitude events, significantly 

decreasing the computational cost of subsequent multiaxial fatigue-damage calculations. 

In this work, mean/maximum stress effects were incorporated into the MRF. The 

proposed variable filter amplitudes allowed the algorithm to efficiently filter out events 

based on their damage parameter. In this way, lower filter amplitudes are automatically 

used for tensile histories, and higher amplitudes for compressive ones, optimizing the 

filter efficiency without neglecting significant damaging events. 
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